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A spin-1 Ising model, which simulates the thermodynamic behavior of He?-~He? mixtures
along the A line and near the critical mixing point, is introduced and solved in the mean-field

approximation.

For reasonable values of the parameters of the model the phase diagram is

qualitatively similar to that observed experimentally and the phase separation appears as a
consequence of the superfluid ordering. Changing the parameters produces many different
types of phase diagram, including as features A lines, critical points, tricritical points, and
triple points. Certain thermodynamic features which differ from the He®-He? experiments may

be artifacts of the mean-field theory.

I. INTRODUCTION

The general features of phase separation and
superfluidity in mixtures of liquid He® and He* have
been known for some time.!'?> For He® concentra-
tion below 67%, the mixture is able to support a A
transition, but, at higher concentrations, it under-
goes a first-order transition into two phases, of
which only the He*-rich phase is superfluid. In
this paper we present a simplified model involving
an Ising spin system with a spin S=1 at each lattice
site, which reproduces at least qualitatively the
main features of the phase diagram for the super-
fluid and phase-separation transitions. Details of
the model are given in Sec. II and results from
solving it in the mean-field approximation are found
in Sec. III.

Although the model has some unphysical features,
we feel nonetheless that it gives some insight into
the peculiar thermodynamic behavior of helium
mixtures and tends to confirm the conclusion
reached earlier by van Leeuwen and Cohen® that the
phase separation is intimately related to the ten-
dency toward superfluid ordering in He'. Further-
more, our model, which is a type of classical “lat-
tice gas, ” is amenable to investigation by the tech-
niques of exact series expansions which have proved
very fruitful in studies of phase transitions. * Thus
there is at least the possibility (which we ourselves
have not investigated) that the mean-field results
presented below can be considerably refined and
improved.

II. ISING LATTICE MODEL

Our model for He®-He* mixtures consists of a
discrete lattice and a fictitious spin variable S;,
taking the values 0 and +1, associated with each
lattice site. A He® atom at site ¢ corresponds to
S;=0 and a He* atom to S;=+1. There is one and
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only one atom at each site and the model makes no
allowances for vacancies. The additional degree
of freedom, the sign of S;, associated with a He*
atom, is introduced simply for the purpose of pro-
viding an “order parameter,” viz., the thermal
average of the total spin
N
M=N"X (), (2.1)
i=1

which in our model corresponds to the superfluid
order parameter of liquid helium.® Of course M
has only two possible phases, positive and negative,
whereas the phase of the order parameter for liquid
helium can be varied continuously. This is only
one of the unphysical features of our model. Our
purpose, however, is not to give a correct descrip-
tion of the microscopic behavior of helium mixtures
but merely to show that the possibility of an addi-
tional order parameter for one of the species (He?)
and not for the other is by itself enough to account
for several features of the observed phase diagram.

The number of He® and He* atoms are given by

ﬁ3=§; 1-5), 2.2)
N N
N4=4? s2, (2.3)

with JQ3+JV4=N, the total number of sites. The He®
concentration

x=(N3)/N (2.4)

is an additional order parameter which reflects the
possibility of phase separation.
For a translationally invariant system, we have

M=(Sy (2.5)
and

x=1-(SDH . (2.6)
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Here (S;) and ($%) are, respectively, the mag-
netization and mean quadrupole moment of the fic-
titious spin system, and superfluid ordering and
phase separation in the mixture are simulated by
magnetic ordering and quadrupolar ordering in
the model.
The model Hamiltonian consists of two terms:
The first is

Hg=-J 23 S;8;,
(i,

2.7

where the summation is over nearest-neighbor
pairs. This term is responsible for the “super-
fluid” ordering since it leads to a second-order
transition in which a nonzero value of M appears

at a critical temperature 7, determined by the “ex-
change” integral J and the concentration of He®
atoms. When the concentration of He® is zero, all
S;=+1, and Hg in Eq. (2.7) becomes the usual
Hamiltonian for an Ising ferromagnet. The presence
of the He® means that a number of the $? are zero,
which is similar to the inclusion of nonmagnetic
impurities in the fictitious spin system, and dis-
courages the transition, so that 7', decreases. This
is qualitatively in accord with experiment, In addi-
tion it will be shown that when x is sufficiently
large, the system can only continue to support the
superfluid ordering by breaking into two phases,
with the He3-rich phase remaining in the normal
state. According to Eq. (2.6) this is equivalent to
quadrupolar ordering in the model.

