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(say p ~ SQ) in the present incident-energy range. "
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A general formalism for the computation of low-energy inelastic and elastic electron scat-
tering cross sections within the context of the particle-hole Bethe-Salpeter equation is pre-
sented and shown to reduce to the random-phase approximation (RPA) in lowest order. The
theory is then applied to triplet elastic electron-He scattering. A short discussion of the dif-
ferences between the BPA for scattering processes and for low-lying bound states is given,
and the numerical methods used to solve the equations are considered in some detail in an

appendix.

I. INTRODUCTION

One of the major problems associated with low-
energy elastic and inelastic electron scattering
from atomic systems is the role of electron cor-
relations. Straightforward application of the
close-coupling formalism of Burke and Schey, ' 3

while quite successful in predicting scattering
cross sections, requires a great deal of computa-
tional effort. Although a number of new numerical
techniques adapted to handling large numbers of
coupled differential equations, ' or in some way
circumventing their direct solution, ' have reduced
the time needed to obtain cross sections, there
are still considerable difficulties when there are
large numbers of exchange terms. One of the basic

difficulties associated with low-energy electron
scattering is the need to antisymmetrize the total
scattering wave function. In configuration space
this necessitates the inclusion of large numbers of
nonlocal potentials in each scattering channel. An

alternative to this procedure is to introduce crea-
tion and destruction operators as in field theory
and utilize the formalism of modern many-body
theory. " Such methods have been used quite suc-
cessfully in nucleon scattering by systems of iden-
tical nucleons and, as we shall show, exhibit prom-
ise in electron scattering problems. In this article
we present a discussion of inelastic and elastic
scattering which in lowest approximation reduces
to the solution of the eigenvalue problem of the
random-phase approximation (RPA). ' " The for-
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malism is then applied to triplet electron-He'
elastic scattering, and the results are compared
with other calculations in the literature. A dis-
cussion of the numerical techniques used to solve
the equations is given in the Appendix.

iI. THEORY

In order to facilitate the derivation which fol-

lows we introduce the following notation:

lg' k&= . state of the full Hamiltonian,
outgoing

(la)

&
= exact target-state wave function of scatterer,

(lb)

I p, k &
= unperturbed-state wave function of our scattering system, (lc)

Vl(r, t) = electron . operator in the Heisenberg representation,annihilation

g tr, t creation (ld)

annihilation
= electron . operators satisfying (incoming, outgoing) boundary conditions,'"'""r, t creation

(le)

lim g"""'(r, t)= lim ttI'"'(r, t),
f wahoo

in, out/ (4a)

where tt '"'(r, t) is the annihilation operator of a
free electron.

The quantity basic to the discussion of any scat-
tering process is the so-called S matrix. The S
matrix is the overlap integral between exact in-
coming and outgoing wave functions:

Smk, m'k' &4m, k I ~m', k') t

where m is a channel index and k labels the mo-
mentum of the unperturbed beam. One can formal-
ly simplify the calculation using the LSZ reduc-
tion formula in which adiabatic decoupling is applied
to the field operators. Thus,

lim ( (r, t) = lim p"""'(r, t),
g wahoo

where tt '"(r, t) and g'"'(r, t) are the asymptotic
forms of ttI(r, t) in the distant past and future. In
the momentum representation our exact scattering
state can be written as

expanded in any arbitrary basis, we also have

S.k.ok= hm «1«2V (krto')Wk(rt, t)
gk woO

g wwOO

x Xo '(r2t rlt) (6}

xo («r't')= &0 l&(tt'(r t)tt"(r't'))l4'o&

In (6) Otk are either plane waves or Coulomb waves
depending on the charge of the target. The

Xo (rt, r't') defined above is known infield theory as
the Bethe-Salpeter amplitude. In order to study
electron-positive-ion scattering, which is the
main purpose of this paper, we have to study the
behavior of electron-hole pairs lying in the con-
tinuous spectrum of the system under considera-
tion. Stated in another way, we annihilate a bound
electron in the noninteracting ground state to cre-
ate a zeroth-order state of the positive ion, cre-
ate a free electron on this ionic target, and then
adiabatically turn on the interaction until we reach
the true scattering wave function. We may define
our exact ionic target states as

c„"=lim c„(t),
giu, uutt 11m t2t(t)

g wahoo

Using the definitions above we have

k', Ok= &0

= Iim &ttt, la„, (t')t2,'(t)
I

otto&
t

oo

= hm &4. Il"(~'(t')n'(t))
I Ao&.

