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A detailed critical analysis is made of Stueckelberg's treatment of inelastic transitions at
a crossing of two potential curves. Using an asymptotic method analogous to the WKB approxi-
mation, Stueckelberg obtained the well-known Landau-Zener-Stueckelberg (LZS) formula for
the inelastic transition probability. His method involved the determination of "connection
formulas" linking amplitudes associated with his asymptotic approximants on either side of the

crossing-point region. Here we show that (a) Stueckelberg's asymptotic approximants are
just the WEB approximants for elastic scattering on the adiabatic (noncrossing) potentialcurves;
(b) Stueckelberg's method for obtaining the connection formulas can be put on a rigorous foot-
ing, including sufficient conditions for its validity, using the classical trajectory equations de-
rivable from a general semiclassical theory of inelastic atomic collisions; (c) there is an un-

determined phase in the S matrix, which Stueckelberg incorrectly assumed to be zero, and

which has the value 4~ in the distorted-wave approximation; (d) Stueckelberg's derivation is
not valid whenever the inelastic transition probability is small, either in the rapid-passage
(diabatic) case or the near-adiabatic limit; (e) for realistic model parameters, the conditions
needed for Stueckelberg's derivation to be valid are almost never satisfied. Since the LZS
formula is known from numerical computations to be valid under some conditions when the

Stueckelberg derivation is not valid, we conclude that analysis via connection-formula methods

is not a useful technique for treating the crossing problem. In an appendix we derive an ana-

lytical result for the Stokes's constants determining the Stueckelberg connection formulas.
The result is an absolutely convergent, infinite series whose numerical evaluation would yield
exactly the unknown phase associated with the LZS formula.

I. INTRODUCTION

A problem of fundamental interest in the theory
of atomic and molecular collisions is posed by the

crossing of two electronic potential surfaces. At

such a crossing, electronic transitions between

the two states, normally improbable because of

the Massey adiabatic criterion, can be important
even at low collision velocities. This type of tran-
sition is usually involved whenever efficient elec-
tronic deactivation or charge transfer is observed
between dissimilar atoms. In analyzing such

problems, the first and usually the most serious
assumption is that a particular process can be
isolated and described using only the two electronic
states associated with a particular crossing.
Then, given the projection of the electronic Hamil-

tonian on this two-state manifold, the remaining
problem is to calculate the transition probability
(elastic and inelastic cross sections).

In this series of papers, the potential curve-
crossing problem is treated using the "classical
trajectory equations" of atomic collision theory.
These time-dependent equations governing the
electronic degrees of freedom arise if it is assumed
that the nuclei move classically in the collision.
Previously we have shown' that these equations
are valid much more generally than is the classical
picture upon which their intuitive formulation is
based. In this paper we use the classical trajectory
equations to make a detailed analysis of the solu-
tion to the crossing problem given by Stueckelberg
in 1932. ' We will show the relationship between

his and other approaches to the problem, and prove
that there are extremely severe limitations on the

validity of his method.

A. Historical Background

The earliest theoretical work on the crossing
problem was done by Landau and Zener, who in-
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dependently obtained the well-known formula named
after them. Landau used a form of the distorted-
wave approximation; a generalization of his ap-
proach has been presented recently by Chen and
Watson. ' Zener's derivation was based upon the
classical picture of the nuclear motion, and ac-
cordingly it ignored the phase coherence between
transitions occurring on the incoming and outgoing
traversals of the crossing point. Most subsequent
studies of the problem have involved extensions
of this approach.

Using an extension of the WKB method, Stueckel-
berg derived a set of "connection formulas" linking
the values for certain amplitude parameters of the
wave function inside the crossing point to values
outside it. By this means he obtained a formula
which includes the effects of phase coherence, and
which reduces in the appropriate limit to the Lan-
dau- Zener formula. We refer to this formula as
the Landau-Zener-Stueckelberg (LZS) formula.
Unfortunately Stueckelberg was not able to give
the conditions for its validity.

Stueckelberg's method is unique and bears no
obvious relation to most other work on the crossing
problem; furthermore, it appears at first to be
based on purely formal arguments whose validity
can be guaranteed without reference to specific
details of the system considered. To our knowl-
edge there have been only two subsequent studies
of Stueckelberg's approach. Rice took a critical
perspective based on general considerations of the
nature of asymptotic expansions, and his criticisms
partially diagnosed the trouble with Stueckelberg's
method. However, since Rice did not examine the
expansions in detail, he was able only to conclude
that Stueckelberg's method is not necessarily cor-
rect. Furthermore, certain of Rice's criticisms
bear on the validity of the classical trajectory
equations rather than upon Stueckelberg's method
of solving them; in fact, however, the difficulties
with the LZS formula arise entirely from the latter.
The other analysis of Stueckelberg's approach was
briefly reported by Thorson and Boorstein in
1965. ' Here we will describe their work in detail
and also establish definite conditions for the validity
of Stueckelberg's derivation.

B. Problem Description

There are four essential steps required in a
semiclassical analysis of electronic excitations.

Electronic basis. The first of these steps is
the choice of an appropriate electronic basis,
Q„(r, R). A useful choice is the set of Born-Oppen-
heimer or adiabatic electronic states, which fully
diagonalize the electronic Hamiltonian (in the mo-
lecular referenceframe) at each R. In this repre-
sentation excitations arise from the so-called
"nonadiabatic" couplings via the R dependence of

the basis Q„. The adiabatic potential curves V„„(R)
do not cross, except when there is no inelastic
coupling between the states (noncrossing rule). If
two adiabatic curves have such an avoided crossing
it is always possible to make a unitary transforma-
tion on the adiabatic basis such that the nonadiabatic
couplings between this pair of states become neg-
ligible. In the resulting "diabatic" representation
the diagonal elements of the electronic Hamiltonian
cross and coupling results from the off-diagonal
element, which is a slowly varying function of R
(Fig. I). A more complete definition of diabatic
representations hasbeen givenby F. T. Smith. "
Landau, Aener, Stueckelberg, and most others used a
diabatic representationas a starting point, but it is
important to recognize that this is purely a matter
of convenience; in many modern studies of curve
crossings, the adiabatic curves are the more
readily available inf ormation.

The most serious approximation in the curve-
crossing problem is made at this first step of
electronic basis choice, i. e. , the truncation of the
electronic basis to the two states associated with
a particular crossing. The validity of this trunca-
tion must be examined case by case.

Semiclassical approximants and coupled equa-
tions. A semiclassical treatment is based on the
use of asymptotic approximants which adequately
describe elastic propagation in some fixed elec-
tronic representation. When the exact wave func-
tion is expanded in terms of these approximants,
inelastic scattering is described by coupled equa-
tions linking the expansion coefficients. The dis-
tinctive feature of semiclassical approximants is
that the resulting equations are just the classical
traj ectory equations.

