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On the basis of our previous theory used to calculate the static properties of crystalline He?
and He! at T=0, we compute the exchange interaction of the nuclear spins in bec He? as a

function of molar volume, obtaining good agreement with experiment.

Comparison with the

theories of Nosanow and co-workers and of Guyer and Zane shows that the success of the
theory is mainly due to the effective-force constant used in the computations.

I. INTRODUCTION

In recent years the exchange interaction J between
two atoms in solid He® has been measured by a num-
ber of workers.!™® The absolute value of J ranges
from about® 1073 to 107 °K as the nearest-neighbor
distance a runs from 3.7 to 3.5 A corresponding
to molar volume between 23.5 and 19.9 cm? in the
bce phase. These values of J are large compared
to what one would predict for a classical crystal
because of the large zero-point motion of the rela-
tively light He® atoms. However, J is still very
small compared to the ground-state energy E; which
is of order 1 °K per particle and consequently the
possibility of exchange may be ignored in calcula-
tions of E, and related thermostatic quantities.

This is done in most theories of quantum crystals
and was done by us in Ref. 7 where the thermostatic
properties of crystalline He® and He? are calculated
at T=0. In the present work we evaluate the ex-
change interaction as a function of molar volume on
the basis of the theory and results of Ref. 7.

A theoretical determination of J was first given
by Bernardes and Primakoff® and subsequently by
Mullin, Nosanow, and co-workers.’~!! In addition,
Guyer and Zane'? have recently calculated J, basing
their work on the quantum crystal theory of Guyer!?
and Sarkissian.'*

The approach that we use is similar to that of the
previous theories; J is defined in terms of the en-
ergy difference between the singlet and triplet spin
states of two nearest-neighbor He® atoms. There
are, however, important differences among the three
approaches as regards the formalism and the ap-
proximations used in computing this energy differ-

ence; these are discussed below.

The calculation of J is an important one because
J is extremely sensitive to the force constant «
describing the single-particle effective potential in
which each atom sits, and there is also some sen-
sitivity of the result to the form of the two-particle
correlation function. Thus J should be a good test
of any quantum crystal theory. In this context it
should be mentioned that there is some disagree-
ment among experimental values of J which are ob-
tained from several different types of experiment.
In particular, the values inferred from NMR mea-
surements are sensitive to small concentrations of
impurities. Reference 5 contains a discussion of
this problem.

The remainder of this paper contains (i) in Sec.
II, a brief review of the formalism of Ref. 7 and
construction of symmetric and antisymmetric space
states for nearest neighbors; (ii) in Sec. I, the
calculational details and numerical results; and
(iii) in Sec. 1V, a discussion of our results and a
comparison of them with experiment and other
theories.

II. FORMALISM

We begin by summarizing the theory of Ref. 7
in which exchange effects are ignored and the par-
ticle statistics play no role. The single-particle
Green’s function for the He® localized at position
R, is given by®

(1, 150)=23,¢,,1)¢,,1")/(w, - €,) ()

in the frequency representation. The single-par-
ticle wave function ¢,,(1) obeys the equation
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[— Vlz/zm + ui(l)]¢ip(1) = Ep¢£p(1) ’ (2)
where
w,(1) = ug+ (a*/2m) Fy = R, 2= g+ V(1) (3)

in the harmonic approximation;  is the atomic
mass and w, =in(2v +1)T+ u for fermions. Here,

v is an integer; T, the temperature; and u, the
chemical potential. The force constant o is de-
termined from a self-consistency condition [Eq. (7)]
which relates the single-particle self-energy and
the two-particle Green’s function G,;(12;1'2). The
particles are approximated as moving in a static
self-consistent field in which case all multiple-
particle Green’s functions have the same pole as

g; in Eq. (1) when viewed as functions of w,. Con-
sequently, the two-particle Green’s function for
particles localized around sites Z and j has the form

Gi;(12, 125 1) = ¢25(1)930(2)x1; (1, 2/ (w, - &) ,

where the summation over p in Eq. (1) is omitted
because we are interested only in the 7'=0 limit.
This means that p=0 in what follows so we drop
this subscript.