In this case, phase separation is a direct con-
sequence of the superfluid ordering, but, as in a
mixture of classical fluids, it could also be induced
directly by the interaction between components
without the benefit of superfluidity, and it is of in-
terest to compare the two mechanisms theoretical-
ly. For this reason an interaction term

Hp=-Kg 2 (1'3%)(1‘53)—1{44 2 S%Si
iyd) i, 9

- Ky (?ﬁ [s1-5%)+s21-s)], (2.8)
will be included in the Hamiltonian. Here again the
summation is over nearest-neighbor pairs, and
since S2 is zero for He® and unity for He!, — K,

is the effective He*-He® interaction. The terms

in Eq. (2.8) may be rearranged to give

Hp=~ (Ky3+ K4y = 2Kyy) (%) 8% %

N
- 22(Kyy — Ky3) z Szi—ZNKsa , (2.9)
i

where z is the number of nearest neighbors for the
lattice. Of course, there is the same interatomic
force between all He atoms but, in the liquid, dif-
ferences of mass and statistics lead to different ef-
fective interactions between He® atoms and He*
atoms® and this is reflected in the differences be-
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tween the K,,. If the K,; were equal, H; would re-
duce to a constant; if they were nearly equal, the
variable part of H; would be a small perturbation.

Since (N,) and (N,) are given, it is then necessary
to introduce chemical potentials uj; and u, for the
He® and He!, respectively, and they may be incor-
porated into the total Hamiltonian

se=Hg+ Hy = g Ny— N, (2.10)
which may be rewritten

N
H==J 27 $;S;-K 2, SiS%+A 72583~ N(2Ky+ uy)
iy ) i,3) ¢

(2.11)
from Egs. (2.2), (2.3), (2.7), and (2.9). Here,
we have

K=Kg3+ Ky — 2K3y (2.12)
and
A= g = Ug+22(Kyg— Kyy) © (2.13)

The model Hamiltonian 3 represents a spin-1
Ising model with biquadratic exchange of strength
K and a crystal field of strength A, The constant
term on the right-hand side of Eq. (2.11) will be
disregarded.

If in Eq. (2.11) we take K=0, the Hamiltonian
becomes that for the spin-1 Ising model with crys-
tal field interaction. The spin term proportional
to A gives single-spin energy levels with an S;=0
singlet level lowest and S; =+ 1 degenerate and at
an energy A above the singlet (for A>0). Systems
of this type have been studied (with application to
magnetism in mind) by Blume’ and Capel® in the
molecular field approximation, and by Blume and
Watson® for the equivalent case of infinite-range
interactions. These authors have shown that the
order-disorder transition becomes, for a critical
value of A, a first-order transition. With our “lat-
tice-gas” interpretation of (2.11) we will show that
this onset of a first-order transition is equivalent
to phase separation, and we may calculate some
properties of the consolute point in the molecular
field approximation. The system with K=0 de-
scribes phase separationdrivenby superfluid order-
ing. The opposite extreme, with J=0, describes
separation driven by the energetics of particle-
particle interactions, This Hamiltonian has been
treated by Griffiths, ° who showed that the statis-
tical mechanics of this system could be reduced to
that of the spin-% Ising model in a temperature-
dependent external magnetic field. He showed that
for certain values of A, a first-order phase transi-
tion (in this case, in the order parameter x) occurs.
These exact results are very close to those obtained
in the molecular field approximation, and they also
predict a region of phase separation. We shall be
concerned primarily with the case of |K | < |J], as
this corresponds most closely to the experimental
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situation, but we will consider briefly the case of
K large as well.

Further consideration of (2.11) shows that the
term AY; S2 corresponds to an external “field”
coupling to the order parameter x. We might also
add to (2.11) a term HY,; S; coupling to the order
parameter M. In a magnetic system this of course
represents an external magnetic field coupled to
the magnetization, but in a superfluid there is no
direct physical analog of such a field. We may
nevertheless consider the mathematical effect of
such a term on the phase diagram of the system,
and we do so in Sec. III.

III. MOLECULAR FIELD APPROXIMATION

The most direct way of deriving the molecular
field approximation is to use the variation principle
for the free energy'!

