
DYNAMIC POLARIZ ABILITIES AND REFRACTIVE- INDEXES. . .
ability agrees extremely well with the 52-term cal-
culation for w less than 2. 2 a.u. A detailed calcu-
lation shows that the transition energy + for the
80-parameter wave function is 2. 2884 a.u. corre-
sponding to 199.157 A. The accurate calculation
of Pekeris and his collaborators gives -7.27991
a. u. for the ground state of Li' and -4. 99335
a. u. ' for the 2'p state of Li'. Thus the accurate
transition energy should be 2. 28656 a.u. corre-
sponding to 199.317 A in wavelength. The error
in the present calculation is less than 0. l%%uo. The
results for the I i' calculation are shown in Table
III and Fig. 2. In Fig. 2 only one curve is shown
because the 28-, 52-, and 80-term calculations es-
sentiaQy fall on each other. The refractive index

of Li' is given in Table IV.
To summarize this work, we have calculated the

dynamic polarizabilities of H and Li' with conver-
gent results. It is our conjecture that the resulting
dynamic polarizabilities are accurate to at least
three or possibly four significant figures for cg

slightly displaced from the transition energy. This
implies that the first-order frequency-dependent
wave functions are accurately calculated and can
be used to investigate other processes.
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The many-body perturbation theory of Brueckner and Goldstone is used to calculate the
electroncorrelationenergy among then=3 and g =4 electrons of Fez. Theresultis-0. 7155 a.u.
Combined with a semiempirical estimate of correlations from the (ls) 2(2s) 2(2p)8 core, 'the to-
tal correlation energy of Fe r is —1.165 a. u.

The perturbation theory of Brueckner'~ and Gold-
stone' has been useful in calculating atomic prop-
erties for many atoms. 4~ One such property is the
atomic correlation energy, and detailed calcula-
tions using the Brueckner-Goldstone (BG) perturba-
tion theory have been carried out for the correla-
tion ener gies of lithium, beryllium, carbon, and

oxygen. ' The results of these calculations are
summarized in Table I. Other methods have also
been used to calculate correlation energies of the
first-row atoms. ' " In this paper, we report re-
sults of a correlation-energy calculation for the
neutral iron atom. These calculations used our
methods ' for applying the BG perturbation theory

to atoms. The correlation energy of Fe among the
(3s) (3P) (3d)8(4s) outer electrons, which are of
most interest, was explicitly calculated. Correla-
tions of n = 3 and n = 4 electrons with the inner (1s)
(2s) (2P) core electrons and also correlations among
the core electrons were estimated from the semi-
empirical values of Clementi. '

Our calculations include excited states with E =0,
1, 2, 3, 4. Bound and continuum states were calcula-
ted numerically. All E = 0 states were calculated
with the Hartree-Fock (HF) 4s equation, and so the
4s is an HF orbital, but 1s, 2s, and 3s states are
not exactly HF states. However, they differ from
the corresponding HF states by at most 0.001 a.u.
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TABLE I. Electron correlation energies in a. u. for
gr ound states.

Zib Bec C 5 0

Single excitations 0. 000
Pair correlations —0. 046
Three-body terms 0. 0002
Total —0.046
Experiment —0. 0453

Q. 000
—0. 093

0. 001
—0. 092
—Q. 094

-0.002
-0.158

0.004
-0.156
-0.157

—0. 003
—0. 271

0.011'
—0. 260
—0. 258

Calculations prior to the present one which were
carried out using the methods of Ref. 4 for applying
many-body perturbation theory to atoms.

Reference 8.
c Reference 4.

Reference 9.
'Reference 5.
Based on calculation among (2p) and estimate of 2s

and 1s contributions.
~Calculated results are estimated to be accurate to +5%.

where v is the Coulomb interaction, and V is the
potential used to calculate E . The largest shift,
0.354 75 a.u. , occurs for &3„whichis -4. 52458
a.u. before the shift and —4. 16983 after the shift
as compared with the HF value -4. 16972 a.u.
Including the shift, both &„and ~2, became almost
exactly equal to the HF values. Because of the
expected importance of 4s -4p excitations, we
calculated all E =1 states in the field of neutral
Fe with one 4s electron missing. Although the 2p

and SP states are now not exactly HF states, they
differ from the HF states~ by at most 0.004 a.u.
in the radial function. Including I(n), &s, and &3~

are almost exactly equal to the HF values. The
l = 2 states were calculated with the HF 3d equation,
and l = 3 and I =4 states were also calculated in the
field of Fe with one 3d electron missing. To check
the completeness of our radial states, we evaluated
the sum rule

in the radial wave function. As in the oxygen case, '
single-particle energies & for o. =1s, 2s, and Ss
differed appreciably from the HF values. However,
because of insertions on hole lines, ' we should
shift e by

N

~(~) =Z (( ~ I
~ I

~n& -& ~a
I ~ I «&)

as indicated by the crossed line. In Fig. 1(d), we

show an insertion on a hole line which contributes
to n(o'). Our "second-order" results include these
shifts. Contributions from Figs. 1(a)-1(f) are in
the top of Table II and contribute -0.0071 a.u. We
expect the second-order correlation diagrams of
Figs. 1(e) and 1(f} to give the total pair-correlation
energies to an accuracy of at least 10% because of
our choice for V.4' Results for Figs. 1(e) and 1(f)
are given in Table II.

