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The rigorous evolution equations for the one-body Green's functions (g, g~) describing a
system of interacting fermions are not closed (an analog of the Bogoliubov-Born-Green-Kirk-
wood- Yvon hierarchy for many-body distribution functions). The analysis of these equations is
made in terms of proper connected diagrams. It is established that in the bulk limit, N
(particle number) ~, 0 (volume) ~ while N/0 remains finite, these equations can rigorous-
ly be transformed into closed equations with respect to (g, g }.

I. INTRODUCTION

It has been known in classical-statistical me-
chanics that the rigorous evolution equations for
reduced phase-space distribution functions de-
scribing an imperfect gas are coupled. These
equations are often called the Bogoliubov-Born-
Green- Kirkwood- Yvon (BBGKY) kiexareky 'In.
an earlier papera the present author showed that
the hierarchy equation of the lowest order can be
transformed into a closed equation [Ref. 2, Eq.
(2. 26)] with respect to the one-body phase-space
distribution function in the bulk limit: N (particle
number} ~, A(volume)- ~ while N/0 (mean num-

ber density) remains filllte. Tllis is dQIle 11s111g the

analysis in terms of connected diagrams. A

restrictive feature of this analysis is that it is ap-
plicable to a system of distinguishable particles
obeying the Boltzmann statistics, and not to a.

quantum statistical gas. This limitation can be
overcome by working with double-time Green's
functions (g, g') in place of the single-time one-

body distribution function or density matrix.
In the present paper it is shown that the hierarchy

equations of the lowest order, i.e. , those involving
one- and two-body Green's functions (2. 6) de-
scribing an imperfect Fermi gas can be transformed
into closed equations (4. 15) with respect to (g,g')
in the bulk limit. This is done in the following way:
The hierarchy equation (2. 6) contains an integral
of the product of the pairwise potential e and the
two-body Green's functions ga, (2. t). This in-

tegral is analyzed in terms of ~oper connected
diagsams and is shown to be expressible in terms
of one-body Green's functions (g, g') and given
initial correlation matrices y. In the transf orma-
tion no approximations other than those which can
be justified in the bulk limit are used. The initial
condition can be quite general; it may involve
arbitrary correlation and also inhomogeneity,
which are, in general, describable in terms of

g matrices.
The closed equations (4. 15) obtained are sim-

ilar to the equations discussed by Kadanoff and
Baym' [Ref. 4, Eqs. (8. 27) and (8. 28)]. These
authors treated Green's functions (g,g') defined
with the choice of the grand-canonical density
operator for the initial condition at t= —~. 'While

this can be argued as a useful choice, with such
a particular choice one can no longer discuss the
role of a general initial condition. For such dis-
cussion one obviously needs Green's functions with
an arbitrary condition at a definite initial time
rather than Green's functions with a specialized
condition at an indefinite initial time. Equations
(4. 15) contain terms involving &, t1 in (4. 18),
whose nature is distinct from that of any terms
appearing in the Kadanoff- Baym equations. These
extra terms necessarily involve X describing the
initial correlation. Our closed equations (4. 15)
contain those terms which are most appropriately
represented by an infinite set of proper connected
diagrams, prescribed in a definite manner. The
mathematical structure of the equations is such
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that they allow us to discuss the stationary state
of the system in a convenient way, which, however,
will be discussed in separate publications.

The present theory proceeds along the line in
which the hierarchy of classical-statistical many-
body Green's functions was resolved in an earlier
paper. ' While the two theories have much in com-
mon, including the main objective and method,
they significantly differ in the resulting closed
equations (4. 15), and in one of the key steps, i. e. ,
the decomposition of a many-body density matrix
into products of correlation matrices (3. 10).
Since these differences cannot be guessed simply
but must be worked out, the detailed development
will be presented here.

The analysis in terms of proper connected dia-
grams is useful in the practical calculation of
transport coefficients. However, the demonstra-
tion of this aspect of the theory will be given in
separate publications. The fact that proper con-
nected diagrams are defined independently of any
representation (momentum, position, or other)
has a definite advantage when one deals with sys-
tems of nonuniform densities or with systems of
charged particles subjected to electromagnetic
fields.