The correlation function y;,(1, 2) is found in Ref.
7 to obey the equation

{=v&/2m - v,2/2m+V(Q, 2) + 23, [ $2(3)
x [V(1, 3)xi(1, 8) + VI(2, 3)x;:(2, 3)] @5+ A;(1, 2)}

x ¢, (1)p; (2)x;;(1, 2) =20, (1)$;(2)x;;,(1,2),  (4)

where the prime on the summation indicates sum-
mation over positions 2+#4, j and V is the intera-
tomic potential V(1,3)=w(r,, T;). The choice of X,
in Eq. (4) determines the asymptotic behavior of
x1;(1, 2) for large separation of T; and T,. The
function A,(1, 2) is given by

a1, 2)=Z>r: Jo23){va, 3)xs(2, 3) - 1]xi(1, 3)

+ (2, 3) [xie(1, 3) = 1]x;(2, 3)}d®ry .
(5)

Equations (4) and (5) are derived by writing down
the equation of motion for the two-particle Green’s
function and approximating the three-particle
Green’s function as

63 (1)92(2)p5(3)x45 (1, 2)xs2(2, 3)xse(1, 3) (w, =~ €.
The normalization condition on y;,(1, 2) is
S xi;(1, 2)02(1)3(2)d%rd%r, =1 . (6)
The self-consistency condition for % (1) is

w(1)p2(1) =23 [ v(1, 2)02(1)$2(2)x,;(1, 2)d%r, ,
(7
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where the sum on j excludes the term j=4¢; this
relation may be substituted into Eq. (4) with the re-
sult

{= (v¥/2m) = (v,%/2m) +u, (1) + u;(2) + V(1, 2)
- [o2@)v(1, 2)x;;(1, 2)d*7,
+ [ 2V, 2)xi; (1, 2)@%] + a,5(1, 2)}
x ¢, (1)¢;(2)x;;(1, 2)
=2, (1), (2x;;(1,2) . (8)

Equations (2), (5), (7), and (8) form the basis of
the theory used in Ref. 7 to calculate the static
properties of solid helium. Because of the com-
plexity of Eq. (5), we use the simple approximation

A1, 2)= 80+ plryp ~ Ryy) (9)

where R;; = IR, - R;! and the constant A, may be
adsorbed into A,. The parameter p is chosen such
that the physically reasonable condition

S @ =Ry5) - Ry (1, 2)05(1)05(2)d%d%r, =0
(10)

is satisfied. The value of p determined in this way
is compatible’ with that which is obtained by ex-
panding Eq. (5), given the final result for x,,(1, 2).
We want to emphasize that this simple approximate
procedure is used for A;;(1, 2) only because of the
large expenditure of computer time that would be
required to treat it more exactly.

In the present work, we wish to construct states
which are symmetric and antisymmetric under the
exchange of the particles localized around ﬁ, and
ﬁ,, The difference in energy of the two lowest lying
states of different symmetry may be related to the
exchange constant J which appears in the }Leisen-
berg model Hamiltonian H, =-2J2;,; (S, * S;); for
particles of spin 3, §, is such that (S?)=%. The
singlet and triplet states are eigenstates of the two-
spin operators in H,,,

—2J(§¢' §j)lt¢j>=—%‘]|t”>

and

—2J(§, . §;)!S¢])=%Jlsil> ’

where |s;;) and |4;;) are triplet and singlet spin
states of particles i and j. The former corresponds
to a symmetric space state, the energy of which we
denote €*; the latter, to an antisymmetric space
state with energy €. If the Heisenberg Hamiltonian
is to account for this energy difference, we must
have
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€ —e=5J-(-30)=2J. (11)

As pointed out in Ref. 1, Eq. (11) is a result of the
convention used in H,,. When comparing experi-
mental or theoretical values of J, one should check
the conventions used by the different authors which
are not always the same as that used here and in
Ref. 1.