Selection of any particular set of semiclassical
approximants simply amounts to a choice of elec-
tronic representation, and the corresponding clas-
sical trajectory equations are those appropriate to
that representation. For instance, Landau began
with the WKB approximants for elastic scattering
in the diabatic representation and his solution of
the resultant inelastic scattering equations via the
distorted-wave approximation is equivalent to the
first-order perturbation treatment of the diabatic
classical trajectory equations. Zener used the
classical trajectory equations for the diabatic rep-
resentation; this again involves the same WKB
approximants. Stueckelberg, on the other hand,
starting from the diabatic representation, derived
a new set of asymptotic approximants which in-
corporate some effects of the inelastic coupling.
However, it turns out that his approximants are
just exactly the elastic scattering WKB approxi-
mants for the adiabatic representation, although
they are described as two-component vectors in
the diabatic basis. The corresponding coupled
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FIG. 1. Potential curve crossing
Solid curves (1, 2), diabatic po-

tentials; dashed curves (+, b), adia-
batic potentials. A2, Bf (+ Rg),
classical turning points. Roman nu-
merals indicate distinct asymptotic
regions for WEB approximants.

R2 R

(R, } (Rb}

R„

equations, to which Stueckelberg's connection for-
mula technique attempts a solution, are just the
classical trajectory equations in the adiabatic rep-
resent" tion. Stueckelberg's forms, can be derived
by methods less tedious than his, which clearly
reveal their connection to the adiabatic represen-
tation. ~'4'~2 In addition, our derivation (in Sec. II)
leads to the corresponding coupled equations, which
are essential to the analysis of Stueckelberg's
method or to any semiclassical treatment (Stueckel-
berg never consider the equations explicitly).

The classical trajectory equations, which are
thus central to all semiclassical treatments of the
curve-crossing problem, are valid' provided
only that (a) the WEB approximation would ade-
quately describe elastic scattering in uncoupled
channels, (b) differences of elastic momenta in
the initial and final electronic states are small in
the region of inelastic coupling, and either (c)
coupling is negligible in nonclassical and turning-
point regions or (c') the two potential curves have
slopes of common sign. The significance of the
last conditions is discussed in Ref. 3 and in Sec. II.

Model fm' electronic Hamiltonian'. The third
step necessary in a semiclassical theory is the
selection of a suitable descriptive model for the
two-state projection of the electronic Hamiltonian.
The LZS model for curve crossings assumes that
(in diabatic basis)'the diagonal elements Hf/ H22
are sensibly linear, and the off-diagonal element
H» sensibly constant, for a sufficiently large dis-
tance around the crossing point. As was first
shown by Bates, ' this apparently innocuous as-
sumption can become very restrictive at high en-
ergies. In this paper we shall in principle allow
for deviations from this model (via Taylor ex-
pansions of the matrix elements).

Solution of couPled equations Fin.ally it is
necessary to solve the coupled classical trajectory
equations to obtain a formula for the transition
probability. The primary objective of this paper
is to carry this step out by a rigorous treatment
of Stueckelberg's method, and to obtain thereby
the conditions of validity for Stueckelberg's deriva-
tion of the LZS formula.

II. SEMICLASSICAL TREATMENT OF CROSSING PROBLEM

Using a method similar to that employed in our
previous derivations of the classical trajectory
equations, we now derive Stueckelberg's asymp-
totic approximants to the exact radial Schrodinger
equation and the corresponding classical trajectory
equations for the coefficients. As we derive them,
Stueckelberg's forms are just the adiabatic ap-
proximants; however, Stueckelberg actually used
them in a different representation, discontinuous
on the real axis at the crossing point, which we
call the "Stueckelberg representation. " It diff ers
from the adiabatic representation in the definition
of a certain square root (the reader is warned
that these definitions must be treated with extra-
ordinary care to avoid error).

A. Derivation of Classical Trajectory Equations in Adiabatic
Representation

The Schrodinger equation for radial motion has
the solution

[u'((It) p(+ u2(H ) $2],

where u&(R) obey the equations

uf'+~i(&) ui = feria(&) ua,

2 +~2(H) 2 ~21(H) 1
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and

k~ (R) = 2M [E—H)~(R)) —J(J+1)/R~,

U, ~(R) = 2MHu(R) .

(3a)

(3b)

u& = Z (B„~,e'++B„& e 'e~}, j = 1, 2
v ~g&b

where

S„=Jm„dR', b=a, b .

(5)

Define

h(R) = km'(R) —k2(R),

t= 4/2U, b .
(3c)

(3d)
u,'=iZ „m„(B„„e'" B„-, e '"), (7a)

Since only two functions are being determined by

eight B„&,'s, we impose two arbitrary conditions

Note that, according to Fig. 1, ~ and t are positive
for R &R„, zero at R„, and negative for R &R„;
t- «as R- «. H,&(R) is the two-state projection
of the electronic Hamiltonian in the diabatic or
crossing representation.

The adiabatic or noncrossing representation is
obtained when the matrix U is made diagonal

(Uzz
—k&b). The adiabatic momenta, which we de-

note by m„m&, are given by

so that

Using Eqs. (5) and ('fa) in Eqs. (2), two coupled
first-order equations for»„&, are obtained. These
can be further reduced by using the four arbitrary
constraints still at our disposal to diagonalize the
potential matrix U, i. e. , we choose

~.'= —.
'

[k', (R)+k', (R)]+-,'I (~'+ 4U'„)'I' I,
&b = b [ki(R)+ k'(R)] —2

I
(~'+ 4Ui2)"'I.

(4) »ga. =y»gi. , » ~.=- y»s2. i

where

(Sa)

The adiabatic potentials are shown (dashed curves}
in Fig. 1. We shall not distinguish between the
zeros R, , R& of m„w, and those of k„k» respec-
tively.

Let us now derive the classical trajectory equa-
tions in the adiabatic representation. We begin
by writing

r =+ (k', —m, )/U(2 = —(k~ —&b)/U f 2

When these substitutions are made in the coupled
equations obtained from (2) and also into Eqs. (7b),
we obtain four equations for B,&, and»», .