F£®=Trp3+(1/p) Trplnp , 3.1)

where F is the exact free energy and p is any trial
density matrix. The equality sign holds if
p=exp( - p1)/ [Tr exp(~ B3C)], the equilibrium den-
sity matrix for the system.

To obtain the molecular field approximation, it
is assumed that

P=P05Hi Pi (3.2)

where p; is the single-spin density matrix for site
i. For a translationally invariant system, p; is
independent of ¢ and is equal to say p;. Then sub-
stituting Egs. (2.11) and (3. 2) into Eq. (3.1),

®/N=- 19(Trp,S,)? - $%(Trp,S3)?

+ATrp,S%+ (1/8) Trp,Inp; , (3.3)
where §=zJ and X=zK.

To obtain the best form of p, with Trp,=1, it is
necessary to minimize ®/N+ ATrp, with respect to
p,. Differentiating Eq. (3.3) with respect to p, and
evaluating A, it is found that

p =e"/Tr e (3.4)

where the single-spin molecular field Hamiltonian
h is given by

h==-9(Trp,S;)S; - ¥(Trp,S3)S2+ AS? (3.5)

=-JMS,+[a -%(1 - x)]S?, (3.6)

using the definitions (2.5) and (2.6). Now M and x
have to be evaluated from Egs. (2.5), (2.6), (3.4),
and (3. 6) to give

o= 2coshBd M
*= exp{pla- %1 - x)]}+ 2coshpgM ° 3.7
M 2 sinhpd M 6.9

“exp{p[a-%(1—-x)]}+ 2coshpgM °

In a mixture, x is specified and M and A (which
contains u, and u,) are to be determined from these
self-consistent equations. However, in consider-
ing phase separation, we are looking for two phases
with different values of x but the same u; and u,,
and hence the same A, For this reason, it is
analytically simpler to assume that A is given and
to solve Egs. (3.7) and (3.8) for M and x. The
same procedure would be followed automatically
in a magnetic system where A is a prescribed field.
There will, in general, be several pairs of solu-
tion (M, x) for (3.7) and (3.8), and the pair chosen
is that which minimizes ® in (3.3). There will
always be one set of solutions with M =0 and with
x given by the solution of

1-x M=0. (3.9)

2
Texp{Bla-x(1-x]}+2
In addition, there may be solutions with M #0. To
find these we note that, for M #0, it is possible to
divide (3.7) by (3.8) to obtain

1-x=McothdM, M+0. (3.10)

Substitution of (3.10) in (3.8) then yields an equa-
tion for M.

The regionsinwhich M=0 or M #0 are separated
in the T'-x plane by a line of phase transitions, as
shown in Fig. 1. In most parts of this diagram it
is necessary to solve for x and M numerically, as
described above, but the neighborhood of this line
can be discussed analytically.

a. X=0. We first consider the case X=0, which
is less complicated and quite close to the experi-
mental situation.

For this argument we suppose that a small “mag-
netic field” H is applied to the system to ensure
that M #0 everywhere. This means that JM is re-
placed by (§M - H) in Eq. (3.6) and hence also in
Egs. (3.7)-(3.10). The thermodynamic potential
G(M) is given by

G(M)=% - MH (3.11)
and
3G
H=—m, (3.12)

so that, for H=0, G is a minimum with respect to
M. In the molecular field approximation, G is
analytic in M and may be expanded in the form

G=Gy+AM2?+ BM*+ CM®+... | (3.13)

where G, and the coefficients A and B are functions
of Band A,

For X=0 and H#0, Eq. (3.8) becomes
M=2sinhp(gM - H)/[e** + 2coshp(gM - H)]  (3.14)

and it is quite straightforward to use this equation
to find H as a series in powers of M and so to find
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FIG. 1. Phase diagram for He’-He! mixtures as pre-
dicted by the mean-field calculation with X=0. The tri-
critical point A separates the second-order transition re-
gion from the first-order region. A line of constant A is
shown. For T slightly above and below the transition
temperature, this line is extremely close to the phase-
separation curves and is indistinguishable from them on
the figure.