go woo

g wahoo

Since the field operators g(r, t}, g'(r, t) may be

(4b)
where c~ and c„create or destroy Hartree-Pock
electrons in the infinite past. Similarly, any ionic
state existing in the infinite future can be written
as

lq„"'&=c'„"tlyo&, c'„""= lim c„(t) .
w +OO

We may now write down the S matrix for the
(mk '-Ok) transition:

S k .ok= &t,k lko. k&= (0"'ltt'k"'ttk" le'o" &
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= hm &4.
""la'(t) a'(t')

l
to"'&

to» oo
lim dr&dr2 0 T 2) 1 r&t& r& t2

to» oO

x q»(r1, t,') Xo (r2, t2)

xp,*(r, t) q2(r', t') lim dh1dh2G2(12', 1'2) cp„(1')Xo (2')
t't'--~
1 2

(12)

= lim dhdh'(pole'"'1((h, t)gt(h', t')co" l1to&
t»oo

t' »-oo

dr, dr2dr& dr2 cp~. r2, t~
t&tp e )

t oo

%2(hl t1) X (h1 tl) Xo (h2' t2 ~ )

x (toll (r1 t1)4(h2 t2) 0 (h1 tl)4(h2 t2) lko&,

(10)

where y, are Coulomb waves and y are Hartree-
Fock one-particle states. In terms of the two-
particle Green's function, '

$2. 22 —— lim dr, dr2 dr,'dk2 G2(rot2rot2, r,'t1r1t, )tgt2»

Having recognized the connection between the
Bethe- Salpeter amplitude and the scattering ma-
trix, it is now possible to use many-body theory
to derive useful approximations. The basic equa-
tion needed is the integral equation for the linear
response function"'6

R (12, 1'2') = G (1, 2') G (2, 1')+ J d3d3 'd4d4' G (1, 3)

xG(3', 1') &(33'l44')R(42, 4'2'),

where G (1, 1')is an exact one-particle Green's
function,

t&t&™-

xy2, (rot2) cp2(r1t1)X (r1 t1)Xo(r2& t2), (11)

where

G2 (12, 1'2') = (1/i ) (go l
T(( (1)g (2)g (2') g (1'))

l (o & .

and

' (' ) =~(12l34),
6G (3, 4)

G2(12, 1'2')=G(1, 1')G(2, 2') —R(12, 1'2') . (l5)

The S matrix may also be expressed in terms of
a Bethe- Salpeter amplitude:

Xo.(1, 2)= &Po I

1"(4'(2)4 (1)) I &o..&

An integral equation for the Bethe-Salpeter am-
plitude is obtained by inserting (15) in (12) and

multiplying both sides by the kernel appearing
under the integral sign in (14):

dxdx'dld2G (a, x) G (x', b) B(xx' l12) Xo„(1,2)

lim dx dx'dld2dr, 'dr2G(a, x)G (x', b) A(xx'
l
12)G2(12', 21') y„(1')Xoo(2')

tf t~™-

lim dx dx'dld2dr, ' dr 2 G (a, x') G (x', b ) 4(xx'
l
12) [G (1, 2) G (2', 1') —R (12', 21')] y, (1')Xoo (2')

t't'
1 2

lim dxdx'dld2dr, 'dr2G(a, x) G (x', b) b (xx' 12)R(12'2l') y, (1')Xo (2')
t)t)

lim dr,'dk2 [R(a2', b 1') —G (a, 1')G (2', b)] y, (1')Xo (2')
t't™-~
1 3
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lim dr,'dro[G (a, b )G (2', 1') —G (a, 1')G (2', b) —Go(a 2', b 1')]y„(1')Xon(2')
eaoo

lim dr&dro cpn(1') Xf„(2')Go(a 2', b 1') —Xo„(a,b) = Xon(a, b) Xo—n(a, b),
t't'12

(18)

or

Xo„(a,b ) = Xon(a, b ) + fdxdx'did 2 G (a, x)G (x', b )

xa(xx'112)Xo„(1,2), (17)

where

Xon(1, 2) = lim dr,'dro y„(ri, ti) Xo (r2 to)t't'
1 2

xG (1,r,'t,') G (roto, 2) .