1 1 -y
Fg ~ Kg PTER

y y 1
77b

fS
g&+ e

~-58g
g1«

»O2. &
kS

52
B' e "~

0
l

It g

y'

0
7t g

y'
—(&br)'

0
(&br)'

0

$Sg»gi. &
~-f Sg

Ban. ~ fS

Bq2 e b

The inverse of the coefficient matrix for B„'&, is

«]
Wg

—w-'
g
«)

yap

yFy

multiplying through by it, removing diagonal elements by the substitutions

B.„=n„/I[w, (1+&')]"'I,
(10)

and noting that

we obtain a system of coupled first-order equations for o.„,:
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Equations (12) provide an exact solution to the
Schrodinger equation, of the form

Qy + += &a+ Xe+ &a-Xa+ &i)+ Xa+ O'i)-Xi) &

2

where the spinor wave functions X„' are given by

(13)

+
Ct

l

Ah
C/j

cs

+

exp +i m, dR'

(14)

x exp +$

Ryder

tCl
VJ

Ct

I

~0~

~Q
VJ
I

CQ

I

In a previous paper we discussed the conditions
under which exact equations of the form (12) can
be replaced by simpler approximate forms; to
summarize briefly the results, we require the
validity of (a) the WKB approximation (R «ao), (b)
the "+separation" (lv, —v(, l« lv, +v(, l), and (c)
coupling [in this case, equal to t'/2(1+ (')] is neg-
ligible near classical turning points. If these ap-
proximations are made, we then obtain the equa-
tions

~l

2(1+/ )
~sf (Sg-S~) p2(1+t )

~Ig +
I

(15)

note that (v, +v(, )/(v, v, )'~ has been replaced by 2.
By defining a new independent variable r having

units of time, such that

Oll

I

Eqs. (15) reduce to the classical trajectory equa-
tions in the adiabatic representation. This can be
shown by the following argument. In the diabatic
representation. the classical trajectory equations
can be written in the form

where d/dr denotes the time derivative and V is
the Hamiltonian matrix. Let W be the (time-de-
pendent) unitary transformation which renders V
diagonal; it can always be expressed in terms of
an angle 8:
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ih —= [e+ih — W ]D .
dD . dW

d7 d7

Defining

(18)

r, (r)=exp(——
J a, (r')dr D,(r)')=a, b , (19)

we obtain

dy, de i ('
dr d7 hJ

' = -—exp —— («, - «g)d'r Y()(r),

(2o)
p T

= —exp — («, —«,)dr y, (~) .dye d8 i I

4 0

These equations are the classical trajectory equa-
tions in the adiabatic representation. Noting that
8 satisfies

)/) () +)')'&'()'&'
cot28 = t, cos8 =

1 —t/'J(1+t )'i
Jsin8=

d8 dt 2 p
—t'

d. =
dr "' "-'=2(l. tq

we see that

+g ='Pay Qy = Sf'

Thus, the 2 vectors of Eq. (14) are merely the
coefficients of the transformation matrix%, and
the asymptotic approximants X„' are just the WEB
forms for elastic scattering on the adiabatic po-
tentials. [As such, however, they do not neces-
sarily provide a better description of the scat-
tering problem; the inelastic scattering can only
be determined by solving Eqs. (15). If the system
truly behaves adiabatically as it traverses the
crossing region, then n„,. are constants, X'„are
good asymptotic solutions, and there is zero in-
elastic scattering. Whether Eqs. (15) or the clas-
sical trajectory equations in the diabatic repre-
sentation are used is purely a matter of conve-
nience; the inelastic scattering problem requires
the solution of one or the other. ]

Since we assume that no coupling occurs near
the classical turning-point region, the ordinary
WKB connection formulas can be applied to the

cos8 —sin8
sin8 cos8

Then at each time we have WVW = & (diagon»),
and we define the transformed coefficient matrix
D=%'C; the basis vectors in this transformed rep-
resentation are the adiabatic eigenvectors of V,
and the new coefficients are therefore the expan-
sion coefficients in the adiabatic representation.
They obey the equation

coefficients n~ near the turning points:

n„,(R=R„)= —io(„(R= R„);

+ and —equations then refer, respectively, to
outgoing and incoming portions of the classical
traj ectory.

Bykhovskii, Nikitin, and Ovchinnikova' were
the first to recognize that under certain circum-
stances the classical trajectory equations could
remain valid even if there is strong coupling in
the turning-point region. Their results were ex-
tended in Ref. 3. An exactly analogous derivation
of classical trajectory equations in the adiabatic
representation can be given via the momentum-
space semiclassical approximation but for the sake
of brevity we will not present it here. In this
derivation, the requirement of negligible coupling
at the turning points disappears and is replaced
by the requirement that both diabatic potentials
U», U» have slopes of common sign. Therefore
the classical trajectory equations hold, ex'eept
for a situation where there is coupling near a
turning point and the forces F„, E» have opposite
s jyzs. Such a situation arises at a crossing be-
tween an attractive and a repulsive potential curve,
if the energy is such that the turning point is near
the crossing point. As described in Ref. 3 there
can then. occur a peculiar nonclassical "orbiting"
effect, in which the particles are temporarily
captured into a quasibound state of the two-channel
system. A qualitative idea of the nature of these
levels can be obtained by considering the noncrossing
adiabatic potentials, which can obviously possess
quasidiscrete states. A study of the scattering
resonances occurring in this case has been done
by Levine and co-workers' and a different analysis
has been given by Child. '

In this paper, we do not take advantage of the
full range of validity of the classical trajectory
equations, but work entirely within the framework
of the configuration-space equations (15), as
Stueckelberg did. The defects of the LZS formula
are not due to inaccuracy of the classical trajectory
equations, but to the errors inherent in Stueckel-
berg's method of solving them.

8. Stueckelberg Approximants and Representation

Comparison of the forms y„' given by Eqs. (14)
with the asymptotic forms given by Stueckelberg
reveals their similarity; there is a one-to-one
equivalence between X„' and the Stueckelberg ap-
proximants, on each side of the crossing region
R= R„. However, a more careful examination of
Stueckelberg's forms shows that his representa-
tion is not identical to the adiabatic one, but has
a discontinuity on the real axis at 8„. The dif-
ference between the two arises from the interpre-
tation given to the quantity (1+t )'I . In the adia-



batie basis, as indicated by the absolute value
symbols, we take the positive real root, so that
m, , nb are continuous on the real f, axis; the solu-
tion to the scattering problem is then obtained by
integration of Eqs. (15) along the real f axis.
This procedure is the one followed in the next
paper. Stueckelberg, on the other hand, wishes
to follow the solutions from the negative I'eal I; axis
(R & R,) to the positive real f axis (R &R„) along a
path in the complex t plane for which It I is very
large and therefore the coupling in Eqs. (15) is
very small; he therefore defines (I+/ )'I so that
it is analytic in the complex t plane for any path
not crossing the branch line between —i, 0, and
+a. Inthispaper we reservethe symbol "(I+i )'
for Stueckelberg's definition, which has the same
characteristics as t for It t » 1, and we use
1(1+I )'~a

I to denote the more common usage of

the positive real root.
Stueckelberg's asymptotic forms, which we de-

note g», are obtained as follows: We define the
Stueckelber g momenta,

Pl=-'l~l+~aa) + fJ»(I+fa)"a,

paa= -'l~l+~aa] —~»(I+fa)"a,
(23)

with related definitions of Sj and 83. Following
exactly the analog of the method used to derive
Eqs. (15), all the equations obtained remain valid,
provided (I +i')'I' replaces 1(1+ta)'I I and the in-
dices j = 1, 2 replace v =n, b, respectively. The
exact solution If is then given by