A and B by comparison with Eqs. (3.12) and (3.13).
In this way

A=6/2p-39, (3.15)

B=(1/8p)(8*- 398" , (3.16)

C=(1/6p)(36° -3 8" +55 ) , (3.17)
where

6=1+73€ . (3.18)

Equation (3. 13) is the form assumed in Landau’s
theory of phase transitions. 12 From Eq. (3.12),
when H=0, G has to be a minimum with respect to
variations of M. When A>0, B>0, the minimum
occurs at M=0. When A<0, M=0 is a maximum
and the equilibrium M has a finite value. Thus the
“superfluid” ordering temperature, Ts(x) in Fig.
1, is determined by A=0 or, from Egs. (3.15)
and (3.9),

1 T 1
R e 19
=1-x. (3.20)

In particular, at x=0, Tg(0)=4 in our approxima-
tion. As the He® concentration x is increased, T’
decreases linearly from its value § for pure He'.
If A were prescribed instead of x, pure He* would
correspond to A=~ e, and Tg would decrease as A
increased. Eventually, when x and T have critical
values x, and T,, B becomes equal to zero as well
as A=0, and the transition changes to one of first
order.” From Eqgs. (3.16) and (3.19), this occurs

BLUME, EMERY, AND GRIFFITHS 4

at a temperature 7, and concentration x, such that
T,/Ts0)=1-2x=7 . (3.21)

Experimentally,? T,/Ts(0) is 0.4 but 1 - x, is 0. 331
+ 0. 005.

For A>A,, as T is decreased, G reaches the
form shown in Fig. 2 before A becomes equal to
zero. Minima occur at two points, M =0 and M,
with the same free energy, and the mixture sep-
arates into two phases. The He®-rich phase has
M=0. Near T,, Eq. (3.13) may be used and G has
to be

G=Gy+ CME(M?% - M2y (3.22)

on the phase-separation curve, so that it has the
form shown in Fig. 2. This requires

B2%=4AC, (3.23)

which replaces A=0 as the condition which gives
for the superfluid ordering temperature T'g as a
function of A. Since C>0, it follows that A>0 at
Ts and for A > A, the phase-separation curve lies
above the line given in Eq. (3.20). Differentiating
Eq. (3.23) with respect to A and letting 7'~ T,

9A  B8A 0T .
<8A Targ oA >Ts="'¢_0 (3.24)
determines the slope of Ts(a) for T,=T,—. But it

is also given by the same equation (obtained by dif-
ferentiating A=O)when 7'=T,+. HencedTs/dAis
continuous at 7,. Then from Egs. (3.19) and
(3. 20), which refer to the He3-rich end of the phase-
separation curve since they assume M=0, 9T3/dx
is continuous at 7,. This is a feature of classical
theories of second-order phase transitions'? and
apparently does not agree with experiment.2 It is
undoubtedly a consequence of the molecular field
approximation made here, and the actual behavior
of the nearest-neighbor spin-1 Ising model may well
differ from that obtained in the molecular field ap-
proximation.

The phase boundaries T =T,(x) and T = Ty(x)

G (M)

FIG. 2. Free energy as a function of the order param-
eter M for the temperature at which a first-order transi-
tion occurs. The phase with M=0 is in equilibrium with
the phase at the minimum of G (M) with M =0.
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FIG. 3. Phase diagram in the T-A plane for the mean-

field solution with =0. The solid lines represent second-
order transitions; dashed lines represent those of first-
order. The tricritical point is, as in Fig. 1, denoted by
A,

shown in Fig. 1 are derived for T'~T, from Eqgs.
(3.23), (3.9), and (3.10) with M=M,. At lower
temperatures the curves have been determined by
numerical evaluation. The qualitative features of
the experimental phase diagram are reproduced
by the molecular field approximation with the ex-
ception of the finite (6%) miscibility of He® in He*
at 7=0°K. It is necessary to include the Fermi
statistics for He® in order to reproduce this fea-
ture.