In Sec. II the hierarchy equations for Green's
functions are derived. In Sec. III, the integral of
the product of the pairwise potential and the two-
body Green's function is expanded, using the in-
finite-order perturbation theory and the correla-
tion-matrix expansion of the initial many-body
density matrix. Each term of the expansion is de-
composed again into a sum of contractions, and
the latter are represented by diagrams. After
the diagram analysis, a set of closed evolution
equations for g andg is obtained in Sec. IV.
Throughout the text the units are chosen such that
&= 1.

r)

J J
d'r, d'r&v (r, —r, )g'(r ) g'(r&) |1)(ro)g (r, )

=- &o+ &V (2. 1)

where ho is a single-particle Hamiltonian which
may contain the energy due to an electromagnetic
field in addition to the kinetic energy and v is the
pairwise potential with X being the coupling con-
stant. The field operators g, g~ satisfy the anti-
commutation rules

II. HIERARCHY EQUATIONS FOR GREEN'S FUNCTIONS

Let us consider a system of interacting fermions
contained in a volume 0, characterized by the
Hamiltonian H,

H =-) d'rg'(r))r, (r, —i, i) 4(r)

rg r2 = rg r2 + rp rg

= ~"'(»- ro),

[g(rq), g(ro)], = [g (r, ), g (™ro)],=0.

(2 2)

We now define partial Green's functions g, g
by

g'(I, 2) =g'(ri 4, roto)
-=—i »[pt(I) 0'(2))

g'(1, 2) =- i»[W'(2) 4(I)],

(2. 3)

where p is a density operator to be specified at
the initial time t =0; the symbol Tr means the
many-body trace; ((1) and (~(2) are annihilation
and creation operators in the Heisenberg picture

4 (I) =- ~ (r„4)=- U'(t, ) t)'(', ) U(4),

g (2 ) —= U (to) t)t' (ro) U(to);
(2. 4)

and U(t) is the unitary evolution operator satisfying

i —U(t) =H(t) U(t), U(0) = 1 .
9

(2 5)

Differentiating g~(1, 2) with respect to t„oneob-
tains

i —g (1, 2)
9

9tg

Tr~)pf (2) U (t, ) [H(t)g(r, ) —$(r, )H(t)]U(t, )].

=ho rsr —s s- r ts g (1, 2)
9ry

+X d xsv rs- ri gz r&ti, rst„r2t&,rst,

(2. 6)

g'(13 24) =- i'»[8'(2) 0'(4) 0(3)0(I)] . (2. 7)

We see in (2. 6) that the exact behavior of the
evolution of g' is governed by the two-body Green's
functiongo. In fact, Eq. (2. 6) is one of the hier-
archy equations analogous to the BBGKY hierarchy
found for the classical many-body distribution func-
tions. Since Eq. (2. 6) contains two unknowns, g
and g 3, one cannot contemplate solving it in the
present form. This same situation holds for other
evolution equations for g and g which are gener-
ated by differentiation with respect to t& and t2.

III. DIAGRAM REPRESENTATION

In Sec. II, we have seen that the rigorous evo)u-
tion of g is ruled by the hierarchy equation (2. 6).

where g& is the two-body Green's function defined by
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The origin of this complexity lies in the particle
correlation generated by the pairwise interaction.
The single-particle Hamiltonian due to a possible
electromagnetic field does not contribute to this
complexity. Since we are primarily interested in
resolving the hierarchy in the present theoretical
development, we shall exclude external fields
from our consideration. %e may then assume that

I

~el' ~ 8
hp(p) —= hp Br (3. 1)