In deriving (17) we have made use of the following
relation:

The more usual derivations of the RPA start
from the equation of motion for the excitation oper-
ator 0, "'"where

O'1G ) = 1N) =&th- excited-state wave function,

1G &= exact ground-state wave function. (18)

Substitution into the SchrMinger equation gives

(19a)

(d„=E„-E~. (19b)

The basic approximations inherent in the RPA are
to restrict O~ to be a linear combination of par-
ticle- hole operators

0 =Q(3' &c, —x,c,)
mt

(2o)

lim dr,'droG (1', 2') yn(1') Xon(2') = 0 .
1 2

In order to solve (17), a fundamental noncomputa-
tional approximation for 6(1211'2'), the irreducible
vertex part, must be made. In earlier work"'
it was shown that the lowest approximation for
6(1211'2') leads to the so-called RPA. In Sec. III
we will examine the RPA from another, more
familiar, point of view and elaborate further on
the approximation for a two-electron system.

III. RANDOM-PHASE APPROXIMATION

I

well as a discrete portion. The continuous spec-
trum represents scattering from the positive ion
if the ground state is neutral and it is possible to
extract the phase shifts directly from the solution
of the RPA eigenvalue problem. This procedure
is exactly equivalent to the solution of the Bethe-
Salpeter equation for continuum particle- hole pairs
in lowest approximation. The RPA has been used
quite successfully to describe the properties of
the low-lying excited states of atomic and molecular
systems. ' '6 There are important physical dif-
ferences between the low-lying excited states of
atomic system and the scattering states. These
differences are a direct consequence of the bound-

ary conditions for a scattering state and become
important when choosing the correct single-par-
ticle basis for the expansion of O~. One can argue
with some justification that the ground-state
Hartree-Fock basis should be pretty good for de-
scribing the core electrons in low-lying bound ex-
cited states. The change in the core electrons in

going from the ground to the excited state in such
cases is a "small" effect. Thus the expectation
value of the number operator for a given core elec-
tron in the ground and excited states is about the
same. The situation is quite different for a scat-
tering state. The average electron density at any

point in space for a continuum electron is zero.
Consequently, the difference in the average poten-
tial seen by a given core electron in ground and
excited states can be quite large. Thus, if one
uses the ground-state Hartree-Fock orbitals for
a description of the core electrons in the ion, one
scatters off the wrong electrons. At infinity the
state consists of a free electron and an ionic tar-
get with the target electrons frozen in their ground-
state configuration. For a small atom this can be
disastrous. A better description of the scattering
event is given in terms of the Hartree-Fock orbit-
als of the ion. The numerical calculations on elec-
tron-He' scattering that we have performed show

that this is indeed the case. The RPA eigenvalue
equations for an arbitrary one-particle basis take
the form'

and to "linearize" somehow the commutator in
(19) to a sum of particle-hole terms. This pro-
cedure has the advantage of simplicity and is easily
extended to include a larger operator space. On

the other hand, the justification for "linearization"'
is often quite difficult. The eigenvalue spectrum
of the operator 0 has, of course, a continuous as

+ E (Uln, mg V nJ+ U l j,mn ~ nJ) ~ mf s

nj

'f~m ~l)Xmi+Zn Ymnxnk +3 rIJxmJ

(2la)
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U(r) = arbitrary one-particle potential,

h ~+U~=e 5 g,

For the scattering problem considered below,
we choose the one-particle potential to be zero.
It proves to be convenient to rewrite these in con-
figuration space. This is done quite simply once
it is realized that (21a) and (21b) are merely
matrix representatives of the following pair of
coupled dif ferential equations:

[k(r)- z(+y(r)] N;(r)-Q, y;~$, (r)

++y [0&(r) &py IR'Ixy& —Jy(&) &0'a lg'I py&

+ p~(&) &'6 Iz Ized&
—0 (&) &« Ig'Ized)]= w~(r)

lk(~)-z+y(~)]z (~)-~ y z (y)
(22a)

I

+~~[«(~)&«lg lz&& z&(~)&—v&~a I«&

+ v~(~) &«lg I»&- «(~) &v~ la Iy&&l= —~z ~(~),

(22b)
with

k(r) = ——,V —z/x+ U(r),

subject to orthogonality of y &(r) and z, (r) to the
occupied orbitals. In the case of a two-electron
system, Eqs. (22a) and (22b) reduce to

+Q (v, „Y„+v;„,.z„)= —&uz;, (21b)
nj

where (i,j, k) are hole indices, (m, n, o) particle
indices, and we define

y o=r~~v i, a
—U a

The plus sign refers to the singlet while the minus
sign is for the triplet. This pair of equations will
represent scattering from an He' ion when

» I~He+ I ~He', Hs

In the particle-hole picture of scattering given by
the Bethe- Salpeter equation, only elastic scattering
is possible for a two-electron system. In order to
describe inelastic scattering in a two-electron sys-
tem, one would have to allow excitations which
were products of particle-hole operators. In
larger systems the present formalism is capable
of giving elastic and specific inelastic scattering
amplitudes that can be achieved by adiabatic cou-
pling from a particle-hole zeroth-order model.