It is also of interest to consider the phase diagram
in the T-A plane, as shown in Fig. 3. Here the
second-order transition (superfluid ordering) starts
at A=~ and T=9 (pure He?) and decreases in
temperature as A increases. AtA,=d% In2
=0. 46219, T,= 39, the transition changes to first
order, and since A is the same in the two coexist-
ing phases, the first-order phase boundary is a
single line in the T-A plane rather than the two
lines in the T-x plane. As one of us pointed out
previously, !* if one looks in (T, A, H) space, the
first-order phase-transition line in the 7-A plane
is a line of triple points where two first-order
transitions occurring from finite H meet the first-
order transition surface (where M is discontinuous)
in the T-A plane, the region lying below the curve
Ts(A). From this point of view, the curve Tg(A)
is a line of “critical points” (terminating a first-
order phase-transition surface) which at 7=T, and
A=A, is joined by two other lines of critical points
terminating the first-order phase-transition sur-
faces for H>0 and H< 0. (This confluence of three
lines of critical points led to the suggestion!® that
T=T, A=A, and H=0 be called a “tricritical”
point.)

The equations for the lines of critical points are
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easily determined. They are given by (§=1)

A=TIn[2(1-T)/T]
} ) =T=1

o]

H=0

which is found by setting H=0 and, in Eq. (3.15),
A=0. For H+#0, conditions 8H/8M = 8*H/0M?=0
yield

A=iTmn[16T/@4T-1)],

1-2T+(1-37)2
[TaT-1)]'"?

H=:|:T1n( )*(1—3T)”2,

ENT
@l

=T=

These lines join together at the tricritical point
T,=%, A,= 21n2, and H,=0. The critical values of
H and Ago to infinity as T~ .

Figure 4 shows the phase diagram in the H-A
plane for various values of 7. Observe that the
two “wings” extending into the regions H<0 and
H>0 go to infinity for T< §. They end in critical
points for 3 >T> 1, become progressively shorter
with increasing temperature, and finally disappear
at T=T,. Also the angle between the wings at the
tricritical point decreases to zero as T goes to T,.
In the mean-field approximation the three lines of
critical points join one another continuously and
with continuous slope as well.

In the vicinity of the tricritical point our molec-
ular field theory predicts that (8x/8A), should be
perfectly finite for H=0 at all points to the right of
the curve in Fig. 3, whereas to the left it diverges
as (A,—A)! for T=T,. The former result appears
to contradict experiment!® and is quite likely an
artifact of the molecular field calculation rather
than a property of the Ising model itself, as is also
the finite discontinuity that we find for the heat
capacity C, upon passing through T'=T, at x=x,.

b. X+#0. We shall discuss the whole range of
values of X/J, since the phase diagram is qualita-

0.10

0.05

0.05

0.10

1 1 | | | | ] 1
0.46 048 050 0.52 0.54 0.56 0.58 0.60

FIG. 4. Transition lines in the A-H plane for different
values of T. For §>T >% the lines end in critical points,
while for T <% they extend to infinity.
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FIG. 5. Effects of nonzero X on the phase diagrams.

Superfluid phases are denoted by S. (a)d =0. No A tran-
sition occurs in this case. Phase separation is due to
interparticle interactions. The phase-separation region
ends in a critical point C. A line of constant A crosses
the unstable region from left to right, opposite to that in
Fig. 1. (b) X/Y=0.15. The phase diagram here is simi-
lar to that in Fig. 1. The small nonzero X has caused
only quantitative changes from that case. The tricritical
point A has shifted to a smaller value of x and a larger
value of T. (c)X/$=2.88. Here features of Figs. 1 and
5(a) are both present simultaneously. There is a tricriti-
cal point A and a critical point C. In addition there is a
triple point, i.e., a temperature T at which these con-
centrations, indicated by B, are in equilibrium. @x/9 =
3.8. The value of X is sufficiently large that the charac-

ter of the phase diagram is predominantly that of Fig. 5(a).

The A line intersects the phase-separation curve below
the maximum C (the critical point). There is no tricriti-
cal point in this case.

tively different in different ranges of this param-
eter. As discussed above, it is expected that %/d
is small for helium mixtures and, indeed, the phase
diagram for small ¥/d resembles the experimental
one.

The case of §=0, X >0 has been discussed by
Griffiths, !° who showed that it is equivalent to a
spin-% Ising model with a temperature-dependent
external magnetic field. The phase diagram is
shown in Fig. 5(a). Phase separation occurs be-
cause the He®-He® and He*-He! interactions are
more attractive than the He®-He* interaction. Thus
there are two possible origins of phase separation.
For small %/9, exemplified by ¥=0, §>0, con-
sidered above, the superfluid transition changes
from second order to first order and becomes as-
sociated with phase separation. For large %x/J, the
phase separation is a direct consequence of the in-
teractions. For intermediate values of %x/J, the
two may be distinguished by the direction in which

EMERY, AND GRIFFITHS

| >

the lines of constant chemical potential (constant
A) cross the unstable region. In the first case they
cross from right to left, as shown in Fig. 1, while,
in the second, they cross from left to right as in
Fig. 5@).

