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If the potential is expressed in the multipole form
V(R) = Vo(~)+ t/'2(~)&2(cos ~}, then for the j=0 elastic
scattering, the matrix element of J'2 (cos ~} is zero so
the "adiabatic" potential is simply Vo (&). The V2(~)&2
(cose) term affects the j=0 elastic scattering only by
causing excitations to and from the j = 2 rotator state.
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Low-energy electron-ejection cross sections of atoms in collisions with relativistic elec-
trons have been calculated. The calculations are similar to those of Weber ef; al. In the
approximate integration of the differential cross section over certain angles, Weber gt g$.
considered Z small and obtained a ~(0'Z} -dependent result. We have followed a differ-
ent type of approximation, valid for &»1, and obtained the explicit (G.'&} -dependent result.
The result shows a much stronger dominance of the distribution of ejected electrons over the
"Parzen distribution" in the low-energy region than the results of Weber et al. when applied
to atoms with &» l.

I. INTRODUCTION

Mulljn and co-workers have pojnted out ' that
the low-energy large-angle scattering of electrons
from atomic bound electrons in collisions with rela-
tivistic electrons may be sufficient to mask the
'Parzen peak" that exists in the low-energy region

of scattered electrons which have lost energy in the
bremsstrahlung production. For high-energy col-
liding electrons, the Parzen peak3 is situated at an
energy 8' of the scattered electrons for which 1
& W& l. 2 mc (or in terms of momentum, 0&p- 3 mc). The "Parzen distribution*' is, moreover,
independent of the nuclear charge Z of the atoms.

%'eber et a/. , in Ref. 2, have given a relativis-
tic treatment to the scattering of low-energy elec-
trons by bound electrons. In that paper they have
described the bound and ejected electrons with wave
functions which are obtained by an expansion in the
parameters nZ and nZ/P, and which are correct to
first relative orders in these expansion parameters.
Consistent with the neglect of higher powers of
nZ/P in the wave functions, Weber et a/. have a
cross section which is valid to the lowest order
in (nZ) and the highest order in the energy W& of
the incident electron. In the approximate evalua-
tion of certain integrals I„occurring in the ex-
pression for the cross section, they considered
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Z small. Hence, their final results are applicable
only to atoms of small Z. In fact, their results
have the correct (nZ) dependence in the limit Z- 0 and pe 0 (p is the momentum of the ejected
electron). But these approximations are not valid
(an analysis of Sec. II 8 will justify this) for Z

In that case, me must take recourse to a dif-
ferent type of approximation, like the one described
in Sec. IIC.

Apart from its connection with the Parzen peak,
the problem of low-energy scattering of electrons
from atoms by relativistic electrons is inherently
a problem of considerable importance. The total
cross section for ionization of atoms by relativis-
tic electrons is dominated by the ejection of lom-

energy electrons only and for this a small momen-
tum transfer is necessary. For incoming electron
energy of the order of several MeV, the ejection
of electrons mith momentum greater than mc mill
have insignificant effects on the total ionization
cross section. In our present reinvestigation of the
problem of lom-energy scattering, me need there-
fore only consider the ejection of electrons mith

momentum less than mc. The relativistic result
from which me start has been derived by the use
of the Schr'odinger representation, the many-parti-
cle theory, and Coulomb gauge, together with the
quantized electromagnetic field. This result may
not differ significantly from that referred to by
Mullin and co-workers. The present form of this
result also has the advantage of getting separate
contributions from the pure-Coulomb interaction
as mell as from the transverse radiation field.
This may help us in estimating the retardation ef-
fects. In our calculation, me use for the wave func-
tions of the bound and ejected electrons the same
Born approximations as were used by Weber et al.
We may note that the results obtained with these
expressions may not be accurate for very lom en-
ergies, in fact, the vanity condition of the Born
approximation for the ejected electrons is p
» aZme. For very low energies (p~ oZmc), a
proper approximation6 for the mave function of the
ejected electrons would be the Sommerfeld-Maue-
type approximation.