The theory of Ref. 7 may be generalized to in-
clude the proper symmetrization of the various
Green’s functions and effective field. In the prior
work, we assume at the outset that particles 1 and
2 are localized at the positions R, and ﬁj. In order
to compute €* and €, the duct joining lattice sites
i and j should be opened (to use Thouless’s'® words);
consequently, we write the creation operators 3"
corresponding to placing a particle on sites i and j
as

(1) = (1/V2) [9](1) + e} (1)] (12a)

and

P'(2)= (1/V2) [y](2)+£* y}(2)] , (12Db)

where §] and y] are the operators used in Ref. 7

for placing particles on the individual sites ¢ and

j. Also, e'’and ¢'® are phase factors chosen to
produce the required symmetry of the Green’s func-
tions. The single-particle Green’s function is de-
fined in the usual way,

2(1,1") = (1/:) (TR L))
=3[g1(1, 1) +g;,(1,1")
+e'%y, (1,10 +e %y (1, 1],  (13)
where

g1, 1= (/) (TR, W] ")) .

On the assumption that the particles are localized
the Green’s function is calculated as in Ref. (7)
where g;;=0 is assumed. Thus we have

t

81, 1) ~3[g;,(1,1") +g5(1,17] . (14)

Equation (14) is not very accurate for arguments
near %(ﬁ, +§,) where the harmonic approximation
to (1) is also not very accurate. In this sense,
Eq. (14) is consistent with the approximation used
in Ref. 7.

Next, in the unsymmetrized theory, we find the
two-particle equal-time Green’s function

G;;(12, 1'2’)| to=ty th=1t]

=% (0,00, @U@ ey et

=xi5(1, 2)0;(1)¢;(2)0,(1")9,(2") , (15)
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where the function y;;(1, 2) is normalized such that

JG,;(12;12°) e ,ld3'rld3'rz= 1.

In the present case, the appropriate generalization

G,;(12;1'2") = (1/2) (T@)$(2)'(2)9*(1"))

~ [¢1 (1 )¢/(2)¢£ Q1 ')4’] (ZI)XU (1, 2)
+ ¢j(1)¢¢ (2)¢j(1,)¢i (ZI)XH (1, 2)

+¢,(1)p;(2)¢;(1")p,(2")y;;(1, 2)et -6
6, (164(2)0,(1)6, @1, 206" 9] . (16)

In order to arrive at Eq. (16), it is necessary to
assume no double occupancy of either site,
¥, (1)¢¢ (2)=0= 3/’1(1)11)1 (2).

The phase factor is now chosen to symmetrize the
Green’s function in a way appropriate for the singlet
or triplet spin state

G;(12;1'2") = (1/2N,) [¢,(1)9,(2)p, (1), (2")x,;(1, 2)
+0,;(1)9,(2)¢;(1)0,(2")x;4(1, 2)
£ ,(1)9;(2)9, (1), (2", (1, 2)
£6,(1),(2)0,(1")p,;(2" x5 (1, 2)]

= (1/2N){[6, (1), @y, (1, 2) 2.6, (1), (2)

XX.H(I’ 2)][¢1 (1’)¢j(2')i ¢j(1l)¢i (2')]} .
(§L))

The normalization constant N, =1+ x where

2= [6,1)6,(2)¢;(1), @)y, (1, 2)d*ridr, . (18)

Next, in the unsymmetrized theory, the self-
consistent effective potential #,(1) is given by Egs.
(4) and (8) of Ref. 7,

w()g,(1,1)=2; [ V1, 2)G,,12;1'2")| .o, &, .
(19)

In the present symmetrized scheme, this equation
must be modified according to Eqs. (14) and (16),
leading to