For X #0, the point at which the X line meets the
phase-separation curve is given by (J=1)

T, l-x _2K+1
Ts(0) ~ °T2K+3

which reduces to Eq. (3.21) for x=0. Thus, as
%/9 is increased from zero the tricritical point
moves to the left, i.e., in the direction of decreas-
ing He® concentration [Fig. 5()]. As %/J is in-
creased still further, the characteristics of the
large /9 region become apparent. Thus, in Fig.
5(c), there are two maxima in the phase-separation
curve, one of which corresponds to the maximum
in Fig. 5(a), while the other is at the intersection
of the X line with the phase-separation curve. This
regime is interesting because it displays a tricrit-
ical point, a critical point, and a triple point, at
which three different concentrations are in equilib-
ruim at the same temperature. Finally, as X/d

is increased still further, the tricritical point no
longer occurs, and the X line merely intersects the
phase-separation curve below the maximum. The
phase separation is here produced by the interac-
tions rather than by the A transition. The tricrit-
ical point still appears in the theory, but it is me-
tastable, since it occurs at a concentration where
the phase separation due to interactions is absolute-

(3. 25)

(a) /=0 (b) K/4 =0.16

0.6 0.6 \
T/K 04 - T/§ 0.4 VA
»C

0.2 r / 0.2 \
i

1
1 H 1

1
0.2 04 0.6 08
A/d

L !
0.2 04 0.6 0.8
A/k

(c) K/f =2.88 (d) K/4 =3.8
e L2t
nd »C
mosl % os —
gY ~ W i
0.4+ 0.4} :
1 1
| ) ! H |
0 1.0 2.0 %5 3.0
V7] V71

FIG. 6. T-A plane for the cases illustrated in Fig. 5.
Second-order transitions are indicated by solid lines and
first-order transitions by dashed lines. (a)X =0, The
critical point is at C. (b)X/d =0.16. The tricritical
point is at A, separating the second-order from the first-
order transitions. (c)X /g =2.88. Here A is the tricriti-
cal point, B the triple point, and C the critical point. (d)
¥%/9=3.8. The tricritical point no longer appears. Only
a second-order transition separates the superfluid from
the normal phase. The first-order transitions separate
two normal phases from one another. The critical point
is at C.
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ly stable.

The introduction of a nonzero X does not change
the conclusion that the A line T4(x) is continuous
in slope with the phase-separation curve at the tri-
critical point. As before, this is a feature of
“classical” or mean-field theories.

The phase diagrams in the 7-A plane correspond-
ing to the different situations shown in Fig. 3 are
displayed in Fig, 6. Note that second-order transi-
tions are distinguished from first-order transitions
by the type of line employed. The second-order
transitions are indicated by solid lines, and the
first-order ones by dashed lines. The four ex-
amples of phase-separation diagrams shown in
Figs. 5 and 6 do not correspond to the experimen-
tally observed one. Indeed, we expect K =0, so
that Fig. 1 should be most nearly applicable to ex-
periment., However, they do illustrate the variety
of behavior possible for phase diagrams involving
a A transition.

IV. CONCLUSION

We have shown how a simple lattice model can
explain qualitatively many of the thermodynamic
properties which arise at the superfluid-normal
transition in He®-He* mixtures. Obviously, several
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improvements are possible. Of particular interest
are methods? of investigating the thermodynamic
behavior that do not rely upon the mean-field ap-
proximation, which is well known to give incorrect
information about certain details of A transitions
or critical points.'* One can also conceive of lat-
tice models which, following Matsubara and
Matsuda, !* employ quantum interactions to imitate
the effects of kinetic energy and Bose statistics,
and which can give rise to an order parameter hav-
ing a continuous phase. Indeed, it is somewhat
surprising that a model as simple as the one we
have discussed bears as close a resemblance as it
does to the situation observed experimentally. The
agreement may be entirely fortuitous, but we would
like to suppose that our approach has succeeded in
including some of the essential physics.
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