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The cross sections for L electron ionization by incident heavy, but slow, charged particles
are evaluated. Incident particles are described in the plane-wave Born approximation, while
relativistic wave functions are used for the atomic electrons. Numerical results are given for
holmium and mercury and compared with experimental data for holmium. The results are dis-
cussed.

I. INTRODUCTION

The inner-shell -ionization of atoms due to colli-
sions with incident heavy charged particles has been
studied by several authors in the past. '

The emission of characteristic x rays foDowing
the creation of a vacancy in an inner shell has re-
ceived attention from both atomic and nuclear phys-
ieists.

The differential energy-transfer cross sections
for this process provide the basis for calculations
of stopping power when a heavy charged particle
penetrates through matter and are useful in the

study of radiation damage to solids or biological
specimens. They also have been investigated by
some authors to test the more detailed comparison
between experiment and theory.

Calculations of the differential and total ionization
cross sections and of the inner-shell contributions
to the stopping power have usually been made in the
nonrelativistic plane-wave Born approximation.

In this approximation, apart from the use of plane
waves for the incident projectile, nonrelativistic
hydrogenie wave functions are employed for the
atomic electrons.

However, for the heavier elements the relativis-
tic bound-state wave functions are considerably dif-
ferent from those of the nonrelativistic theory. Not

only are the former larger in magnitude than the

latter neax the nucleus but also the energy differ-
ences between atomic subshells are significant and

affect the calculations of the ionization cross sec-
tion. Hence, relativistic considerations are desir-
able for treating both K and J electrons of the me-

dium-heavy and heavy elements.
Moreover, the energy spectrum of fast electrons

emitted from the inner atomic shells should be de-
scribed relativistieally for any element. For the
K-shell ionization, such a calculation was made by
Jamnik and Zupandic employing Dirac wave func-
tions for the bound and ejected atomic electrons.
They found good agreement between theoretical and

experimental K-shell ionization cross sections for
heavy elements such as Ag and Pb. Experimental
data exist on L-shell ionization cross sections for
certain elements and there is thus an incentive for
performing calculations which take into account the
relativistic description of the atomic J electrons.
In this paper, we have evaluated the relativistic
L -shell ionization cross section following the
scheme of calculations of Jamnik and Zupaneid.

In Sec. II, the method is outlined that provides
expressions for the form factors for the transition
from each L subshell to both discrete and continuum
final states.

Sample results of the present calculations were
tabulated and presented in graphical form for com-
parison with experimental data. The results are
discussed in Sec. III.

II, RELATIVISTIC IONIZATION CROSS SECTION

The energy-transfer cross section for the ejection
of atomic electrons by incident heavy charged par-
ticles is given by

do& 4m 32M 'm~ dqffRea , y (~)

in the nonrelativistic plane-wave Born approxima-
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tion, where q is the momentum transferred to the
atomic electrons, ze and M are the charge and the
mass of the incident particle, and E and E& are the
energies of the incident particle and ejected elec-
trons, respectively.

The square of the form factor IE«(q) I for the
transition between the initial and the final electronic
states, &)I,(r) and &i)f(r), is defined to be

~Ef(q)~'=
~

Je"'&)f(r)*k (r)d'r~'

3

ft(«) =

K(«2 —1)
(2 1)

for K&0

i «i(i«l'-1)
(2I «I —1)'

g&l&'„(q) = fj, ,(qr)[f„(r)f (r)+g„(r)g (r)]r dr,

(3)

with l, = l(«f), l2= l(- «f)p l3 l(Kf) —1, f4 = l(Kf) + 1,

For the wave functions of atomic electrons which
were initially bounded and finally ejected from the
L shell, we have used the Coulomb solutions of the
Dirac equation in the form

—lf.(r) Jl'& .)1/2, /

(r) ~l& )1/2, / (~ q)

where 'g;/2 /(8, q)) are the Pauli's two-component
spin-wave functions.

The angular momentum j of the electrons is given
by

K for K&0

j =
I
«I 2 and l(«) =

and

2(2«+ 1)'

I ~l
2(2 I «I —1)'

X(K) =

3(i «i —1)

—3(«+ 1)
u(K) =

—(I «i +1)

for K&0

for x&0,

for rc&0

for le&0,

for && 0

for ~&0.