The second term of the third member of (2. 6)
can be written as

the single-particle Hamiltonian h0 is a function
of the momentum only, and is independent of time:

f& fd'1'pl (rl- rp)»[pg'(2) U'(tl) 0'(rp) 4(rp) 4(rl) U(tl) j

= i ~ f d'r, e (r, —r, ) Tr [pU'. (t,) g,'(t, ) U', (t„t, ) gj(t, ) $,(tl) 41(tl) Un(tl) j, (3 2)

UD(t) = e""pU(t),

and annihilation operators for the states &„&„.
They satisfy the usuRl Rntlcommutatlon relRtlons
similar to (2. 2):

U'a(tp tl) = 8"'"PU(tp) U'(tl) e '""P

A(t) = 4~, (t) =8""4(r~)s

q
t (t )

—8 11IIp q 't(r ) 8 1 t Hp
(3.4)

f ~a-1
&c I dr, V(r, ) V(vp) ~ ~ ~ V(7,),

Jp

2 f' ~1
ppo

0 g1

U'D(tp tl)=1+~(-tl)'
1 ~ t1

(3. 5)

The operators U~, Uz, and Uz are functions of X,
and can be expanded in powers of X:

[a„a„j.= [a'„a„'j.=0,
(3 6)

=51, pp(12'''&, (ted+1) ~ ~ ~ (2k)), (3. 9')

where 5„„is Kronecker's 0 for the case of dis-
crete states and the Dirac 6 function for that of
continuous states. (These states may be position
states, and in that case the creati. on and annihilation
operators are denoted by the letters gl, g. )

From the definition (3. f) and the anticommuta-
tion relations (3. 6), the two-body density-matrix
elements satisfy

&~1~.l»l ~po~&-=»(» 34) =-»(2' 34).

More generally,

P, p„(12 ",a, (a+1) ~ ~ (2f))

('a-1
dr V(rl)V(r )'' V(rp),

t1

V(r) —elvspV -kve(

'f fd'~l-d'~" ('1 rp) 41('-) 4z(r) 4p(~) tl(r) .
(S.6)

A many-body density operator p to be specified
at the initial time contains all information about

the inhomogeneity and particle correlation of the

system. The latter can equivalently be obtained
fl'0111 tile 1'edllced dellslty matrices p„defined by

&~,
I Pl I

~.&
= »(Ps!s,-),

&cl, cl,
~ p, ~

~, cl„&=- Tr(pa,'a'„a,a,),

where lu, &, &cl„lare ket and bra vectors charac-
terized by the states &„&„;a~~, a„arecreation

where PI, is an arbitrary permutation for the set
of numerals 1, 2, . . . , 0, and 5„is the parity sign;
i.e. , it is either 1 or -1 according to whether P
is an even or odd permutatio~.

Let us now define the paA -correlation matrix

X2 by

pz(12, 34)

=»(1, 3)pl(2, 4)- pl(1, 4) pl(2, 3)+Xp(», 34).

(S. 10)

yp(12, 34) = —Xp(21, 34), (S. 11)

which means that Xa has the same antisymmetry
Rs pa.

From the definitions of p„pp, in (S. '7),

By applying the exchange operator (1, 2) and using

(S.9), one obtains
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Lim—d(1)p, (1, 1)=Lim—Tr p d(1)a, a,)
N= Lim —=n0

(3. 12)

Lim — d(2) p«(12, 23) = Lim—

f
x Tr pa«

~
d(2)a«a«a,

where the symbol Lim means thebulk limit. Using
these, we obtain from (3. 10)

Lim (1/Q) fd (2) X 2 (12, 32)

= Lim(1/Q) fd(2) [P2(12, 32)- p)(l, 3)p, (2, 2)

+ p&(1, 2) p~(2, 3)]

= Lim(1/Q) (o.', ~p~2~ n«).

Lim(1/Q) fd(2) X«(12, 32) = 0 . (3. 13)

Since (&, I p«, I &, ) can safely be assumed to be finite,
we obtain

tion by giving p„x„.. . instead of a single many-
body p. In fact, this specification is obviously
more realistic.