Vi )(02(1) + 02(1)) =23, [ V(1, 2)[63(1)2(2)x4 (1, 2)
+¢3(1)B2(2)x,.(1, 2)] d®r, + ¢, (1)9, (1) V(1) . (20)

The second term on the right-hand side involves a
V,;~J, the exchange interaction. The existence of
this term means that the effective-force constant
depends on the symmetry of the state, with the dif-
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ference being of relative order J/(a?/2m). Taking
this difference into account in the calculation of J
itself leads to a correction of the order J%/(a?/2m)
and we shall ignore it. Then Eq. (20) gives V(1)
=V,;(1) where

~ ut(l) for Flzﬁi
Vi) {uj(l) for ¥, ~R; .

For T, ~3(R; +R;), V;;(1) cannot be obtained accu-
rately within the harmonic approximation. Conse-
quently, we shall simply use

Vi;(1)= u,(1)=uy+ (@¥/2m) F, - R,)?,
I¥, - R, <IF,-R;|
= (1) =g+ (@¥/2m) @, - R},

IT,-R,I>1F,-R;I . (21)
|

H;,(1, 2)¢;(1)¢;(2)x;;(1, 2)= H(E,m, 3E)‘l’z (1)¢,;(2)x;,(1, 2)

3

T
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This approximation is equivalent to assuming that
the “duct” described by Thouless'® is small. We
note that V;;(1) is similar to the effective field used
in Ref. 12,

Given Eq. (21) for the effective potential, the
operator in the brackets, {H;;(1, 2)}, on the left-
hand side of Eq. (4) becomes

Ej(l, 2)= Hﬁ(l, 2)+ [Vij(l)"' Vu(z) - ui(l) - uj(z)]}
(22)

and a similar alteration appears in Eq. (8). We
are interested in the two-body eigenvalue Ay~ €*
in Eq. (4) for symmetrical and antisymmetrical
space states, in which case it has the form

a,;(1, 2) [x;;(1, 2)¢,(1)¢;(2) £ x;;(2, 1)¢,;(1)9;(2)]
= €*[X«” (1’ 2)¢1 (1)¢j (2) + Xﬁ(z, 1)¢j(1)¢{ (2)] . (23)

To determine the effect of operating with #,,(1, 2),
it is useful to take advantage of the unsymmetrized
equation which can be written in the form™*"

2,3 2 2 2 2, £2_ p2 - -
=<&>L§a__ila_zg+v(£)+grzu€__&i% — W, (1, X)+p(£—R”)}e'“z"z“'“zxzxu(é, m, X)

3
= >\o(—> g o4 ofx? xi:(E 1, X) =20, (1), (2)x5(1, 2), (24)

where £= |, -T,1, n=1(F, -T,) - (R, - R,)!, and
X=1[(F,+7,) - (R, +R;)]. When H;;(1, 2) operates on
¢,;(1)¢,(2)x;;(2, 1), it is more convenient to express
it in terms of 7= | (F, - T,) — (R; - R;)| which leads
to the same functional form of H;; with 7 in place
of n,

H,(&, 7, K)o (1); (2)x15(2, 1) =200, (1), (2)x35(2, 1)

(25)
with

0,1y @iy 2, 1) = (@2/m) &= /4 =y, 7, ) .

If Eqs. (24) and (25) are both solved in the same
way, they will lead to the same value of Ay, as they
are formally identical. '®

Next, we multiply Eq. (23) from the left-hand
side by ¢,(1)¢,(2)+ ¢,(1)¢,;(2) and integrate over
all T, and T, to obtain'®

e*=3 [[0,(1)p;(2)+ ¢, (1), (2)][ V;;(1) + V;;(2)
- u; (1) - uj (2) + Hij(]-, 2)] [¢¢(1)¢j(2)Xu(1; 2)

¢, (1)¢;(2)x;; (2, V]d®rd®r/(1£x) . (26)

r
Equations (24) and (25) tell us that the result of
operating with H;;(1, 2) to the right-hand side is just