=(as+4s++ns-4s-+(aa+ka++(aa-4a-~ (24)
Qa

where the coefficients a» satisfy Eqs. (15) in the
complex 8 plane, with j = 1, 2 in place of a, 5, and
the functions 8& are defined by line integrals in the
complex plane. More precisely, the asymptotic
forms g&, for which this analog of Eqs. (15) is
VRl1d Rre given by

exp(+ a f„dg/(I+ua)'i'
0&+.= I(pi) I

exp +aj Pi« —
2 I a ds

Js, 2 p+ I+'s -exp(- a du (I+u )'I

(25b)

where the integrals are evaluated along the con-
touI's shown 1D Flg. 2, CRI'e must be tRkeD to lD-

elude the values of contour integrals from 0 to 0'
via such a circumnavigating path if the corxect
relations between g&, and X„'are to be obtained on

each side of R =R„(f=0). The quantities S&(z) can
be expressed more usefully as follows:

Sg(z) = f„pgdz'= f, "PgdR'+ ' f, (Pi+Pa-) dz'

I

dt
T(f) = ~id(pi+Pa) d

Since p, +pa, U&a, and (df jdz) =f' are analytic every-
where to the right of the classical turning points
R„Ra, only the contribution of (26b) to S& depends
on the contour in the I; plane; the remaining terms
are either constants or represent analytic factors
common to both g „and ga, near the crossing point.
S& —Sa, which appears in the analog of Eqs. (15),
can be written

+af„„(Pi- P-)a«' (26a) S,—Sa=op+((f), (2V)

R„2gs- Pl+Pa

T( )(i+If )'iadf = —'$ (f,), (26b)

where the "adiabatic phase lag" o'o is given by

(Fp= f Pg&' —f PadR (28

According to Eq. (2&), op is negative.
Following Stueckelberg, we define standard real

axis forms g&,', gz, for the two regions of the real
R axis on either side of R„(see Fig. 1). These
are given by the following equations:

(29)
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region IV (R„&R & ~)

8 1
exp +i p1dR'

1 t2 '"- t
1

exp +i p2 dR'

(30)

where

p; dR'= lim ( f " p&dR'+ f p&dR').
i
e~0+

(31)

By working out the contour integrals in Eqs. (25)
it can be shown that in region III the several asymp-
totic forms are related by

III
416 41k + X6

III =46~=- Xai

while in region IV

(IV ev6 j ekla6 X6

~IV 66
~ &Vi66

where

(32a)

(32b)

(33b)

5 =—6' f T(f)(1+( )' 'dt, (34)

Stueckelberg's procedure is based on an implicit
analogy with the problem of the WKB connection
formulas at a classical turning point. We shall
make the analogy explicit, following a procedure
developed by Zwaan' and Kemble' which we now
review briefly.

If the WKB asymptotic solution is useful, there
presumably exist domains on both sides of a clas-
sical turning point, in classical and nonclassical
regions, where the approximation is valid. How-
ever, the WKB forms are singular at the turning
point and in that neighborhood make a poor ap-
proximation to the exact solution, which of course
is not singular. If the Schrodinger equation is ex-
tended into the complex R plane, the WKB approxi-
mation will be valid at all points far from a turn-
ing point. Assume that in a domain on the real
axis on one side of the turning point it is known
that a particular exact solution is well represented
by a given linear combination of WKB approximants

evaluated on a contour above t =+i in the upper
half-plane.

Equations (32) and (33) provide the connection
between any solution to the problem in the adiabatic
representation and the equivalent solution in
Stueckelber g's representation.

III. ANALYSIS OF STUECKELBERG S METHOD

A. Stokes's Phenomenon

with constant coefficients. Suppose now that this
solution is analytically continued along a path in
the complex plane, circumnavigating the turning
point and arriving at the real axis on the other
side. Assume that on every point of this path the
relative error inherent in the %KB forms is small;
then the linear combination of WKB forms match-
ing the same exact solution can also be so continued,
to obtain the connection formulas. This idea is
due to Stokes, who originally assumed that this
implies that the coefficients of the linear combina-
tion will remain constant on the path and therefore
that the connection formulas are obtained merely
by analytic continuation of the WKB forms. This
is not correct; Stokes discovered that the coef-
ficients change during the circumnavigation in the
complex plane. This happens for the following
reason. On a "good path" the error terms neg-
lected in the WKB approximation can be made
small, so that some linear combination of the WKB
forms (with constant coefficients) provides a good
approximation to the exact solution. However, in
general the path must traverse regions of the com-
plex plane where the exact solution and one of the
WKB approximants are extremely large (Stokes
rays). At the same time the other WKB approxi-
mant is extremely small —so small that its entire
contribution is less than the small relative error
in the fit to the exact solution given by the large
term. In such a region the coefficient of the sub-
dominant WKB form changes surreptitiously while
we are, so to speak, not noticing its contribution.
Kemble' examined this problem by deriving first-
order differential equations for the changes of the
coefficients along a "good path" in the complex
plane; by this means he obtained an account of the
conditions under which discontinuous changes of
the coefficients occur (Stokes's phenomenon), and
he derived the WKB connection formulas.

In the case of the crossing-point problem, R„
is not itself a singular point for the forms gz, or
X„'; the singularities occur at (=+i. However, the
Stueckelberg approximants are certainly not ac-
curate as one moves along the real axis near
R„(t=0); this is clearly evident in Eqs. (15),
which describe the change in the "constant" coef-
ficients. Stueckelberg's procedure was to connect
the approximate solution in region III to that in
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region IV by taking account of changes in coeffi-
cients, due to Stokes's phenomenon, on a "good"
path in the complex t plane, circumnavigating the
singular points at t =+i. The resulting connection
formulas would then describe the effects of inelas-
tic transitions. Like Zwaan' s treatment of the
turning-point case, Stueckelberg's method assumes
a "good path" exists and he gives no explicit con-
sideration to the equations for the changes of the
coefficients along such a path.

These equations are of course the complex t-
plane analogs of the classical trajectory equations
(15). Using them we can obtain explicit and rig-
orous conditions for the validity of Stueckelberg's
derivation of the LZS formula.

B. Conditions for a "Good Path"

We proceed by exact analogy with Kemble, '
whose lucid account for the WEB turning point
case will serve as background for our brief sum-
mary.

As a necessary, but not sufficient, condition
for the validity of Stueckelberg's method, we re-
quire the validity of the classica. l trajectory equa-
tions (15) in regions III and IV. In this paper we
have obtained these with the assumptions that
inelastic coupling in the turning-point region can
be neglected; as shown in Paper III of this series,
this assumption is not necessary in many cases.
Therefore it is possible that Eqs. (15) will be
valid even though the coefficients &„,determined
by them cannot be assumed to be constants any-
where in region III (R, &8 &8„). Stueckelberg,
however, requires that there exist a region on the
real R axis in region III where o.'„, are essentially
constants, an assumption which is consistent with
our present derivation of Eqs. (15).