Applying suitable approximations in integrating
the differential cross section over angles of the
scattered-electron momentum p&, me have a result
that may be used to study the distribution of ejected
electrons in the momentum interval nZmc«p & mc
(which contains the Parzen peak) for atoms with
g&&$

II. DISCUSSION OF THEORY

A. Differential Cross Section

The differential cross section for the ejection of
electrons from the ground-state atoms in collisions
with electrons of extreme relativistic energy in the

lowest-order Born approximation can be shown
to have the following form:

„, w', pw(p)dw(p)dn, dn&„(e~n)'
(2m)'

1 1 3

p Mg +(g p )g Ma, (1)

where

M = y~@*(p ) X
2~

(p ) f dr& U,P (r, ) e~I ~' U~' (rq),

M =Z- "'*(p) (u"' ~ e)X"'(p )f &ri U."'*(r~)
(2)

x( "'~)e"' U"'(r )

Here the superscript 1 refers to the atomic elec-
tron and 2 to the colliding electron. y(q) refers to
the free Dirae spinor with momentum q in momen-
tum space, U',"(r,) to the ground-state atomic wave

function in coordinate space, and U",'(r, ) to that of
the ejected electron with momentum p also in the
coordinate space. p& and p& are the momenta of the
colliding electron before and after interaction.
E = (1 —X )', E,, = (1+p )' are, respectively,
the energies of the states U~"(r, ) and U,"'(r,).
t = (p, —p&) is the momentum transfer vector and

& is the polarization vector of the exchanged photon
and E .„=E ~ E. (We-shall use a natural system
of units unless otherwise stated. )

Because of the absence of an energy term in the
denominator of the first term in Ecl. (1), it is na-
tural that one may suspect that retardation effects
have not been included. But this is not true. The

second term alone represents the full retardation ef-
fect and the first term represents the Coulomb effect.
It may be mentioned here that the above cross sec-
tion is exact to the first order in n' to the extent
of the omission of the spin-orbit interaction of the

atomic electron.
Now we take for U~ '(r, ) and U,"'(r,) the following

expressions, which are correct' to the first order
in X=(~Z):

U (r ) = f dQ V (g) e

U'. '(r, ) = f dcl' V .(j') e'~ ' ',

o'"' i'+P"'+ &'%')
~e (i')= &(e'-p)+2 s ~- -;sr„—Ia p ~)

x (p)
&q

—p& &q -P -~&

and the normalization constant
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[y (X x//)//2](Xx)//I ///8 1)//2
avt"[2(i —) ')"'+1]

(~2/v) 1/ 2

Summing over polarization directions and integrat-
ing over coordinate space, the matrix element Ma

may be similarly expressed to the lowest order in
& as

Now the matrix element I, may be written as
x 3

&2)x)/( )
&2) &2)(x'

) &1)/)xg)

M, =(4x/xx)x"/" &)/)x"'&);) J ////x" &)) (&&/x-))

&2&1) ~ q+ &1")+ W(q) 2+ a«' (t —q) t

2v' (p -q)' (q' -p'+ i6) [(t - q)'+ R,'j'
(4')

One can very easily integrate the expressions cor-
rect to the lowest order in ~ using Feynmann inte-
grals. The result to the lowest order in ~ is

2+ ~&1) t
M =(«/xx)x"'"$/)x'*'N/)x"'"5)(&&& '-),, x,)x-

n"' t+ P")+ W(f)
+g -)Rff2 pR 2p~,.j

x"'(o) .

2&2) &2 ~ (+ P '+ W(t) &1) &1)t- ' &'' t &' ' ' 2x

&1)

[ t 1))R+ /&

~(1). (].)
&R

' t+P + W(t) ~&1) &1)
+(( p)2[f2 p. 2p),;j (&2 &) X (0) . (6)

With the above expressions fol Mg and Mpq the
differential cross section in the extreme relativ-
istic limit is

4[W(P)+1]+4(p. $) -4P' [W(P) W(f)+ W(P)+ W(f)+ ij[W(f)+1]+{@ t)
f'[{t-1)"&'j' f'(~ -P)' f{f'-P')"4P') ']

2(f' p')[4W(p) W(f)+4{p t) -2p'], 2[p&-(y;. t) (1)& t)/f'j
f'(t-p)'[(f'-p)'+4p')'][(t-1)) +)&'] .- ~2[' -~ ' ]