We now propose to replace the N-body density
matrix p by the reduced N-body density matrix
p„defined with an ensemble of still larger sys-
tems, and decompose the latter p„bythe pro-
cedure (3. 10')

P»= (t(llpi+X«ll PT+ ' ')+X» 1 (3. 14)

(niUVWXIn&

= O'V'8"'X"+ U'V" TV'X" + O'V' TV"X',

where the symbol 8. means the antisymmetrization
of the products.

With the aid of (3. 5) and (3. 14), we can expand
the last member of (3. 2). Each component of this
expansion can be decomposed into the sum of
contractions, i. e. , products of contracted pairs
(see below). This decomposition is discussed in
Ref. 3, pp. 87-89, and will not be reproduced
here. Essentially, this is based on the contraction
theorem applied for the diagonal element of any
product of fermion operators. For any four
fermion operators U, V, W, and X, the theorem
reads

This is an important property of the pair-correla-
tion matrix defined by (3. 10) (see below).

We now wish to define many-body correlation
matrices X„,@=2 such that they should have prop-
erties which are the the generalizations of (3. 11)
and (3. 13). The results are

ps(123 456) =~ 6» Ps[pl(1 4) pl(2 5)pi(3 6)
p 3

3

U V"W'X" —= 6» (U W' ) (V X")

= —(U'W') (V"X"),

where contracted Pairs defined by

U'V =-
&n ~UV~n)

(3. 15)

(3. 16)

(3. 17)

+Pg(1, 4)X«(231 56)+PT(21 5)X«(13146)

+p~(3, 6) X«(12, 45)] + X,(123, 456), etc. ,

(3. 10')

P«X «(12 ~ ~ k, (k+ 1) ~ ~ ~ (2k))

= 6J, X«(12 ~ ~ ~ k, (k + 1) ~ ~ ~ (2k)), (3. 11')

Lim(1/Q) fd(1}X«(12~ k, 1 (0+2) ~ ~ ~ (2k)) =0 .

(3. 13')

It is noted that the antisymmetric products are
taken in (3. 10) and (3. 10'} in contrast to the clas-
sical case. It is also noted that this decomposition
of reduced density matrices into products of cor-
relation matrices can rigorously be defined only
in the bulk limit, and it is done independently on

any representation (position, momentum, or other
representation }.

It is clear that we can specify the initial condi-

are denoted by dots and double dots, and 5~ = +1
is the parity of permutation P which transposes
the ordered contraction on one member of equality
into that on another member [see (3. 16)]; In ), (n I

are normalized ket and bra for many-fermion
states.

Now each contraction can be conveniently rep-
resented by a diagram.

Draw a horizontal boundary line. The operator
(I)«(t«) is denoted by a point above the boundary at
t= t2 at which a particle line is to start, and
g«(t, ) g«(t, ) )(I),(t, ) by a point at t = t» at which two
particle lines are to arrive and a particle line is
to start. The time is measured from right to left
with the right end corresponding to t = 0. All the
interactions V(r) arising from the three (U]), U~, Uz&)

can be ordered according to their time arguments
r". Those V(r) from U~(t2) are represented by
vertices below the boundary line, those V(r) from
U~(t, ) by vertices above the boundary, and those
V(r) from UD(t» t«) are represented by vertices
above or below the boundary according to whether
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t2 & t& or t~ & t&. Each of these vertices will have
two particle lines arriving and two particle lines
leaving, which arises from the fact that V(v) con-
tains two annihilation and two creation operators.
Tiie correlation matrices y„l ~2, are represented
by a point below the boundary at t = 0, where l
particle lines are to arrive and also / particle
lines are to leave. To avoid complexity we do not
represent p, in the diagram. This could have been
done by using a point below the boundary at t =0
where one particle line should arrive and one
particle line should leave.

A diagram is completed by drawing particle
lines from a point to itself or to another. A dia-
gram so completed, in fact, corresponds to an
in general nonvanishing contracted component of
the trace in (3. 2). Other conceivable diagrams
not in accordance with the above prescription cor-
respond to either trivially vanishing contractions
or none at all.