X, times the symmetrized function. Consequently,

"when we take €* - ¢ to form J, this part vanishes

identically. Also, we make use of the fact x <1
and keep only the first order term in x:

J=3e" - €)= [0,1)0;(2);;(1, 2)
X[V (1) + V;;(2) = 0, (1) — %;(2)]

x [¢;(1)¢,(2) - x¢,(1)0,(2)] d°r,d% .
(27)
In writing Eq. (27) we have used the symmetry prop-
erty x;;(1, 2)=x;;(2, 1) which is true of the approxi-
mate correlation functions found in Ref. 7.

This result differs from those of previous theor-
ies. Although our starting point is essentially the
same as in Ref. 10, the numerical simplifications
employed make direct comparison of the final an-
swer difficult. It is true, however, that insofar as
the numerical results are concerned, the form of
the operator [V;;(1)+ V;;(2) - % (1) — %;(2)] which en-
ters Eq. (27) is unimportant compared to the force
constant & which appears not only in [ ] but also
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in ¢,(1) = (a?/7)¥/ e **@1-Rp%/2 Thyg the choice
of o has a very large effect on the calculated J
whereas the form of the operator [ ] will, if it is
determined in a physically reasonable way, not af-
fect the result by more than about a factor of 2.

Equation (27) is similar to the “tunnelling” term
found by Guyer and Zane,12 but in our formalism we
do not find their “interaction” term.!®

Finally, we wish to mention the importance of us-
ing the equation of motion (4) for x,;(1, 2) to elimin-
ate the contribution from Hj,(1, 2) in Eq. (26). If
this is not done, an inaccuracy in y;;(1, 2) which

. . Va 2 2 2
2/=¢"—¢ =[ f $.Q1, 2) (—Z—mL—z%) xi5 (1, 2)0,(1; 2)d°rid®r, - f 3.1, 2)(—21”’;-5";-

1103

has a small effect on the ground-state energy E,
can have a large effect on J. This can happen, for
example, if one uses a variational approach to solve
Eq. (24) as we in fact did before settling upon the
present method of calculation.

Finally, we wish to mention another approach due
to Thouless'®!® in which J is expressed as a surface
integral. In this approach, the equation for
x5 (1, 2)[¢;(1)9,;(2) £ ¢,;(1)¢,(2)] is multiplied from
the left-hand side by ¥.(1, 2)=[¢,(1)¢,(2) = ¢;(1)$,(2)]
rather than by ¢,(1, 2). Then the difference of the
energies is

> x5 (1, 2.1, 2)d31'1d372:|

X [ [ 9.1, 2)x,;Q, 2001, 2)d®ryd®r,]

== (1/2m){ [ v+ [9.Q, 2)99,,(1, 2)0,(1, 2) = ¥, (1, 2)vx,; (1, 2)9.(1, 2)]d%r dr,

- [ 9.4, 2)vo._(1, 2)vy,; (1, 2) - 3_(1, 2)v9,(1, 2)Vx,;(1, 2)]d®ryd®r, }

<[ [,0, 2)x;(1, 2)0.(1, 2)d®r,d®r,] ™ .

The volume of 1ntegrat10n may be chosen as z,<0
and z,>0 where Rj R, is the polar axis and

Z(R, +R,) is the origin of coordinates. Then the
first integral in the preceding equation can be con-
verted to a surface integral. The physical assump-
tions used in this approach are not much different
from ours.