~ ~f{t-1))'+)']' {t-1))'f(f'-p')'+4p'~'j (t-p)2[(t -1))'+ RR]' [(f'-p')'+4p)&']

The terms in the first large square brackets
correspond to the contribution from a pure-Coulomb
interaction, while those in the second large square
brackets arise from the interaction with the trans-
verse radiation field. Again, the first term inthe
large square brackets corresponds to the plane-wave
part of the ejected electron, the second term arises
from the Coulomb distortion and is due to the sec-
ond part of V .(q'), and the third term arises from
interference of these two parts. %e now integrate
over angles of p&. The exact evaluation of these
integrals would be difficult even if we use Feynmann
techniques. This may be avoided if we note that the
denominators of the different terms have factors
like f and (t-I)) which make the terms having
sharp peaks along certain directions, particularly
for large P&. This makes it easy to calculate the
integrals by taking into account contributions from
these peaks separately. To justify the procedure
we next give a quantitative estimate of these peaks.

8. Quantitative Analysis of Peaks of the Differential Cross
Section

The differential cross section given by Eq. (7)

I

contains some strongly varying functions of angles
of p& and these give rise to certain peaks. For
examples

~= 1/9'(t- p)' [(f'-P')" 4P'&'j)

is such a function. If we consider p & 1 then 5' = 1
+ —,'P and the minimum value of t maybe shown
to be

(RR) (p p )2 [(1+p2)1/2 (1 RR)1/2]2

~ [1 (pR+ R 2)]R(( 1

Now the function 4 has certain peaks, particularly
for large P&, and these peaks correspond to the
following directions:

(i) &&=0 (for min of f, i.e. , for 1)zll 1),),

~- 1/f [-,'(p'+) ')]'+p',.«,'j

xf [-,'(p'+)&')]'+ p'- p(p'+)&') cosa~]'

x j [(-,'(p'+ X'))2 -p']'+ 4pk'};
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(ii) 8&=Psin8~/P„@&=0 [for min of (t —p),
i.e. , for j& II (p, —p)],

T 1/-([-,'(p'+x')]'+p'sin8~)'

([2(p +& ) p«-»8P] +pl f)

x([(-,'(p'+](. '))'- p cos'8~]'+4pk );
(iii) 8&=p/p, (for min of [(f —p~) +4p%3], i.e. ,

for t'=p'),

8- 1/( [-,'(p'+ x') ]'+p }'([-,'.(p'+ ]].') ]'+ 2p'(1 —cos 8~))'

x [4p p, h8&~+4pm]). ~] .

For 8~4 0 or v/2 these peaks are well separated.
Now we consider the following two cases.
Case (a) P-](.. For 8&= 0, the three factors in

J are of the orders X, X, X, so that J is of the
order ]). '. For 8&=Psin8&/P;, y&=0, the corre-
sponding three factors and the function J are of the
orders X, X, X, and X ', respectively. Final-
ly, for 8& =p/p„ the factors in 8 and the function
J are of the orders X, X, X, and X '. This
shows that the forward peak is large compared to
other peaks for such order of momentum. If we
consider the third factor in particular, we find
it to vary smoothly over a wide region covering the
forward peak. Its value at ~& = 0 is approximately
equal to &X, but at 8& =p/p, it is approximately

(maximum value). The forward peak is very
narrow because the dominating factor t falls off
from its maximum value to one-fourth of it only at
an angle 8& = ](.3/p; (which is considerably closer to
8z = 0 than the positions of other peaks). Thus for
the function in question and for P-X, the most
significant peak is the forward peak and not the one
which corresponds to t =P .

Case (f)) ](.«p & 1. To have an idea of the magni-
tude of the peaks in this case, we consider the
particular point p= —', of the position of the Parzen
peak for W; = 60. Here we compare only the for-
ward peak with that corresponding to t =p and we
see their relative importance. For Z= 20(](.-+7),

the forward peak has a magnitude of the order
J-400&& 2&& 5=4000 while at the peak corresponding
to t~=p, 8-5x —,'x30=75. For Z=10(]).- —,'), cor-
responding orders of magnitude of the two peaks
are 4000 and 300, respectively. The location of
the third peak is at 8&—-P/P, = 2/(3P, ) while the
factor t falls to one-fourth its maximum value
at 8,= 2/(Qp, ).