IV. DIAGRAM ANALYSIS: CLOSED EQUATIONS FOR
(r', ~')

A diagram is said to be'connected if any two
points on it can be reached from one to the other
without leaving it. Otherwise, the diagram will
be called disconnected For e.xample, Fig. 1(a)
is connected while Fig. 1(b) is disconnected. All
the disconnected diagrams do not contribute to
(3. 2) effectively although a particular diagram
may contribute a finite amount. This can be proved
with the aid of the following two theorems.

Theorem I. Any diagram containing an M-type
potential vertex has a counterpart such that the
pair so found yield mutually cancelling contribu-
tions.

A Potential vertex of the M tyPe is a vertex which
has all the incoming and outgoing lines on the right.
For example, Figs. 1(b) and 1(c) have such ver-
tices M and, in fact, form the pair which are
recognized by the location of the M vertices above
and below the boundary line and which have mutually
cancelling contributions. The proof of this theo-

rem essentially rests on the fact that the potential
vertices above and below the boundary, arising
from Un(f) and Un(f), have different signs as seen
from (3. 5). It is stressed that the recognition of
the mutually cancelling pair is particularly easy in
our diagram representation. This theorem holds
for a finite system, and it is valid irrespective of
whether the system obeys Maxwell-Boltzmann,
Bose-Einstein, or Fermi-Dirac statistics.

Theorem II. Any diagram containing a correla-
tion vertex with one or more particle loops con-
tributes nothing.

Figure 1(d) contains a correlation vertex with
two loops and yields vanishing contribution. This
arises from the fact that such a correlation vertex
contributes a vanishing factor of the form (3. 13').
This theorem is strictly valid in the bulk limit.

Any disconnected diagram has either a M-type
potential vertex or a correlation vertex with loops
or both as seen in Figs. 1(b)-1(d) and therefore
does not effectively contribute.

The power of these two theorems is not limited
to the elimination of the disconnected diagrams.
In fact it allows us to disregard a large number of
connected diagrams. For example, Figs. 2(a)
and 2(b) are connected diagrams but these
diagrams contain a M-type potential vertex and cor-
relation vertex with a loop, respectively, and
therefore need not be considered in the further
diagram analysis.

A connected diagram may or may not consist
of two parts which can be separated out by cutting
a pair of particle lines. In the first case we shall
say that it is animProPer diagram; and in the lat-
ter case it is ProPer. For example, Fig. 3(a)
is proper and Fig. 3(b) improper. A part which
is suspended by such a pair of lines will be called
a self energy paw-t, following the terminology used
in the quantum field theory. We shall further say
that we reduce an improper diagram into a simpler
diagram when we suppress its self-energy parts.
If we repeatedly make such reduction for an ar-
bitrary improper diagram, we shall finally come

(c)

t2

,FIG. 1. (a) is a con-
nected diagram, and all
others are disconnected
diagrams. (4) and (c)
have M-type potential
vertices and mutually

cancelling contributions.
(d) has a correlation
vertex with two loops
and contributes nothing.
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(b)

FIG. 2. (a) is a connected dia-
gram but effectively contributes
nothing because it contains an
M-type potential vertex. (b)
contributes nothing because it
contains a correlation vertex
with a loop.

Uo(1)go(1 2), (4. 1)

Uo(1) —= —iX J d ron(r, —ro)go(rot„rot)) (4, 2)

where the double space-time functions g o (and go)
are defined by

g'o(1, 2) —= i Tr[pgo(tq)gs(ts)],

go(1, 2) =- —i Trb Ii(to) 4o(to) j
(4 3)

and will be referred to as partial Green's func-
tions corresponding to free particles or simply
as free-Particle Green's functions.

down to a proper diagram. For example, Fig. 3(b)
is uniquely reducible to Fig. 3(a). Conversely,
one can generate improper diagrams from a proper
diagram by Chessing its particle lines with self-
energy parts. It is noted that this dressing must
be made to the right because otherwise it would
necessarily generate M-type potential vertices
and would contribute nothing. In view of this dia-
gram analysis one can reclassify the infinite set
of connected diagrams by first enumerating proper
connected diagrams and then generating improper
diagrams by dressing.