III. NUMERICAL PROCEDURE

By substituting Eqs. (3) and (21) into (27) and re-
arranging the terms, we find

- (2a%/2m) [ ¢;(1)0,;(2)x;;(1, 2)
X [¢;(2)9;(2) -x¢;(1);(2)]

x[(F, - R,)? - &, - R, d®ryd®r,, (28)
where the integration over T, is restricted to the
region of space |¥;-R;|> |F,~R;|. We next trans-
form variables, choosing as origin of coordinates
the point 3(R; +R;), with X=4(%,+7,) and ¥ =T, - T,.
Then

2\3 4
J=-<Z—> 27:“‘./‘6131’613Xe'2a2x2'°”2/2 o22/2

x xF X) [(X -4D)-3][1 - xe*2" 7], (29)

where 2 =§, —R,. The region of integration is such
that the inequality X cosfy — 37 cosé, >0is satisfied;
0x(6,) is the angle between X(¥) and a.

[

We use the approximate correlation function of
Ref. 7 which is a function of » alone; in this case
the integration may be partially completed analytic-
ally. As a result of the restriction on the range of
integration, the2 tzerm ~x in Eq. (29) turns out to
be of order ¢~ /4~10"2 relative to the leading
term and so may be dropped. Equation (29) then
becomes

10 °
g2 =82 otz [z (e P2
m

™
0

[ f XadX<—2—§+1’> -2a2x?

+ r/:XadX <X+-1-1§-§—>e-2“ X] (30)

From this point the integration is completed nu-
merically using functions and force constants com-
puted in Ref. 7. They were determined using as
interatomic potential both the Lennard-Jones 6-12
interaction (LJ) v(»)=4¢[(06/7)2 - (6/7)%], €=10.2°K,
and 0=2.556 A, and the Yntema-Schneider interac-
tion (YS) v(r)=(1200 %" —1.24/7%-1.89/+%)
%102 erg, where # is in Angstroms.

In Figs. 1 and 2 we plot the exchange interaction
J as a function of volume. The curve marked A
in Fig. 2 is the same as that marked PT in Fig. 1
and results from using the LJ interaction to deter-
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0.7
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-J (mK)

Volume (cm3/mole)

FIG. 1. The exchange integral | J| (m °K) vs molar
volume (cm®/mole). The curve marked PT is the present
theory while GZ is from Ref. 12 and NVI from Ref. 11;
the experimental curves are from Refs. 1 (PA), 3 (PSSA),
and 4 (RHM).

mine the force constant and correlation function.
Also in Fig. 1 are several experimental curves
and the theoretical results of Nosanow and Varma
(NVI) and Guyer and Zane (GZ). Both of these
theoretical groups also use the LJ interatomic po-
tential. Curve B in Fig. 2 results from using the
YS interaction but otherwise maintaining the condi-
tions under which A is obtained. Curves C and D,
on the other hand, are found using the LJ interac-
tion but differ from A in the following respects:
The effect of three-body correlations is not included
when calculating C; this is accomplished by setting
»=0in Eq. (9) and ignoring Eq. (10). In the case
of D, the effect of changing the boundary condition

satisfied by y;;(1, 2) at large |7, - T,| is investigated.

Specifically, we arbitrarily choose ), such that
x1;(r)=0 at =1, 6a and set x;;(»)=0 for all »>1. 6a.
This is to be contrasted with the procedure used

in Ref. 7 which was to choose A, so that y(7) is
finite at infinity. The latter procedure was used

in calculating curves A, B, and C.

IV. DISCUSSION

In Fig. 1, the results of the present theory (PT)
are compared with the experimental work of Refs.
1 (PA), 3(PSSA), and 4(RHM); we note that agree-
ment of theory and experiment is within a factor of
2 over the entire range of the experimental data
and is particularly good at high molar volumes.

The rapid variation of J as a function of volume
can be traced to the behavior of o?a?; Eq. (30) has
the general behavior J~ a®ze” > +7 /2 where o
is the hard-core radius of the interaction. The de-
tailed behavior of the correlation function or of the
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effective field directly affects J by perhaps a factor
of 2. The effect of the field on the true one-particle
function ¢(1) is probably a good deal more impor-
tant and may well change this function appreciably
from the Gaussian form in the interstitial region.