Now, compiling the results of the above two
ca,ses, we may safely say that for 0&p & 1 and Z
» 1, the peak corresponding to t =P is insignifi-
cant compared to the other peaks so far as integra-
tion of J over angles of p& is concerned. For some
other parts of do, the peaks corresponding to p&
II (p, —p) are most significant, and in no case are
the t =P peaks important. Thus considering all
strongly varying functions of dv in Eq. (7), one
may state that the peaks corresponding to ~& = 0 and
8& =P sin8~/P;, (P& = 0 are the most significant ones
where integration is concerned. However for Z- 1,
the peak corresponding to t =p gives the dominant
contribution.

C. Integration of Differential Cross Section over Angles of
p&

The analysis of Sec. IIB now indicates a way for
carrying out integration of do over angles of p&.
Thus to integrate the terms containing

1/9'(& —P)' [(t'-p')'+ 4p~']),
we make the following approximation:

1/lf (t —P) [(tm-P ) + 4P ]). ]]

P ((-p)'I(&' (')' ~ 4('&']);, »;, -

((-fi)' &'((&'-t&')' ~ 4A' ])s, » (;, -') .

The two parts may noir be separately integrated and
then added to find the total contribution. In our
present calculation we shall further put p = t = 0 in
the numerators of the terms of Eq. (7) other than
those in the second square bracket where appropri-
ate values are substituted. Integrating in this way
we get the following result:

4n2]). PdW(P) dA(, 32
(p'+]]~)'[1 —p cos8~+-,'(p'+x')]'

8
3[(-,'(p'+]). ') —p cos8,)'+ X']' [(-,'(p'+](. '))'+ p'sin'8, ]'

32
(p'. ')'[(-'(p'. '))'-p -,(p" ') p']'{[(-.'(p" '))'-p']" 4p' ')

8
[2(p +]) ) -p cos8~] [(—,'(p +]). )) +p sin 8~]2([(—,'(p3+ Xm))3- pmcos28~] +4p ]). )
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»[p'- (-.'(p" ] '))']
(p'+ x')'[l —p cose, +-,'(p'+x')]' [(-,'(p'+]). '))'- p cos&p(p'+]). ')+p']( [(-,'(p'+]). '))'- p']'+4p']]g

8[(-,'(p'+]). '))' —p' cos'Sp]
]).'[(-,'(p'+ X'))'+p'sin'ep]' ( [(-,'(p'+ X'))' —p' cos't]p]'+ 4p'Z$

'(( p+ss)s- poops]ss '(( 'p+ s)- posse]'sss)

4 2

' (P'+]].')'[1-P cos&p+-,'(P'+X')]'

1
[(-,'(p'+]('))'- p cosep(p'+ X')+p']' ( [(-,'(p'+]). '))'- p']'+ 4p']) Q

4p cosep[p' —(-,'(p'+]) '))']
(p +S ) ](k(p +S )) —pcosps(p ~ S )+p ] ](-possess —,'(p cs )] ((('(p cs )) -p I c 4p s']

The above result is in conformity with the observa-
tion of Fano, since the terms in the first square
bracket, which corresponds to the Coulomb contribu-
tion, are independent of the incoming electron ener-
gy, while the terms in the second square bracket,
whose origin is the interaction with the transverse
radiation field, have a logarithmic dependence on
the incoming electron energy. In our numerical
evaluation of the result, it was observed that for
P «1 the radiative part gives only an insignificant
contribution, while for P-1 this part gives the
dominant contribution. In fact for P = —„ the radia-
tive part contributes approximately two-thirds of
the total cross section.

III. RESULT AND CONCLUDING REMARKS

I

interval 60nmc & p & 100@me. We may note that the
interval 60a.mc & / & 100&me is a good region for the
validity of our result in the case of the calcium
atom and is the region in which the Parzen peak
lies. From the graph it is clear that the Parzen
distribution is insignificant compared to the distri-
bution of electrons scattered by bound electrons.
In some parts of the region the result of the pres-
ent calculation is as large as eight times the result
of Weber et al.