In the Stueckelberg representation [Eq. (24)]
the analog of Eqs. (15) can be represented in
terms of f as the independent (complex) variable;
defining p&, = ai e o p~ = g~e'"0, we find

P).(f)=P).(fo)+P2. (fo) f,,«'e '"' ' '(f')

J )«I J
& «lt [gr(fP) Ol(fll) e& [&&)' ') &&)') )

P (fll)]
tp tp

(37a)

(37b)

where 8'(f) =1/2(1+( ) Beca.use of the limits of
integration in (37a), along an uphill path we have

Ie ««&) «-) ))I &-1

and

Therefore we can bound the change in P„,

I p)+(f ) —p)+ (fo) I

-
& &u ~ I pa+(f o) I

+ 8 u « I p)+

where IP). I is the maximum magnitude of P,.(t)
on the path segment. It follows that IP„(t) I dif-
fers from I P), (to) I by a quantity at most of order
p. &, at any point on such an uphill path in the
mountains [we assume a normalized choice of coef-
ficients such that IPa, (to) I

& 1]. Thus, on an up-
hill path in the mountains we can say that to with-
in errors of order p~, relative to the larger of

tp, , I, tp„l,

P).(f))= ».(fo), (37c)

It is useful to describe regions in the complex
plane by their properties with respect to le'~ I.
Regions where le'

I
~ 1 are called "mountains, "

those where it is less than I, "valleys. " A path
segment is "uphill" if along it le' I monotonically
increases.

Consider the changes in the + coefficients on an
arbitrary uphill path segment with endpoints tp and
t, . Assume that te '~"0'l ~1; then by integrating
Eqs. (35) we obtain

«2(I+f') ' (35a)

dP,+ 1
2(1 f') ' (35b)

I dt I

fo)l
. (36)

A "good path" is one for which p, & is sufficiently
small. A path of interest to us in the upper half-
circle with radius f; for this path, ))&I, x/t.

These equations specify precisely how the "con-
stants" change on any path in the complex t plane.

For a, path A in the complex plane we can define
an "index of quality, " p~.

By an extension of this argument, it is now easy
to show that for any path entirely in the mountains,
beginning at a level line where le'~ "0'

l = 1, going
uphill over a mountain ridge where le'~l has a
maximum, and going down the other side to the
next level line where Ie' "2 1=1, the change in

p„ is less than 2++[ 1 po. (to) I + I po, (to) I ], and po

changes by some coefficient times the (constant) value
of pj, . Similarly, for anypath entirely in a valley
leading from one level line to the next, the same
statement can again be made with the roles of P,,
and Pa, reversed. This set of relationships is
Stokes' s phenomenon.

Rice criticized Stueckelberg's method on the
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grounds that (a) it was not clear whether the rela-
tions (37c) and (37d) should involve + and —coef-
ficients separately, and (b) Stueckelberg described
the changes as discontinuities associated with the
Stokes rays (mountain ridges and valley bottoms).
These criticisms miss the point. First, the +
separation is valid if Eqs. (15) are valid, i. e. , if
the crossing point is sufficiently far from the turn-
ing points that coupling there is negligible; the
need for this assumption was explicitly stated by
Stueckelber g.

Second, it is quite true that the coefficients do
not change discontinuously at Stokes rays, but
this is irrelevant to the argument above. For
T(t) = Ta= const, we have been able to evaluate the
integral appearing in Eq. (37d) (to within errors
of about p, ~) on the quarter circle of radius Itl -~
associated with the mountain region surrounding the
Stokes ray labeled B in Fig. 2 (see Appendix). We
find that contributions from every point within the
region are important; for example, methods using
steepest-descents or stationary-phase asymptotic
approximations, which would be valid if the contri-
butions were localized at Stokes rays, give di-
vergent results. It is never the case that the

changes occur discontinuously at the Stokes rays.
However, the argument of Stueckelberg does not
require this assumption; it is only required as
shown above that the region of significant change
be topologically distinct (alternate mountain and
valley regions). To zoithin the stated ez'd'or bounds
of oz'dez' p. ~, the changes in the coefficients depend
only upon the topological arrangement of mountain
ridges and valley floors along the good path A.
The major defect in the Stueckelberg method, as
we will show in Sec. V, arises from the fact that
there are conditions for which these error bounds
are far too large to be of any use because they
greatly exceed the quantities being estimated.

t —1=P8 )

where
1 3—211& Q &-211,

/+i=a e

3

It is not hard to show that with these conventions
(1+t )' has the correct mapping characteristics

IV. STUECKELBERG'S DERIVATION OF LZS FORMULA

Figure 2 is a map of the complex t plane, showing
the topography of mountain ridges and valley floors
with respect to e'zl. The branch cut for (1+t )
is drawn between —i and +i as shown. Two types
of contours are shown: The large-radius outer
curve (dashed) represents a hypothetical "good
path" circumnavigating the singularities at t =+i;
the contour from 0 to 0' and return is used to cal-
culate 5[cf. Eq. (34)j .

(1+t )'~ can be represented in terms of a re-
dundant pair of complex numbers,

previously assigned. Moreover, assuming that the
analytic function T(t) can be expanded in a Mac-
laurin series about I =0,

T(t)= T2+T, t+ 2 Tzt +2 Tzt + ~ ~ ~ (38)

we can determine the topological arrangement of
mountain ridges and valley floors issuing forth
from /=+i. For large Ijt I the higher-order terms
in T(t) will deform the topography to some extent,
but this is irrelevant, as shown in Sec. III. As
represented in Fig. 2, e'~ is dominant for a ridge
from +i at Q = 211, one from —i at 8 = —2', and on

the 0' side of the branch cut; e '~ is dominant for
a valley from +i at p=zzz, one from —i at 8=211,
and on the 0 side of the branch cut.

Finally, we will need to work out the value of the
integral 5, which is done on the contour shown
connecting 0 and O'. The leading term is given by
Stueckelber g:

= 2m To,. (39a)

including the higher-order terms we find the ex-
pansion

5 = z11 [T2+z(4/311) T1 —4 Tz z(8/15m) T—3+ Q Tz+ j.

(40)

Associated with each of the four dominance lines
crossed by the "good path" in Fig. 2 is an un-
known proportionality constant, which we have
labeled A, B, C, D as indicated in the figure. It
is not hard to show from Eqs. (35) that Pz. behaves
like P,.and P, like Pz., except that the constants
are -A, -B, —C, —D, respectively.