The largest contribution to the 3d-3d correlation
energy was from excitations into two l = 2 continuum
states. In this case, Fig. 1(e) contributed -0.09942
a. u. and Fig. 1(f)contributed+ 0.01V 54 a.u. The next
largest 3d-3d contribution came from excitations
into two I =3 states: —0.06952 a.u. from Fig. 1(e}
and +0.OOI 46 from Fig. 1(f). Diagrams involving
excitations of the occupied 3d electron into the un-
occupied Sd states were small.

For Sd —3P correlations, the largest contribution
came from 3d- kd, 3p- kp excitations which con-
tributed-0. 11862 a.u. to Fig. 1(e) and+0. 02788
a.u. to Fig. 1(f). The 3P- 3d, 3d- kf excitations
contributed -0.093,89 a.u. to Fig. 1(e). We note
from the results of Table II that the pair correla-
tions decrease as the spatial separation increases.

The lowest-order three-body diagrams are the
third-order ring diagrams, as shown in Fig. 1(g),
and the corresponding exchange diagrams, two of
which are shown in Figs. 1(h) and 1(i). A complete
listing of the exchange diagrams is given in Ref. 9.
We first calculated the ring diagram of Fig. 1(g)
for three 3d electrons with excitations into l = 2
states and obtained 0.03618 a.u. For excitations
into l = 3 states, we obtained 0.00625 au. Ex-
change diagrams for three 3d electrons were esti-

(b)

which was satisfied to one digit in the third decimal
place for &, P occupied states.

To obtain the correlation energy, we first cal-
culated the second-order diagrams shown in Figs.
1(a)—l(f). In addition to Figs. 1(a)-1(c), there
are also diagrams in which the top interaction is
an exchange interaction or interaction with —V,

FIG. I. Correlation-energy diagrams: (a)-(c) second-
order diagrams with single excitations; (d) insertion on
hole line; (e) direct pair-correlation diagram; (f) pair
exchange; (g) ring diagram; (h) and (i) are typical ex-
change diagrams corresponding to (g); (j) typical fourth-
order three-body diagram.
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TABLE II. Contributions to the correlation energy
in a. u.

Diagram

4s
34
3p
3S

Subtotal

Energy in a.u.

Single excitations [Figs. 1(a)-l(c)]
—0. 00156
—0. 003 79
—0. 00147
—0. 00016

—0. 006 98

Second-order pair correlations

4s -4s
4s- 3d
4s —3p
4s -3s
3' —3'
3' —3p
3' —3s
3p- 3p
3p —3S
3S 3S

Fig. 1(e)

—0. 05016
—0. 06033
—0. 01989
—0. 002 05
—0.21119
—0. 348.85
—0. 06744
—0. 13247
—0. 081 72
—0 ~ 006 62

—0. 98072

Fig. 1(f)

0. 00000
0. 01023
0. 001 75
0. 00055
0. 03842
0. 072 10
0. 01844
0. 023 71
0. 033 51
0. 000 00

0. 19871

Fig. 1(e)
+ Fig, 1(f)

—0.05016
—0. 05010
—0. 01814
—0. 00151
—0.172 77
—0.276 75
—0. 049 00
—0. 10876
—0. 04821
—0. 006 62

—0. 782 01

mated to be small. Since l = 2 and l = 3 excited states
contributed most of the 3d-3d pair-correlation
energy, we estimate contributions from the other
excitations as small. Qur total three-body contri-
bution among 3d electrons then reduces the 3d-Sd
pair results by approximately 25%. We also cal-
culated the diagram of Fig. 1(g) for one 3p electron
and two 3d electrons including only Sd- kd and
3p- kp excitations. The result is 0.05440 a. u.
For one 3d hole and two Sp holes with 3p- kp and
3d- kd, we obtained 0. 024 66 a.u. For three 3p
electrons, including only l =1 excited states, we
obtained 0.003 25 a. u. Our final result for the
three-body ring diagrams which we calculated
among 3d and Sp electrons is then 0. 1247 a. u. Our
results for three-body diagrams with 3p hole states
are probably less accurate than our Sd-3d-3d re-
sult since we have not included 3p -kd excitations in
Fig. 1(g). However, in these cases we expect consid-
erable cancellation from exchange diagrams of the

types shown in Figs. 1(h) and 1(i). We also expect
smaller contributions from three-body diagrams
involving 4s or Ss electrons. Fourth- and higher-or-
der diagrams involving a triple of electrons are es-
timated to be small since they involve interactions
with particle lines or hole lines as shown in the
middle two particle-line interactions of Fig. 1(j).
For each particle-line interaction, there is a cor-
responding hole-line interaction of opposite sign and
of approximately the same magnitude. ~' '~ Four-body
and higher effects are estimated to be —0.015 a. u.

