
108 JOE I I. GERSTEN

~2A. D. Buckingham and D. A. Dunmur, Trans. Fara-
day Soc. 64, 1776 (1968).

I. S. Gradshteyn and I. W. Hhyzhik, TableofIntegrals,
Series, and Products (Academic, ¹ Y. , 1965), Integral
3.462. l.

~~Handbook of Mathematical I unctions, edited by M.
Abramowitz and I. A. Stegun, Natl. Bur. Std. (U. S.)
Applied Mathematics Series-55 (U. S. GPO, Washing-
ton, D. C. , 1964).

' J. I. Gersten and H. M. Foley, J. Chem. Phys. 45,
3885 (1966); 49, 5254 (1968).

J. O. Hirschfelder, C. F. Curtiss, and H. B. Bird,
Molecular Theory of ases and Liquids (Wiley, New
York, 1954), p. 1110,

This corresponds to choosing that root of Eq. (27)
which perturbs Eq. (1) the least.

~ J. D. Jackson, Classical Electrodynamics (Wiley,
New York, 1962), Chap. 14.

PHYSICAL REVIEW A VOLUME 4, NUMBER 1 JULY 1971

s-Wave Elastic Positron-Hydrogen Scattering in the ionization Region

Gary Doolen*
Physics Department, Texas & @M University, College Station, Texas 77843

and
Gary MeCartort

Manned Spacecraft Center, Houston, Texas 7705 8

and

F. A. McDonald
Physics Department, Southern Methodist University, Dallas, Texas 75222

and

J. Nutty»~
Physics DePartrnent, Texas A. @ M University, College Station, Texas 77843

(Received 1 February 1971)

The method of extrapolating the t matrix from complex energies to real energies is tested
on the positron-hydrogen s-wave amplitude at 29 energies in the elastic and inelastic regions,
including 10 energies in the ionization region. The error in the extrapolated t matrix is not
expected to be more than 10% in the ionization region.

f. INTROOUCTION

Recently a method has been proposed for comput-
ing scattering amplitudes a.t energies allowing final
states for three charged particles. ' In this paper
we report the results of an s-wave study of this
complex-energy extrapolation method applied to
positron-hydrogen scattering. This method is of
interest because it is the only mathematically sound
and practical procedure that has been proposed to
describe the scattering of three charged particles
above the ionization threshold.

The first step in this method is to calculate vari-
ationally the scattering amplitude at complex ener-
gies where the calculation is known to converge.
As a variational technique, we use the inhomoge-
neous Rayleigh-Ritz method. The results of this
paper show, as expected, that the convergence rate
of the variational method increases with increasing
imaginary part of energy. In the case treated here,
however, it is possible, even in the ionization re-
gion, to obtain good convergence surprisingly close
to the real axis in energy.

It has been determined that in this case the am-
plitude has a singularity, as the complex momen-
tum P approaches its real physical value k, of the

form Co+ C,q+ Czq + D, q'inq+ C4q ~, where
q=P —k. This singularity is so weak that it appears
that the extrapolation from the calculated values of
the amplitude to the point P = k should not be too dif-
ficult, provided we keep away from thresholds and

resonances. The accuracy of the extrapolation
procedure might be improved by fitting the calcu-
lated amplitude with a function containing the sin-
gularity above, but we have not attempted to do
this here.

First, describing our procedure in more detail,
we present numerical results in the elastic and
inelastic regions.

H. PROCEDURE

%e use the inhomogeneous Bayleigh-Ritz varia-
tional principle given by McDonald and Nuttall' as
follows:

Ir(p)l=(4 I vd»+(x
I

vq»+(vq
i x, ) -(x,

i
(z-if)x, ),

where
1 „sinks~

Yg

27i kr2

and E=p —l, k=BeP. Here, H is the Hamiltonian
and V is the potential for e'-H elastic scattering.
The trial function g, is taken to be a sum of the form
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figures with the recent precise bound calculation
of Bhatia et al. 3 and with the less restrictive bounds
of Kleinman, Hahn, and Spruch. 4

III. ELASTIC REGION
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FIG. 1. ReT as a function of the imaginary part of the
momentum p for Rep = 0. 1 and 0. 5.
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where the a's are linear variational parameters
and X is the nonlinear parameter. The calculation
was done using values of Q as large as 7 (120 trial
functions). We also included a trial function of the

form

] e~Pr2
Q = —e "1 (1 —e ~"2~~)