The relativistic radial wave functions f„(r) and g„(r)
for the discrete and continuum states, normalized
per unit energy interval, are given in the litera-
ture. 3'~' (For continuum states, the wave func-
tions normalized per energy interval in units of
Z&R„have been used in the present calculation.
Zi, is the effective nucelar charge number seen by
the L electrons. )

The angular integrations were carried out through
the use of the algebra of vector coupling and Raccah
coefficients. Summing over the initial and the final
magnetic quantum numbers, we obtain for the L
subshell

(Eg, , w, (q)['=2 & (Kf)[~2'",,
'.,(q)]',

x exp[- (y, +y„+1) lnq] E,(q),

x exp[- (y, +y„+ 1) lnq]E, (q),

~/3, ;(q) = )))1«, ) 1'(2a3)
(4)

x exp[- (y, +y„+ 1) lnq]E, (q),

For the radial integration J, we again follow the
method of Jamnik and Zupancic. The final results
for L electrons are as followsgwe express the mo-
mentum transfer q in units of Z2/ao hereafter):

~I 1, f( l) ~)1 2l 1+ 1 DL) f
&1 ) (2a1)

(iE2, , 3, (q) ('= 2 Z
~

(«[f8 ,",2„( )]q',

(A(«f) [J~& 3'„(q)
(2)

Ky +1 ~ +82 ~ ~ ~

J2, 4„(q)=)) w 1,, D2, Df
&1 )

x exp[ —(y2+y„+1) lnq]E4(q),

y J~& 4)„(q)]2+B(«f)[X(«f)J2,',3,'„(q)

+ P, («f)Z~', „(q)] ];

where

[«2 ( Z )2]1/2

&2 = e'/hC (fine-structure constant),

where S"I signifies the energies transferred
1,2, 3

to the atomic electrons of each L subshell by the
incident particle in units of SIR„,

a, = —', (y, +y„+l,+1) for i =1, 2,

a, = 2(y2+y„+i&+1) for i =3, 4,
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1 exp[(y~g ——,') &~2&] . (2))
1»(2y„+1)

zv = Z~/m(. "= f1+ (n&g)'&']" '

for the continuum final states, and

Dq = D(n', ((y)

exp [{y.~ ——,') 1()2]
e~[(y„,+ 1)&~,] r(2y„, +1)

b;=-2(y, +y„-&;) for i=1, 2,

b(=-2{ y2+y„-&;) for i=3, 4,

for i= 1, 2, 3, 4,

F(2y ~~+ n'+ 1)
I"(n'+ 1)(N~ —)(~)

N =(n"+~'+2n'y )"'
Ry

2(1+1/N) Sa,b,(1+1/N) „2y+1 " ' 2y+1

2(1 —\/N) aa2b2(1 —1/N) ~3 2 +1 3» 3 2 +1 8»

for the discrete final states;

D, =-D(1, —1), D =D(1, 1), D =4D(O, —2),

Z, (q) =~, Z„(-1)"Z(1)q-"+H,Q.{-1)q«)

-(2m+ 1) +C Q ( 1)mg(1) -(2m+ 1)
1 '% »5

N= [2(1+y,)]"',

p(() («) {b) p(*)
m (1) m) ttt

«) {«+2) {b(+2) (()
m

=
(2) ( qm

ol 2 1» 2»3»4»

1)mg(() -(2m+ 2)

(q) / g ( 1)mP(2) -2m/ H g ( 1)mq(2)

-(2m+ 1) + g Q ( 1)mg(2) -(2m+ 1)

1)m~(2) -(2m+2)

S,(q) =W, 5 .(-1)"Z(2)q-"

{ 1)mq(2) -(2m+1)

1)mq(4) -(2m+ 1)

For the continuum final states,

Pm*'= 2Re[U2m((() b»)G(]

q "=2 Re[U2„, 1(((&, 0, N)G;]

y"'= 2Re[U2„()(y, 0, N)H, ]
s„"' = 2 Re [U2„, ,(((z, k, N)H, ]
P„"'=2Re[U2„(((z, k, 2)G,]
q„' =2Re[U2, ,(vz, k, 2)G, ]

fol' 2 = 1» 2»

fOX' 2= 1, 2»

fOX' 2 = 1» 2»

fOX' 2 = 1» 2»

fol 2= 3, 4»

fol' 2 = 3» 4»