We now carry out an excursion on the "good

path, " starting at P'» and going counterclockwise.
Let the values of P» at I'» be P&,'. On passing
line A. , we have

P1+ P1+ ++ P2+ s P2 P2 -P1 i-- (41a)

on passing line B, we have

P2+- C+B[Pi~+++ P2+ 1 = (1++B)P2+ +B Pi~+ ~

P1 ~ (1+AB)P1 —B P2 (41b)

Equations (41a) and (41b) give the values of P» on
arrival at Prrr.

Conditions on the unknown constants can be ob-
tained by returning from P»z to I'» via the lower
half-plane. On passing line C the coefficients
P&, , P, again alter, while at D P2, and P, change.
In the meantime, on completing the counterclock-
wise circuit from 0' to 0 and back the asymptotic

(39b)

By the same means we can also evaluate (on the
lower contour) the integral

+t f T(t) (1+t')'I'dt = —5*.
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t

I Region III:
p ( (pt =rrh, pI=rr )

0 ',

I

I

I ~Hypothetical
"Good Path

Branch Cut

for ~1+II

~ Ptv

Region IV:
(p)=7r, p~=71~j (

/

/
III A +5 e-f',eo

~APg

and using Eq. (46) we find

e-»'«& y
l
A

l

I e'»'«& —1

or

(47)

(48)

and Eqs. (32) and (33) connect these to &t,"„, it fol-
lows that

la, l,l l2 l,tela~llllvla const (46)

However, via the connection formulas, Eqs. (41),
and the relations given by (32) and (33) between
the standard real axis forms and gl„we can ex-
press a', "in terms of a'; and the unknown constants
A, B; without loss of generality we can take

=0, a& =1. Then the connection formulas are

a' "= (1+AB) e" = e ' *

FIG. 2. Complex t plane near ~„, showing regions of
dominance for I e '~

i . Branch cut connects —i and
+i. Inner contour is used to evaluate ~.

functions g„and ge alter by the factor e ' '
=e ""

&, while gz, and gt. change by e' "" & How-

ever, the full wave function must return to its
original value. This leads to four equations con-
necting the constants A, B, C, D:

A=lAl et, B= —lBl e-'"

IAI =P.(1-Pl)l" IBl =(1-P'.)'"/P. . (49)

The same relation is recovered from the other pos-
sible boundary condition, aI =0, azv ——1.

The constants A, B are now determined to within
an unknown phase factor e'". If we define
Po = e I ""' and note that 0 &Pe &1 since Re(5) & 0
if T(f) is positive definite, then

A+ C+ ABC= 0, B+D+ BCD= 0,

(1+BC) e-I Rett» =1

[(1+AB) (1+ CD) + AD] e'I ""' ' = 1 .

(42)
v III -5 Be-5 8 too aI II—a2 e — e

IV III -5 4 A +5 -ifyo III
ay —ay e — e p

(50)

The transition probabilities can now be evaluated
from the application of the connection formulas
(41) to II'I,"and al, .

However, Eqs. (42) yield only three independent
relations:

1+AB e-2 R (5)

1+ CD e-~ Re&»
t

1 + BC 8+2 Re(5 )

(43)

l
Il„l I+

l
Ilz„l

I = const. (44)

Since 4 in regions III and IV can be expressed in
terms of the standard real, axis forms [Eqs. (29)
and (30}],

+XXX XXX,f, XXX XXX,f,XXX XXX,tIIX XXX,($ XX

tlrlv lvglv slvpv Ivqlv Ivgv (45}

To determine the connection formulas we need only
know A. and B, but Eqs. (43) do not determine these
independently. We must therefore seek additional
relations.

One more condition is provided by the probability
conservation property of Eqs. (15),

'When the WEB turning-point connection formulas
are employed,

III ~ I II

then with the boundary condition az =0, a,' =1, we
obtain

l

a'
l

—4P t&(1
—P,) sin o,

la& l
=1 —4Pt&(1 —Pt&) sin o

(51a)

(51b)

where o= oo —g is an undetermined phase. This is
the LZS formula, given the definition of PD in terms
of 6.

Equations (51) differ from the results cited by
Stueckelberg in two ways. He approximated Re(5)
by 6to& [Eq. (39a)], while it is clear that in some
cases there may be small effects due to the higher-
order terms in the series for T(t). Second, he
assumed g = 0, while we find it is not determined
by the above arguments. Furthermore, no other
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general constraints (unitarity, symmetry, etc. ) can
determine g.

However, there is a limiting case in which g is
determined. '0'9 In the "diabatic limit, "where
U,2 is small and the velocity suitably large, the
distorted-wave approximation gives q = —,

'
m. Exact

calculations, reported in a subsequent paper, show
that the exact phase usually does not differ too
greatly from this.

We have been able to evaluate analytically the
constant 8 appearing in Eqs. (42) ff. , for the case
that T(f) = T„and obtain as the result an absolutely
convergent infinite series closely related to Bessel
functions I„of complex orders v = + & + 2iT. Un-
fortunately the phase g does not seem to be expres-
sible in simple form. The derivation of this new
result for B is given in the Appendix.

In connection with the indeterminate value for o

found here, we note that Rice also found connection
formulas to be inadequate for a complete determina-
tion of the scattering parameters. In Rice's case
the determination is even less complete because he
chose to follow the more rigorous method of cir-
cumnavigating not only the crossing point but also
the classical turning points, in his analytic con-
tinuation procedure. As a result he was able only
to establish that the cross sections are of the form
of Eqs. (51), but P 2Oand o are both undetermined.
However, it is easy to show that this form is guar-
anteed simply by the symmetry and unitarity of the
S matrix and is valid regardless of the nature of
the potential curves and their interaction. Stueckel-
berg's procedure, when valid, has permitted us to
determine one of the two parameters characterizing
the S matrix, but not the other.

As pointed out in the Introduction, derivation of
the LZS formula requires that we make assumptions
at several levels. The first of these is the use of
the two-state model, perhaps the most restrictive
in relation to real systems. The second approxi-
mation is to treat the system by a semiclassical
method, using the classical trajectory equations.
This is valid very generally and is of course not
limited to the case of two states. The third ap-
proximation is what we have called the "LZS
model": essentially linear diagonal elements (H»,
H2~) and essentially constant coupling element
(H,z). As given in Sec. IV, Stueckelberg's treat-
ment of the problem allows to some extent for de-
viations from this model by means of Taylor ex-
pansions about A„. In the second paper of this
series we present a computational study of the
crossing problem in the same modified LZS model
framework and discuss the effect of including these
deviations from the simple LZS model. As shown
there, certain of these deviations are important to

a correct treatment. Finally, there are approxi-
mations and assumptions made in deriving the LZS
formula as the solution to Eqs. (15). It is mainly
this last set of approximations, rather than the
LZS model, which is the source of errors in the
LZS formula. We shall confine the discussion here
to an examination of the validity of Stueckelberg's
derivation of the LZS result.