We have used a first Born approximation for the
wave function of the ejected electron. This is much
better than the plane-wave approximation, but may
still not give accurate results for very small mo-

We first observe that the results of the present
calculation are most suitable for application to the
cross section for ejection of electrons in the mo-
mentum range Xmc«P&mc and Z»1; this is the
region in which the Parzen peak is situated. In
this region the scattering cross section has an
explicit (o.Z)' dependence in contrast to the (o.Z)
dependence obtained by Weber et al.

For a comparison of the present calculation
with that of Weber et a/. we have presented the
numerical results in Fig. 1. The results of Par-
zen et al. for the bremsstrahlung electrons are
shown in the same graph. In this figure the di-
mensionless quantity K =4&m,,d&r /Z2r~+W(p)dQ~ has
been plotted against P for 0&P &100amc in the case
of the calcium atom (Z= 20) for incoming electron
energy W& ——60mc, and for the particular ejection
angle ~&= 120 . In this graph we have shown the
results of Weber et at'. for the momentum interval
~mc & p & 100a.mc and the Parzen distribution in the

JO—

to

l0

C
I I I I I I I I I

0 20 40 60 QO 100

p/& mc

FIG. 1. Z vs momentum of ejected electrons in units
of &mc. Curves A and B represent, respectively, the
dimensionless quantity Z, as calculated from Eq. (8) of
thepresentpaperand Eq. (25) of Ref. 2for Z=20, 8&——120',
W& =60mc . Curve C represents the corresponding Par-2

zen distribution (the graph fails to reveal the Parzen peak
that exists at about p = 900'mc).
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mentum, viz. , p & nZmc since the Born approxima-
tions are valid for P» nZmc. However the results
for P & nZmc may be used for a qualitative discus-
sion and for a future comparison with an exact cal-
culation. It may be mentioned in this connection
that the transverse radiation field contribution is
important only at higher energies. Thus for P
= 40o.'mc it is about 8%, while for p = 100o.mc the
transverse field contribution is about 72%.

We may further note that the differential cross
section given by Eq. (8) cannot be simply integrated
to get the total cross section. This is due to the
presence of the term

([-,(p + A. )] -pcos8 ] = (p /2-p cosg )'

for ~ «p in the denominator of do which vanishes
at certain small angles. Cutoff in angle is there-
fore necessary to find the total cross section, as
it is in the Rutherford cross section. If we com-
pare this with the result of Weber et al. , we find

in its place their result contains a term

(W —1 —p coss~)'= (-,'p —p cos~)',

which makes their result for cross section even
more divergent. Moreover, because of the third
power, the term changes sign about its zero giving
an unrealistic negative value to their calculated
cross section for certain small angles. However,
since they considered 8~& 90, their result was
positive definite. It may be mentioned in this con-
nection that the divergence of our result is not due
to the technique we used in evaluating the integrals,
but is inherent in the approximate form of the wave
function [Eq. (3)] used.
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In the collision He'+ He —He'+He*, excitation at low incident ion energies (& 1keV) proceeds
via a pseudocrossing of the elastic Z~ diabatic potential with excited-state Z~ potentials. As
previously reported, this excitation mechanism fails to explain diverse experimental data con-
cerning total excitation cross sections. A new physical mechanism is hypothesized, its exis-
tence verified, and it is shown to provide good qualitative and semiquantitative interpretation
of the observations. Nonadiabatic couplings among some excited states occur at pseudocross-
ings of the respective inelastic-channel molecular potentials at large internuclear separations,
resulting in coherent phase interference in the inelastic-scattering amplitudes. A linear-
combination-of-atomic-orbitals (LCAO) calculation of 18 excited-state Z~ potentials of the in-
termediate (He2')* system verifies the presence of these outer pseudocrossings. Such a mech-
anism is shown to be likely in. many ion-atom collisions.

I. INTRODUCTION

Over the past decade, high-resolution experi-
ments involving low-velocity (~ 0. 1 a. u. ) ion-atom
collisions have led to an increased awareness of

the important role played by the molecular poten-
tials of the intermediate (molecular ion) collision
complex. In elastic charge- exchange collisions be-
tween homonuclear ion-atom systems (e.g. , p+H,
He'+ He), the differential cross sections exhibit an