There is an additional point that should be made
concerning the effect of @ on J. Equation (7) for
u; (1) cannot be exactly satisfied when the harmonic
approximation, Eq. (3), is used for #/(1). This
means there is some arbitrariness in the way %, and
a are found from Eq. (7). In Ref. 7, we examine
two methods of choosing #, and a. In the first, the
right-hand side of Eq. (7) is expanded and the zero-
order and quadratic terms in (¥, - R;)? are identified
as the two terms in the harmonic potential. The
results of this method were used in determining the
theoretical curves of Figs. 1 and 2.

This expansion is not obviously valid, however,
and higher order terms could be important. We
have examined this possibility by first choosing u,
according to the expansion and then integrating Eq.
(7) over all r,, using Eq. (3) for #;(1). The a de-
termined in this way will contain the effects of high-
er-order terms. If it is much different from the
previous force constant, this will be a sign that
higher-order terms are important. It turns out’
that the second method gives only slightly larger
a, producing a ground-state energy per particle
~1.5°K larger in bec *He than the first method.

The exchange integral J is more sensitive to a and
is reduced by a factor of = 0. 75 independent of molar
volume. This means, for-example, that according
to the second method of choosing «, the curve
marked PT in Fig. 1 should be translated down-
ward so that it crosses the experimental curves at
about V=22 cm? rather than near 24 cm3/mole.

-J (mK)

oGl

22 23 24
Volume (cm3/mole)
FIG. 2. Theoretical curves of | J | (m °K) vs molar

volume (cm®/mole). The conditions under which these
results were determined are described in the text.



4 EXCHANGE INTERACTION IN SOLID He®

The rather large difference in the slopes of the
theoretical curves PT and NVI is a direct conse-
quence of the difference in the behavior of a® here
and the corresponding quantity A in Nosanow’s
theory. For example, in going from V=24 to 20
cm? per mole, we find that o® increases by a factor
of 1.42 whereas A changes by a factor 1.3.1° In
Guyer’s theory on the other hand, o? changes by a
factor of 1.44 and is slightly larger in magnitude
than the values we find.

Despite the relatively good agreement with experi-
ment of the present theory, we cannot claim that it
is necessarily correct because of the many approx-
imations made in order to obtain simple single-
particle and correlation functions. The effect on
the calculated J should be investigated. We note,
for example, that a change in @ of 5% will alter J
by about a factor of 2. A potentially important cor-
rection that should be made is to go beyond the
harmonic approximation to the self-consistent field.
The next term could alter considerably the behavior
of u and of ¢ in the interstial region between R, and
ﬁj which is important in the calculation of J.

In Fig. 2 we plot four calculated curves of J vs
molar volume, each of which is obtained under
slightly different conditions. First, curve A is
found using the LJ potential and the three-particle
correlation term A;,(1, 2) in Eq. (8). Also, X is
chosen so that x;,(») remains finite at large »~ <,
Curve B is computed under the same conditions ex-
cept that the YS potential is used. Even as this
potential leads to a large ground-state energy in