Stueckelberg' emphasizes that the crossing point
and the two classical turning points must be well
separated from each other, but he does not explain
why this matters. Our analysis shows that if
elastic coupling occurs at the turning points, the
reduction of Eqs. (12) to Eqs. (15) cannot be jus-
tified and there are no points (P«, ) in region III
where the coefficients & are essentially constants.
In such a case no reasonable upper limits can be
placed on p,&, i.e. , no "good path" connecting any
point in region III to a point in IV can exist.

While the requirements for the validity of Eqs.
(15) [and their analogs in Stueckelberg's represen-
tation, Eqs. (35)j may be satisfied for a wide range
of conditions, this does not necessarily imply that
the connection formulas obtained in Sec. IV offer
an accurate solution. That is, there can exist paths
in the complex plane along which Eqs. (35) are
valid, but such that the approximate integration of
these equations represented in the connection for-
mulas is uselessly inaccurate. An accurate integra-
tion of Eqs. (35) would give the correct result, but
in such a case it would differ from the LZS for-
mula.

The procedure of Kemble, which we adapted to
this problem in Sec. III, is rigorously correct to
within the error limits stated, i.e. , to within er-
rors of order p~ with respect to a typical coef-
ficient. However, there is an important difference
between the classical turning-point problem treated
by Zwaan and Kemble, and the problem we are con-
sidering. For the crossing-point case, under cer-
tain conditions the amplitudes being determined by
connection relations have greatly disparate mag-
nitudes: One of them may be =1, while the other
is very small, but not exactly zero. But since at
least one of the coefficients Pz has mBgnitude =- l,
Eqs. (37c) and (37d) are valid only to errors of
absolute magnitude JL(,~. Therefore the Stueckel-
berg connection formulas are useless if an esti-
mated amplitude is of order JL(~ or less. It is not
hard to show that such errors accumulate for the
inelastic cross section whenever it is small, i.e. ,
whenever the quantity Po [cf. Eq. (49)j, or the
quantity (1 —Po)'~, is much less than 1. Only if
neither Po nor (1 —Po)' is small can the deriva-
tion be valid without requiring unattainably small

Therefore the Stueckelberg derivation of the
LZS formula certainly breaks down either for rapid
passage (diabatic limit) or for slow passage (adia-
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d
v =~l%sl (~o g„(~u-0d). (52a)

A reasonable upper limit for DO I (d/dB)(Hu —Hqq) I

is about 0. 4 a.u. (10 eV) if the two-state approxi-
mation is to be justified. This gives us

(52b)

i.e. , in no case can the Stueckelberg derivation be
valid if H, ~ exceeds 0. 01 a. u. (-0. 25 eV).

~ (0)
In the near-adiabatic case, we have P0=e

«1. 6' ' can be approximated by

5 = tJ.~H&aDo/2v, (52c)

where v is the nuclear speed in a. u. Large &' '

can be achieved by large II,~ or by small v, but
there is a lower limit = 1 &10 on v if the WKB ap-
proximation and hence Eqs. (15) are to be valid.
With these constraints we find that &' ' can never
become large enough to reach the near-adiabatic
limit P, & p.~, for any H, 2 less than the above upper
bound of 0. 25 eV; that is, the adiabatic limits of
the Stueckelberg derivation are sufficiently con-
tained by the limits on H, 2 expressed in Eq. (52b).

In the diabatic limit we have (1 —P ao)' ~3 = 5' ' «1,
which requires [using Eq. (52c)] the constraint

batic limit).
This result removes an inconsistency between

apparent implications of Stueckelberg's method and
other studies of the LZS formula and its validity.
If we used the path quality index p~ as the criterion
for validity, as Stueckelberg's work implies we
should, we would conclude that the LZS formula can
be justified on a basis that is independent of the
collision energy: Since p~ = m/I t I, and t depends
only upon the potentials and not upon the kinetic
energy, it would appear that an energy-independent
width of the coupling region could be defined. This,
however, is not consistent with the facts. At high
velocities, the LZS formula reduces to the Landau-
Zener result. Some years ago it was shown by
Bates' that the Landau-Zener formula is certainly
not correct at high velocities (it does not even agree
with the Born approximation). The reason, Bates
showed, is that the width of the coupling region
actually becomes infinite and is not sharply localized
as Landau and Zener both assumed. Likewise, our
arguments in the previous paragraph show that an
energy-independent bound on p~ is not sufficient to
ensure the validity of Stueckelberg's derivation.

It is usefulto make some numerical estimates of
the conditions of validity in a typical system. We
must consider the possible size of p~ and the con-
ditions under which either Po or (1 —Po) become
small. If the Stueckelberg derivation is ever to be
valid we certainly should put p~ &0.1. Assuming
that crossing point R, and classical turning points
are separated by a distance D„we have

g(0)
= HgDO/2v & 10. (52d)

Again taking a reasonable maximum value of
D0-4 a. u. , and the smallest possible value of v
consistent with the WKB approximation, we see that
condition (52d) cannot be met if IH, 2l & 5 10 a. u. ,
i.e. , about 0. 1 eV.

We have established that Stueckelberg's deriva-
tion of the LZS formula can be valid only if (a)
IH, z I & 0. 25 eV and (b) the transition probability is
substantial. This latter requirement (together with
the requirement that the semiclassical approxima-
tion be valid) implies that (b ) IH, ~ I ~0. 1 eV.
These restrictions are rather severe.

Numerical computations and experimental results
indicate that the LZS formula itself is probably
valid much more generally than this derivation
would indicate. The cause of this is that p~ is often
a gross overestimate of the errors resulting from
changes of the "constant" coefficients P, [Eqs.
(37)]. The driving terms in Eqs. (35) may oscillate
rapidly and this can reduce the actual change in

P, relative to the estimate p~. However, any sys-
tematic attempt to more accurately bound the error
by asymptotic approximations to the integrals of
Eq. (37) is fraught with uncertainties. It is easier
in the long run to solve the problem using numer-
ical integration of Eqs. (15) in the modified LZS
model, and these computations are described in
the next paper.
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APPENDIX: ANALYTICAL EVALUATION OF THE
STOKES CONSTANT B

According to Eq. (37d) of Sec. III, we can eval-
uate the coefficient B appearing in Eqs. (41b) ff. ,
by evaluating the integral

(Al)

where the evaluation is made along a "good path"
entirely confined to the mountain region surrounding
the ridge at Stokes ray B (Fig. 2). We assume
T(t) = To = const and take as our good path the quar-
ter circle t= pe", p=const= It) -~, -'m~e &m.