It is easily verified that in any proper diagram
the particle line starting from the point at t = t2
must end either (i) at the point at t = t, , (ii) at a
potential vertex at t = tz which may arise from the
three operators (UD, Uo, Uo), or (iii) at a correla-
tion vertex at t= 0 which arises from the initial
density operator p. Examples of the three alter-
natives are, respectively, those diagrams in Figs.
4(a), 3(a), and 4(b).

In the first alternative (i) the contribution of the
only proper diagram in Fig. 4(a) is given by

In general the mathematical expression can be
readily read off from a given diagram: A particle
line running from 2 to 1 contributes either go(1, 2)
or g, (1, 2) according to whether it proceeds in the
Positive sense; i. e. , from left to right above the
boundary line, from right to left below or down-
ward when crossing the boundary, or in the non-
positive sense; a particle loop contributes ago;
a potential vertex contributes a factor+i' or —i'
according to whether it is above or below the
boundary line; and a correlation vertex with / pairs
of incoming and outgoing lines contributes a factor

The resulting expression is to be integrated
with respect to all time variables without changing
the time order and also to be integrated with re-
spect to all space variables.

It is now asserted that in the bulk limit the total
contribution of this proper diagram, and all im-
proper diagrams which can be generated from it,
can be accounted for by

U(l)g (1, 2),

U(1) —= —iXJd ron(r, —r3)g (13tf 13tg)

(4 4)

(4. 5)

which may be obtained from (4. 1) and (4. 2) by
omitting the subscripts 0. This can be proved in
a standard way in which two infinite sets are com-
pared: Choose an arbitrary improper diagram
and look for, and verify, the corresponding diagram
of the same order in X within the diagram expan-
sion of (4. 4). Conversely, find the correspondence
by starting with an arbitrary diagram representing
the expansion of (4. 4). This correspondence can
be rigorously established in the bulk limit. In
this identification it is important to remember that the
dressing of a free-particle line should be done

FIG. 3. Improper diagram (b) is
uniquely reducible to the proper di-
agram (a).

(b}
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(a) (b)

(c)

FIG. 4. (a) contributes the expres-
sion (4.1). (b) is a member of the
diagrams contributing to (4.12), while
(c) is a member of diagrams contrib-
uting to (4. 1.0).

Z (1, 3) —= Z1(1, 3) + Zs(1, 3; X),

Z (1, 3) = Z1(1, 3) + Zs(1, 3; X), (4. 6)

Z (1, 3) —= —iX f fd r4d r, {v(r1—r4)v(r3 15)

xTr[p111 (r„t,)g(r„t,) y(rf, t1)

always to the right, i. e. , in the direction of the
decreasing time since the dressing made other-
wise would introduce necessarily an M-type po-
tential vertex as seen in Fig. 2(a), and therefore
would give no effective contribution.

This way of obtaining the contribution of the
proper diagram and the improper diagrams associ-
ated with it, is not restricted to this particular
diagram Fig. 4(a). In fact, it is valid in general.

The class of proper diagrams corresponding to
the second alternative (ii) can be further divided
into two classes, those diagrams whose self-ener-
gy parts with the vertices at t = t, and t3 consist
of potential vertices plus particle lines running
between them such as Fig. 3(a), and those diagrams
whose self-energy parts are composed of potential
vertices and correlation vertices plus particle
lines running between them such as Fig. 4(c).
Corresponding to this subdivision, the contribution
of the self-energy parts can be written as the sum
of the two parts:

terms of g and g only while Zz and Z~ contain the
initial correlation operators y by definition. For
example, the proper self-energy part appearing
in Fig. 3(a) contributes

3 f
x ~ ~ ~ fd r4d r, v(r, —r, )v(rs —r, )

X [g (r1 t1, rs ts)g (r4 t1, r5 t3)g (r5 t3, r4 t1)

-g (r1t1 rsts)g (r4t» rsts)g (r t r4t1)]

(4 6)

while the self-energy part appearing in Fig. 4(c)
yields

9sf 3Qd r;v(r, —r )v(r —r )
4

x g'(r, t1, r,0)g (rst1, rs0)g (r50, r3t3)

xg'(r50, r4ts)g'(r4ts, r1t1)Xs(r,r„rsrs) .