1105

Ref. 7, so does it produce a smaller J. This re-
sult is principally a consequence of the larger force
constant « that it gives. Curve C is calculated
using the LJ potential once again but neglecting the
term A,;;(1, 2) entirely and discarding the condition
Eq. (9). The resulting curve for J is less sensitive
to molar volume, just as the ground-state energy
computed this way in Ref. 7 is relatively insensi-
tive to molar volume. Finally, curve D is obtained
in the same way as A except that 2 is chosen
(somewhat arbitrarily) so that y(»)=0at »=1.6a
and is taken equal to zero for all larger ». This
was done to alter the behavior of x(r) for »>a fairly
drastically. This hardly affects J at all, from which
we may conclude that the behavior of y(r) at large
7 is not very important to the calculation of J or,
equivalently, that the choice of X, is not important.
In conclusion, we wish to emphasize that theo-
retical values of J are likely to be a good test of
calculated force constants a because of the extreme
sensitivity of the exchange interaction to this pa-
rameter. Similarly, the phonon dispersion relation
is strongly dependent on «, at least for small wave
numbers, and should also be a good test of a theory
in this respect. Calculations of this property are
in progress.
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Mobilities and Longitudinal Diffusion Coefficients of Mass-Identified Potassium Ions
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We have measured in a drift-tube mass spectrometer the mobilities of NO*, NO* *NO, and
K* ions in NO at 300 °K. The measurements were made over a substantial range of E/N, where
E is the drift field intensity and N is the gas number density. The zero-field reduced mobili-
ties were found to be 1.91+0.06, 1.78+0.05, and 2. 245 +0.067 cm2/Vsec, respectively.
Measurements were also made of the longitudinal diffusion coefficients of NO* and K* ions in
nitric oxide at 300 °K as a function of E/N. Our results are in fair agreement with those pre-
dicted by the Einstein equation from the experimental zero-field mobilities.

I. INTRODUCTION

Recent investigations of ions*~" in H,, D,, N,
and O, utilizing the drift-tube mass spectrometer of
this laboratory have been extended to positive ions
in nitric oxide at room temperature. The ions
studied are NO*, NO':- NO, and K*. The present
work includes the only direct measurements known
to the authors of positive-ion mobilities in nitric ox-
ide, although mobility measurements of NO* in other
gases have been performed elsewhere. ® The low-
field mobilities of NO* and NO*+ NO in nitric oxide
can also be calculated from ambipolar diffusion co-
efficients measured in recent stationary-afterglow
experiments, *~!! and these mobilities are compared
with the present results. In addition, the longitudi-
nal diffusion coefficients of NO* and K* in NO have
been obtained in our laboratory. No other data are
available for comparison with our diffusion coeffi-
cients.

II. APPARATUS

The drift-tube mass spectrometer employed in the
present measurements has already been described
in detail, '~7 so only a brief description will be given
here. From an electron-bombardment ion source
which is movable over almost the entire length of
the cylindrical drift tube (44 cm), short bursts of
ions formed from NO can be gated into the drift re-
gion on the axis. Potassium ions can also be gener-
ated inside the ion source from a platinum-gauze
filament coated with Kingman feldspar. Each ion
swarm gated into the drift region subsequently dif-
fuses and in some cases undergoes ion-molecule

reactions as it drifts down the tube under the influ-
ence of the uniform axial electric field. A sample
of the ions reaching the far end of the drift region
passes through a small aperture (0.035 cm diam,
located on the axis) into a differentially pumped re-
gion, and thence to an rf quadrupole mass filter.
Ions of the particular species which the filter is set
to pass are detected by a capillary electron multi-
plier. Voltage pulses generated by the detection of
single ions are time-sorted by a 256-channel time-
of-flight analyzer that is triggered by the ion source
burst. The accumulation of sorted counts from
many thousands of identical source bursts produces
a histogram of the ion transit times through the ap-
paratus for a particular drift distance, gas pres-
sure, and drift field intensity. Such “arrival time
spectra” are obtained successively for each species
of ions present in the drift tube over a wide range
of the experimental variables, and the drift veloci-
ties and longitudinal diffusion coefficients are cal-
culated from these spectra by methods to be dis-
cussed later in this paper.

Both Air Products “chemically pure” and Mathe-
son “technical grade” nitric oxide were used in the
present experiment. The purity of both gases was
nominally 98.5%. Gas pressures ranging from
0.02-1.0 Torr were employed in the drift tube.
Mass scans made throughout the experiment showed
the dominant ions to have masses of 30 and 60 amu,
which correspond to NO* and NO* . NO, respectively.
Masses of 48, 90, and 105 amu were also observed.
Only traces of the latter two masses were present, but
mass 48 (identified as NO'+ H,0) fluctuated in abun-
dance. As in earlier work, ° this impurity ion was