Our total calculated result for correlations among
the n= 3 and n= 4 electrons of Fe is then -0.6721
a.u. From the semiempirical data of Clementi, '6

we estimate the correlation energy from interac-
tions of n = 3 and n = 4 electrons with the (Is) (2s)
(2p)6 core as approximately —0.100 a. u. Esti-
mating the correlation energy among the (Is) (2s)
(2P)~ core as that for Ne, —0.393 a. u. , we obtain
a total E„ for Fe equal to —1.165 a.u.

In calculating the correlation energy among a
fixed pair pq, many higher-order rearrangement
terms are included by shifting the denominators of
second-order terms by E~„(P,q), the pair-correla-
tion energy. In configuration-interaction (CI) calcu-
lations which include only single and double excita-
tions, one has a Brillouin-Wigner situation cor-
responding to denominator shifts in perturbation
theory by E~„, the total correlation energy. ' The
correct shift is given by

(2)

Recalculating E „(4s,4s) with the shift of Eg. (2),
we obtained -0.03710 a.u. We obtained —0.043 24
a.u. with the shift E„(4s,4s), and —0.01213 a. u.
with the shift E~„. These shifts should make less
difference for the other pairs since the denominators
are larger. However, these results indicate the
importance of including fourfold excitations in cer-
tain CI calculations.

Future calculations will include a more detailed
study of three-body effects and will also explicitly
include the correlations with the (Is)3(2s)2(2p)
electrons.
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The energy separation 3 between the 2 S&g2 and 2 P~~2 states of singly ionized helium was

measured using a microwave method. Helium atoms in the space between the plates of a
spherical-mirror Fabry-Perot resonator are bombarded continuously by electrons of 200-eV

energy to produce helium ions in the 2 S~g& metastable state. The applied modulated rf power

induces transitions in the metastable ions to the short-lived 2 Pl g2 state. The 40. 8-eV pho-

tons emitted by the decay of the 2 Pl ~2 ions to the ionic ground state 1 S&~& are quantum con-
verted to visible photons by a scintillator and are then guided to a photomultiplier. The out-

put of the photomultiplier is detected and amplified synchronously with the rf power. The

experiment made use of the Zeeman effect of the fine structure and is performed in an ap-
plied homogeneous magnetic field. Three different operating values for the helium pressure
are used and the result is extrapolated to a zero-pressure value. A thorough search was

made for all possible systematic errors in the experiment. The value for g thus obtained

is 14046. 2 +2. 0 MHz. The quoted uncertainty consists of three standard deviations for the

statistical error plus estimates of systematic errors. This result agrees with the previous

experimental values for I (within three standard deviations), and with the latest theoretical
value of 14044. 5+5.2 MHz.

I. INTRODUCTION

The fine structure of the n= 2 level of hydrogen
and deuterium hasbeen studied by Lamb and his
collaborators, ' using an atomic-beam rf power
method. Their experiments established the exis-
tence of a small energy separation between the
2~S, &~ and 2 P, &3 levels of these atoms, which are
degenerate according to the Dirac theory, and also
gave precise values for these separations. This
separation, the Lamb shift, is a result of the inter-
action of the atomic electron with its own (virtual)
radiation field; thus, purely of radiative origin, it
provided a test for the validity of the theory of quan-

tum electrodynamics. Measurements of the Lamb
shift in hydrogen by Robiscoe~ and deuterium by
Cosens' have been made using a level-crossing
technique with results of precision equal to those
of Lamb.

The Lamb shift in the n= 2 level of singly ionized
helium has been measured by Lamb and Skinner;

Yergin; Novick, Lipworth, and Yergin; and

Lipworth and Novick. The values they measured
for 3 are 14020+100, 14021+60, 14043+13, and

14040. 2+4. 5 MHz, respectively.
The work reported here is directed towards pre-

cision remeasurement of the Lamb shift I in the
n= 2 level of singly ionized helium. Radio fre-
quency power was used to induce the Lamb-shift
transition. A phase- sensitive detection scheme
was used for the signal measurements. Consider-
able effort was made to keep the apparatus stable
during the period of an experimental run, and a
procedure that provides a check on the stability of

the system in each run was employed to obtain pre-
cision resonance data. Much of the data was col-
lected under different operating characteristics of

the apparatus, and a thorough search was made for
possible systematic corrections to the final result.

Section II describes the experimental method,
Sec. III discusses the details of the apparatus, and

Sec. IV includes the operating characteristics of