4m xp

to obtain the correct asymptotic behavior in the
elastic region. Consequently, our calculation con-
verged on the real axis in the elastic region where
we were able to obtain results which agree to three

We used the techniques described above to com-
pute the scattering amplitude for 14 values of the
real part ranging from 0. 05 to 0.7 and for four
values of the imaginary part of P ranging from 0 to
Q. 15. We find that the answers for real energies
have converged to about four places to the right of
the decimal point for the real part of the amplitude
and five places for the imaginary part. These re-
sults are shown in Table I. The phase shifts given
in this table were computed using the real part and

unitarity.
To check the accuracy of the complex-energy ex-

trapolation, we extrapolate the off-axis values to
get the real part of T using a simple quadratic fit
to the three off-axis values. These extrapolated
values are given in Table I. As can be seen, the
results are accurate to three figures. Two of these
curves are plotted in Fig. 1 to illustrate the typical
dependence of BeT on the imaginary part of p.

In this region, we tried adding another trial func-
tion to reproduce the asymptotic form at the positro-
nium channel:

$P( g+ ) /8
r, Sa e ' '

(1 e r, )
~1

We found that the computer time necessary to in-
clude this function was more profitably used to in-
crease 0 in Eq. (1).

Recently, Bhatia et al. performed a bound cal-
culation in this elastic region at seven values of the
momentum. Their phase shifts are included in
Table I. Our phase shifts agree with theirs to an

TABLE I. Real and imaginary parts of the e'-H amplitude in the elastic region. Extrapolated values were calculated
using a quadratic fit to three off-axis values.

0. 05
0, 10
0. 15
0.20
0, 25
0.30
0. 35
0.40
0. 45
0. 50
0. 55
0. 60
0. 65
0. 70

ReT

0. 0895
0. 1460
0. 1741
0. 1832
0. 1785
0. 1640
0. 1436
0. 1187
0. 0912
0. 0621
0. 0325
0. 0034

—0. 0247
—0. 0515

ImT

0. 008 10
0. 02155
0. 031 25
0. 034 80
0. 032 87
0. 027 67
0. 021 10
0. 014 30
0. 00840
0. 003 89
0. 001 03

I ) (0- 00001
0. 000 62
0. 002 65

0. 0900
0. 1481
0. 1779
0. 1876
0. 1826
0. 1671
0. 1457
0. 1199
0. 0917
0. 0623
0, 0325
0. 0034

—0. 024
—0. 051

Extr apolated
ReT

0. 0886
0. 1461
0. 1732
0. 1841
0 ~ 1795
0. 1648
0. 1432
0. 1190
0. 0915
0. 0625
0. 0333
0. 0049

—0. 0247
—0. 0504

6 of
Bhatia
et al.

0. 1483
0. 1483

0. 1877

0. 1677

0. 1201

0. 0624

0. 0039

—0. 0512
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FIG. 3. ReT as a function of the imaginary part of
the momentum for ReP =- l. 3.
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FIG. 2. (a) ReT versus nonlinear parameter for 56,
85, and 120 terms in the trial function, corresponding
to ~~=5, 6, and 7. The convergence is poor because p
=1.3+0.Oli, which is quite near the real axis. It is
reasonable to estimate that ReT = —0. 25 +0. 03 from this

graph. (b) ReT versus nonlinear parameter for &=5, 6,
and 7. The convergence is improved so that it is reason-
able to estimate ReT = —0, 263 +0. 002 from this graph.

energy extrapolation. The real part of T is plotted

against the imaginary part of the momentum. The
error bars represent the maximum error we ex-
pect in the variational calculation. We do not expect
the error to exceed 10% of the extrapolated value

in the ionization region.
Previous calculations in the inelastic region have

been carried out. ' At p= Q. 8, our phase shift,
—0. 140, is consistent with Dirks and Hahn's lower
bound of —0. 158. At this same momentum Fels
and Mittleman obtain —0. 177 for the s-wave phase
shift, whereas Bransden and Jundi obtain —0. 082.

Because of the known resonances and thresholds

accuracy of a few parts in the fourth figure to the

right of the decimal. Both calculations differ
slightly, however, from the previous calculation
by Schwartz' at three values of the momentum.

IV. INELASTIC REGION

TABLE II. Real and imaginary values for the e'-H

amplitude in the inelastic region, obtained by extrapolat-

ing from complex values. & and q are solutions to T
=ye@ sin~.