(4. 9)

Clearly, the potential vertex at t = t3 must originate
in one of the three UL), U&, and UD. Corresponding
to these three cases the contribution of the dia-
grams can be written as the sum of three distinct
integrals

(rs t3) 0 (r5 ts) 4(r5 ts)11

( 3Z (1, 3) = -i ffd r4d r {5(rv, —r4) v(r, —rs)

x»[p4'(r, t )0'(r, t )4(r, t )

(r4 t1) 4(r4 t1) $(rl t1)11

where the subscript o means that contribution cor-
responding to the whole set of proper self-energy
parts and the subscripts 1 and 2 denote the two
subdivisions described above. From the charac-
teristics of the diagrams, it is verified that the
self-energy parts Z, and Z& can be described in

f ' dts f d r, Z (1, 3)g~(3, 2)

+ f sdt, f d'r, Z'(1, 3)g (3, 2)

—f sdts f dsrsZ (1, 3)g (3, 2) . (4. 10)

Here the difference between the classical- and
quantum-statistical cases becomes particularly
explicit. If the particle line starting from the
vertex at t = tz ends at a potential vertex arising
from U&, it cannot proceed to the vertex at t = t&

without violating the restriction of the Boltzmann
statistics that every particle line forming a loop
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always should proceed in the positive sense.
Therefore, the middle term in (4. 10), i. e. ,

& (1, r,p; }t)-=—X fd r4 [v (r, —r4)

f, dt~ f d'rsZ (1, 3)g (3, 2)
1

(4. 11) x Tr[pg (r~p)( (r4, t, )((r4, t, )g(1)]], .
(4. 13)

should have been discarded completely in the
Boltzmann- statistical case.

In the third alternative (iii), the contribution of
such proper diagrams and their associated dia-
grams contain initial correlation matrices y and
can be expressed in terms of g, g, and X. We
may write this contribution in the form

In practice however it is easier to directly write
down the contribution from the diagrams. For
example, the destruction part appearing in Fig.
4(b) can be written out as

iXf" fd'r4d'r, d r, d~r7v(r, r4—)g (1, r70)

fd r ~ &'(I, rap; y)g (rap, 2), (4. 12)
x g (r4t„r~p)g (r&0, r4tq)

where the destruction Parts (&~, 4 ) may be gen-
erally written as x X2(rvrs rar5) '

bl (r3p, 1; )() = —X fd r4 (v (r& —r4)

x Tr[pg (1)g (r4t, ) $(r4t, ) f(rsp])

In summary, after the analysis in terms of

proper connected diagrams we are able to transform
the hierarchy equation (2. 6) into

ft2
i ——ho —t —U(l) g (1, 2)= i dt~ l

d r~Z (1, 3)g (3, 2)+ I' dts d r, Z'(1, 3)g'(3, 2)
8)1

1

t t2

dt, d'x3Z'1 3g 3 2 — d~3~ 1 r30 X g r30 2 . 4 15a,
~o

This is one of the corrected Kadanoff-Baym equations describing the evolution of partial Green's functions.
The other three equations, all arising from the t, and t2 derivatives of g (1, 2) and g'(1, 2), can be analyzed
and written out in a similar manner:

ft1 f~ Pt2
—i —"0 I-~ — —U(2) g (1, 2)= '

dt~ lid'rsg (1, 3)Z'(3, 2)+ dt3)td'r~ g (1, 3)Z (3, 2)
2 2 0 Jt1

rt2
dts dr3g 1 3 Z 3 2 — dx3g 1 r30 4 r30, 2;x, 4 15b

0

t &2 1 r
i ——ho —i —U(1) g'(l, 2) = dt~ d t~Z (1, 3)g (3, 2)+~ dt, drsZ (1, 3)g (3, 2)