We shall calculate B to errors of order tj~= m/It l.
$(t) can be evaluated analytically by simple meth-

ods. It is convenient to transform to the complex
variable

u= (1+ t )' i~+ t .
$(t) can then be written
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x[F(a; bo —n) —ir F(a; bo —n —1)], (A4)

where a= nr', b = —,'(1+iro), and

(As)

The properties of E(a; b) as r- ~ are such that
every term in the series (A4) contributes to the re-
sult. Using integration by parts and differentiation
of Eq. (A5) with respect to a, we find the recur-
rence relation

F(a; b+ 1)+ (b/a)F(e; b)

(i/g) (el& a+blr
/2) e l(a+br /2)-)

and the differential equation

(As)

E(a; b) x 8 i &(a+br/2) -t(a+br/2))—e

(A7)

Equation (A7) can be solved exactly for b = b —1,
with the result (as a-~)
E(a- ~; ——,'+ ,'ir,)—

= —2a'"-'~0/'cosh(-, '
mr, )&( ——,'+ ,'ir, ) . — (A8)

the leading term in F(a; bo —n) (to errors of ap-
proximately - p~) is then

((t}=~ u ——, +7' 1nu+2Tf (I+PI' dt,
4 u

(A2')

and this gives

B= —e'ro f .u'(u +1) 'e'" ' " 'du, (A3)
g~j n'/2

r=const-~, and y=iTp &= & Tp, Differentiating
~ -f o/u2 ~

with respect to & and expanding e ' " in power
series, we obtain

n 1+1-2nSB 1 (,(~,qro)/4 ~ o' r= ——e8n 2 np n!

nnPE(a -~; bo —n) = 2(- 1)"a" cosh( —,
' mro)I'(b —n),

n=0, 1,2. . . . (AQ)

After some manipulation of the I' products one ob-
tains

-&~& &+~r p) /4
8Q

~2n-5 1 jQ
n! 1"(5'+n+1) I'(5'+ no 2))

x ([2n+ —,
' ——,'ir, ] ' i ~//—[(n+ -', —', ir,)-

x (2n+ —,
' ——,

' i ra)]j, (All)

where & = g Tp.
1

We have so far not been able to express this re-
sult in closed form, nor in particular to prove
using (All) that lBI has the value obtained in Eq.
(49) which is (to errors p~).

~
B~ = e"0"[2 sinh(-,' mr, )]'/2; (A12)

little information is available about Bessel func-
tions of complex order.

While the unknown phase g associated with 8 has
also not been obtained from (All) in analytical
closed form, Eq. (All) does provide an exact ex-
pression by which it can easily be evaluated. In
the next paper of the series we use it to compute
B for comparison with exact numerical solutions
of the LZS problem.

= —m e "/' e" 0/'[I, /, ;r, /, (2o.) —if, /, ,~ /, (2n)];

(A10)

Since it can easily be shown that B(0;P) = p~, we
obtain the absolutely convergent series

+ 2n+1 /2-5 Tp /2
me-fw /4 erTP/4 Q„,n!r(n+ —,

' —,'ir,)—
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Calculations of Stopping Cross Sections for 0.8- to 2.0-MeV Alpha Particles*

C. C. Rousseau, ~ W. K. Chu, and D. Powers
taylor University, W'aco, Texas 76703

(Received 30 November 1970)

Calculations of &-particle stopping cross sections based on the theories of Lindhard et al.
using the Hartree-Pock-Slater atomic-charge distribution provide generally good agreement
with previously obtained experimental results. In particular, the calculations are helpful in
understanding the structure which results when, for fixed energy of the e particle, the stopping
cross section is plotted against the atomic number of the stopping medium.

I. INTRODUCTION

It is plausible to assume that physical properties
related to the distribution of the atomic electrons
will have a periodic nature due to the. shell struc-
ture of the atomic electrons. In 1906 Crowther'
measured the mass absorption coefficient for Pa
P rays and found the absorption to be a. periodic
function of the atomic number. In 1933 Bothe sug-
gested that Crowther's finding might be due to a
periodicity in the characteristic frequencies in the
Bohr stopping theory. The first computation to
show the periodic structure in the stopping power
was made by Westermark, who calculated the en-
ergy loss of charged relativistic particles
(184 GeV/amu) using the Bethe-Bloch formula and
obtained a periodic dependence on the atomic num-
ber.

The stopping powers of 23 metallic elements for
19.8-MeV protons were measured by Burkig and
MacKenzie. Anomalies were noted from Ca to
Fe and from Ta to Th, and the first anomaly was
associated with the number of electrons in the 3d
shell. Recently, Chu and Powerss measured n-
particle stopping cross sections e,(E ) in 17 solid
elements from 400 keV to 2 MeV. An anomalous
structure in e (E ) vs target element Za was ob-
served in the region of the first transition series
(Za= 22-29), and the amplitude of the anomalous
structure was more pronounced at low energy.
They attributed this finding to a correlation with
the Hartree-Fock- Slater potential. White and

Mueller measured the electronic stopping cross
section of H' and He particles in five solid elements
at energies near 100 keV, and an anomalous struc-
ture was also obtained. All of the above-mentioned
experiments were performed using a given pro-
jectile (proton or o. particle) to study the Za depen-
dence of &~ or e' . Numerous experiments have
also been performed by using a given target with

different ion beams at a fixed velocity to study the
Z„, dependence of e„,. In 1963 Ormrod and Duck-
worth noticed that the electronic stopping cross
section has an oscillating dependence on Z„,. This
oscillatory dependence (or periodic structure) of

&&,„on Z&,„has been verified in boron, carbon, and
aluminum thin films and in gaseous targets 3' 3

and also has been verified in the channeling of heavy
ions in W crystals, '4 Si crystals, "and gold crys-
tals. ' Evidence of an oscillatory behavior of the
excitation potential was observed by Andersen
et al. 7

Several calculations were made in 1968-69 to
explain the above-mentioned experimental results
of the oscillation dependence of e„„onZ„,. Most
of the calculations were based on the Firsov mod-
el or uniform electron-gas model with modification
to include an effective atomic number, ' an ion-size
effect, 2 ' ' or both. Harrison indicated that the
periodic dependence of E'„, on Z&„was contained in
the electron density of the moving ions when the den-
sity is determined from the Hartree-Fock-Slater

-wave function. Chu and Powers' indicated that the
anomalous structure of e' vs Z2 is indirectly related
to the Hartree-Pock-Slater atomic potential.

With the above as background, one is encouraged
to look for an explanation of the salient structure
of the atomic stopping process in terms of the
particular electronic structure of the target atoms.
In the present paper, the stopping cross section
is computed from the spherically averaged elec-
tronic charge density obtained from Hartree-Fock-
Slater wave functions. The calculation is based
on the theories of Lindhard, and co-workers '
and Bonderup.

II. REVIEW OF BASIC THEORY

At sufficiently high energies, the energy loss of
a heavy charged particle in matter can be computed
using the familiar Golden rule of second-order