IV. NUMERICAL RESULTS

The solution of the set of coupled equations
(23a) and (23b) may be achieved in a variety of
ways. We have chosen the integral-equation meth. —

od of Sams and Kouri' for the following reason:
Equation (23b) represents a closed channel to the
scattering amplitude of (23a) and must, therefore,
decay exponentially at infinity. The integral-equa-
tion technique incorporates this boundary condition
directly and allows a straightforward integration
out from the origin to the desired wave function.
If one were to try to solve these equations by ap-
plying a Numerov technique directly to the differen-
tial equations, one would have to integrate both
inward and outward and match the functions and
slopes at some intermediate point& Alternatively,
one could integrate outward N times until the cor-
rect ratio of slopes (y'/z') at the origin is achieved
to give an exponentially decaying solution at in-
finity. Either of these two methods is more tedious
than the integral-equation technique. In order to
set up the problem, the following definitions are
needed:

[."(&)—ZHs+ —~ —~He+, He++ (PHs IR'
I WH )]S H" (&) ~k 2~ ~He++ +~He+ He+

2 (24a)

lg I»"&+«" lg lz."&

—2&%He+Are+IS'I PH XH ')

2
+ +JHe+, He+ &0 )

d 2 2 Eke

(24b)

(24c)

(23a)

(23b)

cf Hs+, Hs+ &'@He+ 9 He+ Ig I
0 He+ 9 He+)

&0 He+ '1Hs+ la I
'P Hs+ z He+&] '1Hs+ (+ )

[k (+) z H ++ ~ ~H, H ++ &~H~+ lg I ~H +)] z H +(r)

+ [«H" lg I":&+«" lg I»"&

2& PHs+9 Hs+ IR'
l
0 Hs+Z He+)

&0 H + 'PH + lg I ~H:X H:&] ~H..(&) = o,

(24d)

2n'y 1 $/2

Es(0)= 0, Gs(0)= 2, y= —1/k (24e)

limE„(~) = sin [kr+ (1/k) ln2kr+ o],
y w 00

o = arg I'(1 —i/k),

limG„(r) = cos [kr+ (1/k) ln2kx+ o ]
T + DO
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M„(0)= 0, W„(0)= l,
li~M„(r)= (e„r ""e""+d„r""e""),
gwCO

lim W„(r)= n „r
yahoo

(24h) Static
exchange

X (a. u. ) (Ref. 21)

Exchange Polarized
adiabatic orbital
(Ref. 21) (Ref, 21)

1s 2s 2P
close

coupling
(Ref. 22)

Quantum
defect

(Ref. 23) RPA

TABLE I. Zero-order phase shifts for triplet elec-
tron-He' scattering calculated by different methods,

G, (.l') = ~.( )G,(')/ft. ,

= &a(r') Ga(r)/Ra,

G„(rlr')=M„(r) W„(r')/R„, r &r'

= M„(r') W„(r)/R„, r &r'

(25a)

(25b)

where R, and B„are the Nronskians of the two
solutions defined as

These definitions correspond fairly closely to the
standard ones for free and bound Coulomb waves. '
We construct the two Green's functions G„(r lr ')
and G„(r lr') as

0
0, 05
0, 1
0, 2
0, 3
0. 491
0, 779
1, 076
1, 353

0, 920
~ ~ ~

0. 893
0. 855
0. 802
0, 748

0. 945

0, 918
0. 879
0. 827
0. 772

0. 942

0. 915
0. 875
0. 832
0. 775

0. 909
0. 865
0. 808
0. 752

0. 932

0. 903
0. 861
0. 803
0. 740

0.938
0. 937
0. 933
0. 927
0. 910
0. 870
0. 816
0.759

ficulty can best be appreciated by examining the
equation for y H,.in the limit of zero coupling:

[& (r) —en+ (0'se" Ig'
I use+)] use'(r) + f(9'no+ Iz Ix se+)

dG«(r) d+a(r)
(26a)

—2&v's"ms" la I v'n"xs. )1 v n:(r) = 0 . (26)

dW„(r) dM„(r)
(26b)

Using the definitions given above, we may now
rewrite (23a) and (23b) as follows:

+ v„,(r')e„;(r')+ v„,(r')y„;(r')+ yz y„;(r')],
(27b)

where we define

vr(r)= 2RVH ' IS I VH ) —l/r],

v.i(r) @(r)= + 2&vs" I& I4) &H"(r)

&i= +2l2(9's 'PH 'lg'I @s +Ps+)

+ 8 se+ ass+ lg I +n++ e He+) ]

~,=+2[2&~..~.. Ia I ~..e..)