&r1
0 '2

40
dt~ d rsZ (1, 3)g (3, 2) —j(d

rsvp

(l. , r~p; X)g~(r~p, 2), (4. 15c)

tp t1
-ho —i —U(2) g'(1, 2) = dte ~ d'rsg (1, 3)Z'(3, 2)+ dt~~ d r~ g (1, 3)Z (3, 2)

&t2 &r2
t2

dt~ d rs g (1, 3) Z (3, 2) -~td r,g (1, r~p) 4 (rsp, 2; }t) .
jp J

(4. 15d)

It is stressed that in the derivation of (4. 15) no
approximations other than those which can be
justified in the bulk limit are introduced. The

I

terms on the right-hand side are, in general, de-
scribable in terms of g, g, and X. Since y are to
be given as the initial condition, the set of the
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four Eqs. (4. 15) are closed equations with respect
to g' and g' in contrast to the hierarchy equations
such as (2. 6) from which they are derived. The
equations are highly nonlinear and non-Markovian.

However, fortunately for the purpose of formulating
transport coefficients, these equations can be
greatly simplified without the loss of rigor, which
will be discussed in the forthcoming papers.
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Forward-Scattering Amplitudes and F'ermi-Liquid Factors in Dilute Solutions of He
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A derivation of exact expressions, given in terms of thermodynamic quantities, for the
s-wave parts of the He -He and He -He quasiparticle forward-scattering amplitudes in very
dilute solutions of He4 in liquid He3 is given. The result for the p-wave part of the Hes-He4

amplitude is related to the He quasiparticle effective mass. The associated Fermi-liquid
parameters are also derived.

I. INTRODUCTION a4, ——(I+ n)/v(0),

In this paper we use a Green's-function formal-
ism to derive exact equations for the He -He and
He4- He quasiparticle forward- scattering amplitudes
in dilute solutions of He in liquid He . The s wave
parts of the He -He and He -He amplitudes are
explicitly evaluated in terms of the thermodynamic
quantities, and the P-wave part of the He'-He am-
plitude is related to the He quasiparticle effective
mass. Only the cases of one and two He atoL-..s in
liquid He' at T=0 are considered. However, the
results should be useful at all temperatures a~d
He concentrations where a quasiparticle picture
is valid (i. e. , for T —0. 1 K in the one phase .egion
on the He rich side of the phase-separation c rve).
Qualitative arguinents leading to many of the re-
sults herein have been presented elsewhere. ' The
present work thus provides a quantitative justifica-
tion of these results within the limits of the quasi-
particle description.

The two major results of this work are those for
the s-wave parts of the He -He and He -He quasi-
particle forward-scattering amplitudes (a43 and a44,
respectively) for He quasiparticles on the Fe.mi
surface and He quasiparticles of very small mo-
menta. We find (see also Ref. 1)

044 = (2)

Here e is the fractional excess volume occupied by
a He atom in liquid He', and v(0) is the density of
He quasiparticle states at the Fermi surface. p, 3

and p, 4 are the He and He chemical potentials, and

e4 is the He number density. Using the result a.
= 0. 32, ' we obtain a4, = 0. 68/v(0). The analogous
quantities for parallel and antiparallel spin-quasi-
particle scattering in pure He are, respectively,
ao'=2. 9/v(0) and ao'= —1.1/v(0). It follows then
that the temperature range over which a quasipar-
ticle picture for He 's in He may be expected to be
valid is the same as that for He 's, namely, T —0. 1
K. a44 has been evaluated' using a rather plausible
assumption concerning the nature of the phase-sep-
aration curve as the He number concentration x
and T approach zero. The result is

a44 -—0 .0

It follows from (8) that the phase separation at
small x is closely related to that in a noninteracting
Bose gas.

Section II is devoted to a derivation of the exact