We calculated the E matrix for 15 values of the

real part of P ranging from 0. 8 to 1.5 and for six
values of the imaginary part of P ranging from 0. 01
to Q. 16. The convergence rate improved as the
distance from the real axis increased. Figure 2(a)
shows a graph of the real part of T for several
values of the nonlinear parameter ~ at P = l. 3
+0. Oli. Figure 2(b) shows the same curve for

P = 1.3+ 0. 16i. For values of ReP & 1, there was
poor convergence for Imj = 0.01. For ImP = 0. 16,
T converged to three figures for all the values of

ReP tried. The extrapolated numbers are presented
in Table II. The uncertainty in ReT and ImT causes
an anticipated error of a few percent in g and 6.

Figure 3 illustrates the usefulness of a complex-

Rep

0. 8

0. 85
0. 9
0. 95
1. 00
1. 05
1, 10
1, 15
1, 20
1.25
1.30
1.35
l. 40
1, 45
l. 50

ReT

—0. 098
—0. 122
—0. 143
—0. 162
—0. 174
—0. 190
—0. 201
—0. 22
—0. 22
—0. 23
—0. 240
—0, 246
—0, 25
—0. 27
—0 ~ 28

ImT

0. 014
0. 018
0. 020
0. 027
0. 03
0. 05
0. 05
0. 06
0. 07
0. 08
0. 09
0. 10
0. 10
0. 11
0. 12

—0. 14
—0. 14
—0. 14
—0. 16
—0. 17
—0. 25
—0. 25
—0. 27
—0. 3
—0. 3
—0. 35
—0 4
—0. 4
—0. 4
—0. 4

0. 7
0. 8

l. 0
1.0
1.0
0. 8

0. 8

0. 8

0. 8

0. 7
0. 7
0. 7
0. 7
0. 8

0. 8
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in the inelastic region below ionization, we expect
that our extrapolation may not be as accurate there
as in the region above the ionization threshold.

V. CONCLUSION

On the basis of this calculation, it is reasonable
to expect that a complex-energy extrapolation will
yield approximately two-figure accuracy for the
elastic-scattering amplitude above ionization thresh-
old. We obtained approximately three-figure ac-
curacy for complex energies sufficiently far from
the real-energy axis. The limits of error increased

rapidly as the real axis was approached.
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Collisional excitation rates from the ground state to the 4f levels in lithiumlike Ne vrzr have

been derived from the absolute intensity of the 3 D-4~+ radiative transition. At temperatures
of the order of the excitation energy and within the - 30% relative accuracy, the magnitude of
these &l =3 rates is equal to that for the corresponding &l =1 dipole rates to the 4p levels. For
the purpose of these measurements the Nevxu 3 D-4 & doublet has been identified.

INTRODUCTION

Theoretical excitation rate coefficients for lith-
iumlike ions' have been verified only recently by
laboratory measurements. ' In Ref. 6 the mea-
surements were made for excitation to all n = 3
levels as well as to the 4s, 4P, and 4d levels. At

present, neither theoretical nor experimental val-
ues are available for excitation from the ground
state to the 4f levels, which corresponds to a nl
= 3 collisional transition. The knowledge of the
corresponding rate coefficient is not only of inter-
est Per se but is also of importance when interpret-
ing absolute line intensities in laboratory and solar
plasmas originating from the 3d levels in lithium-
like ions. Besides the resonance transition 2P
-2s, the 3d- 2p radiative transitions give rise to
the strongest lines in the spectrum of lithiumlike
ions, and at low electron densities this is because

the 2s —3d collisional excitation rate is larger than
the rates leading to Ss and 3P. (At higher electron
densities, where the 2P levels become populated
considerably, the 2P —3d collisional excitation rate
becomes important, so that the 3d- 2P line remains
strong. ) Moreover, since at low electron densities
the 4f level can decay only by a radiative transition
to the 3d level, the 3d- 2p line intensity is further
increased relative to lines originating from 3s
or 3p.

TI-IEORETICAL CONSIDERATIONS

The principle of the measurement is described
in Ref. 6 and will therefore not be discussed in
detail. Atoms of interest are introduced into a
well-diagnosed plasma produced in a 8-pinch de-
vice where they are ionized to the lithiumlike ion-
ization stage. Appropriate line intensities are
measured absolutely and are finally interpreted in