+ (0'ne+Pns+ lg'I 9'ns+sns+)] ~

and we have explicitly recognized the fact that we
are dealing with only 8-wave scattering. The
numerical details associated with the solution of
this pair of coupled equations is presented in the
Appendix. It should be mentioned that there are
certain problems associated with the singlet equa-
tion which are non-numerical in origin. The dif-

xH"(r)=+~(r)+ fo
«'

aG( lrr')Iv~(r')3 s"(r')

+v„,(r')y„,.(r')+ v„((r')es;(r )+'Ys pns'(r )] ~

(2Va)

eHs (r)= f, «'G. (rlr') lv&(r')en" (r')

If we believe that this limiting case should be the
one-state approximation, the cause of the difficulty
is immediately apparent: The RPA forces the
scattering function to be orthogonal to the y„,.
oxbital. This is a constraint on the scattering
amplitude which does not appear in the one-state
approximation. The additional node in the scat-
tering function, introduced by this constraint proves
to be fatal to the accuracy of the numerical results.
This constraint can be removed but the details lie
outside the scope of the present work and will be
presented in a later publication. Perhaps it is
worthwhile to mention that quantum chemists have
faced similar difficulties in the treatment of ex-
cited states of bound atonlle systems I1avlng two
open shells of the same symmetry. The spatial
orbitals of the two shells need not satisfy the same
effective one-particle Hamiltonian and there is no
reason for them to be orthogonal. For the triplet
state these orbitals are automatically orthogonal
and consequently there is no problem. The results
for the phase shift in the triplet case are presented
in Table I. Ne also include the results of other
calculations, including the semiempirieal quantum
defect method. The agreement with the best eal-
eulation in the literature is excellent and suggests
that applications to other larger systems should
be initiated in the future.
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APPENDIX

To facilitate a noniterative solution to Eqs. (27a)
and (27b) we separate the nonlocal potential v„,(r)
as follows:

s"(r')+ye:(r')f PH,+(& ) I
0

+ dy 9 &~+(y ) i %He+(y)
ys:(r')+zn. (y')

0

= v.'&(r) [yH. (y)+ zs:(r)]+ P yz:(r),

v. i(r) [y«.(r)+ zs.«(r)] P ~2 dr ~ (y)
yz;( y) +zH, (r)

0 y
(Al)

1 dr' y„,+(y') [y„,+(r') + zH,,(r')]'v 0

In writing out (Al) we have recognized the S-wave
nature of our scattering function. Using (Al),
Eqs. (27a) and (27b) may be rewritten as

y„,,(r) =F,(r)+ f dr' G(r~ r') [v,(r')y„,.(r') +v„,(r')y„,.(r')+v„,(r') z„,.(r')]
+(ri+13)f, dr' G,(r~y') q„,(y'), (A2a)

z„,.(r) = f dr' G„(r~ v') [v,(r') z„;(r')+v„',(r') za,.(y'') + v„,(r') yH, ,(y')]

+(y, +P) f drG„(rtr') rp„;(r') (A2b)

r
y„;(r)=F~(r)+ ' dr'F„(r') [v,(r')y„, (r')+v„,(r')y„;(r')+v„,(r') z„,.(r')]

0

1'

dr '
G~(r ') [v,(r ') y„,.(r ') + v„,(r ') y„, (y ') + v„,(r ') z„, (r ')]

k 0

OO

+ ' dr G, (y) [v,(r) y„, (r) + v„',(r) y„;(y)',+ v„',(r) z„;(y)]+(y, + p) dy' G„(y~ y') q „,(y')
Ra o 0

r
= F,(r)+ ' dr'F, (r') [v,(r') y„, (r')+v„', (r') y„,.(r')+ v„,(r') z«.(y')]

0

r
dr' G„(r') [v,(r') y«(y'')+v„, (r') y„;(r') + v„,(r') z„;(r')]+n, F,(y)+&, I~(r), (A3a)

Ra o

z„,+(r) = f dr ' G„(r~r') [v,(r') z„;(r')+ v„,(r ') z„,.(r') + v„,(r') y„;(r ')]+ (rz+ P) fo dr' G„(y~ y') qr„,.(r ')

= f dr' G„(y~ r') [v,(r') z„;(r')+v„,(r') z„,.(r') + v„,(r')y„,.(r')]+ezI (r), (Asb)

where

&r=~&+ P ~
&s='4+ I ~

n, = — dr G~(r) [u, (r) y„,.(r)+ v„,(r) y„;(l)
0

+ v„',(y) z„, (y)],

dy &.(r) b ~(r) zH. (r)+ v'. i(r) z«(r)
R„

+ v„',(r) y„..(r)],

I„(y) = f, dr' G,(r
~

y') q „..(r '),

I„(r)= fo dr ' G„(y
~

r ') q„;(y') .

Further manipulations are considerably simplified
by introducing the following matrix notation:

Z,'(r) y „:(y)'

dr' F~(r') [v,(r') ys, (r') + v„,(r') yz,.(r')]
Rq o
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dr' G~(r') [v,(r') y„;(r ') + v„,(r') y„,+(r')],
I~a

(A4a)

G
&g(r) zH;(r) = ' dr' F,(r') v„',(r') z„,.(r')at Hs

&„'(r) z', :(r)= „" dr'M„(r')
IC 0

x [v,(r')z'„;(r') + v„',(r') z'„;(r')]

dr' G,(r') v'„,(r ') z„;(r '),
0

Z„(r) z„;(r)= " dr'M„(r')W„(r)
0

(A4b)

M„(r) dr' W„(r')R

x [vl(r') zH"(r')+v i(r ) zH"(r )] (A6a)

r

U„(r)y„';(r) = " — dr'M„(r') [v„,(r')y„',.(r')]
g p

x[v,(r') z„,.(r') +v„',(r') z„:(r')]

.() d, W(, )
k

'r

dr' W„(r') v„',(r') y„', (r') . (ASb)R„p
Using these definitions gives

x [v,(r') z» (r')+v„,(r') z„;(r')], (A4c)

U„(r)y„;(r)=
&

dr ™„(r')v„,(r') y„, (r')
R Q

3 He+ 3 He+ 3 He+

+

ZHe+ ZHe+ ZHe+

(A9a)

+ " dr' W„(r'') v„,(r') y, '(r') . (A4d)
r

cl = — «W. (r) [vi(r) zH. (r)+ v'. 2(r) zH. (r)
0

+ v„,(r) y».(r)], (A9b)
The coupled equations can now be written in the
following form:

(I-z, -v„'i (y„.i (1. , o)(z,)
—U„ I —Z„ZH„O 0 M„

(„o)(I,i
0 q~ Ig

The solution to this set of equations is
(y',:) (ya") (y'H:)

=(I+») +«!+~z
ZHe+ ZHe+ ZHe+ ZHe+

I Zk p /He+ E

(A6)

X He+ XHe+

i '")
(y":)

I —Z„—y 3'He+ I&

Uo I ~~j ("„',.j E, of
'

(I &a ~a ) (yHe') (
( -V„' I-Z„'f ( '„',.j (M„j

-U,') (y'„':) (z, i
—U„ I —R„ZH,+ 0

(A9c)

(A9d)

(Al oa)

(A10b)

(I—Z„' —U,') (y„., ) (I„)
UIc I —Z„g„e+ 0

(A7b)

c2=& d~W„r v, r z'„,.x +v„, x z'„; ~
IC

vo, (r) y'„, (r)], (Aloe)

I —g~ —U~ y„,+ 0

(A7c)
(y':& 3 He+ 3 He+

ZHe+ ZHe+ ZHe+

(Alla)

In order to solve (A7a)-(A7c) noniteratively, we
must go one step further. We define the two op-
erators 2„and U„as

-Uli(y".:i (oi
(Allb)



B. SCHNZIDEH AND S. l. KRUGLER

+ go, (r) y»a, +(r)] . (Allc)

coupled pair is then constructed from the inter-
mediate solutions by solving a set of three coupled
algebraic equations for n&, q&, and q2. From the
solution y„,.(r), the phase shift is extracted as

All of the "basic" solutions (A9c), (A9d), (Alob),
and (Allb) can be computed noniteratively. The
"intermediate" solutions (A9a), (A10a), and (Alla)
can be computed from the "basic" solutions by
solving a simple algebraic equation. The "final"

1
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