R(().. {a +-') {b(+-') y() ~(() «;+1) (b(+1) ()
m (t) mJ m t m (2)

t1(~t, t, tt)=, t",
( e, t t+t+ —,tt. +t, t &

—.— —+it22k' 1

G, = e'"(y„+i(v/k) [N(l+ 8,)'~'((v+ 1)'I'- i(N+ 2)(l —8,)'~2(N) —1)'('],

G, = 8'"(y„+A(t/k) [(N- 2)(1+8,)' 2(2v+1)' '- iN(l —8,)'~2(((t 1)'~2], -

G, = G, = e'"(y„+ia)/0) [(1+82,)'~'((() + 1)'('- i(1 —82,)'~'((v 1)'~'], —

H, = H2 = e("(y„+i(()/0) [(1+82 )'~ ( 21(v)'+~ i2(l —82,)'~'((v —1)'~2],

((~ —i/k
(

1 (a+ m)
y„+i((t/k ' I'(a)
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For the discrete final states,

P = I( Vz (&y, n', N, Ns) + J& Vz (xs n'+ 1, N, N~) for i=1, 2

q"'=I, Vz„ i(vs, n', N, NI)+O', Vz, ,(xz, n'+1, N Ns) for i =1, 2,

'=K, Vz~(xz, n', N, Nz)+M, Vz (~z, n'+1, N, Nz) for i=1, 2,

s„"= K, Vz„, ,(x&, n', N, Nz) +M, Vz„+,(xz, n'+ 1,N, Nz) for i = 1., 2,

p„"=I,Vz~(xz» n» 2, Nz)+ J&Vz~(xs» n'+1, 2, N&) for i=3, 4,

q„"'=I Vz~, ,(t(y»n'» 2»N~)+ J, V„z, ,( gx» n'+1, 2, Ng) for i =2, 4,

where

2/Ng 1,
V„( y, n', N, Ny)=zF( —n, —n'+1, 2Y„+1,

1/N 1/N N N+i'y

I,=n'[(N+2)(1 —8 )' (1 —8 )~»' —N(1+8 )~~z(1~8 )&&z]

I,=n'[N(1 —8,,)"'(1-8,)'~'- (N 2)(1+8„)&~z(1+8,)~&z]

Iz = I4 = n'[(1 —4z) "'(1—8&)"' —(1 + 8, )"'(1 + 8,)'"],

~~ = (Ny -&y) [(N+ 2)(1 —8&,)"'(1—ey)'~ +N(1 + ez )'~z(1+ 8,)'~z],

Zz= (NI —xq) [N(1 —8,)'~ (1 —8 )'~'y(N- 2)(1, +8,)'~z(1 8 )'~z]

~z = ~s = (&y —&y) [(1-4,)"'(1 —eg)"'+ (1+ ez, )"'(1+eg)"'],

K, =Kz n' [(1 —ez, )'~z—-(l —8&)'~z —(1+8&, )'~z(1+ HI)'~ ],

Mq ——Mz ——(Ny —v~) [(1-ez ) ~ (1 —HI)
~ + (1+Hz ) ~ (1+Hy) ~ ],

8~= 8(n', x~) = [1 +(nZz)'/(n'+y„)'] ' ',

eg = 8(1, —1), Hz = 8(1, 1)= ez, 8 =8(O, —2).

The energy transfers O'L are given as

W, ,
= 2(zv e, }/(nZ,-)z,

Wi = 2(ey —ez )/(~Zz)'

for the continuum and discrete final states, respec-
tively. The relativistic energy distribution of each
L-subshell electron is given by

doL, 8m' ao
2 2

Iz (7}z» WI, ),
L g L IL

with
~ma»»

4, (z)z» z,)= — ~ ~Fz„w„(q) I',
2

E
(M/m)Zz R„

Iz, (q» Wz, ) is called the excitation function of the
L, subshell. ' The total ionization cross section of
L electrons is obtained by integrating the energy
distributions over S'L, , i.e. ,

&L = &L + &L + &L ~1 2

dg'L ]
OL, = ~ de, ,

L&,min

where O'L. &, is the observed ionization potential of
the L& subshell. ' This, then, takes into account the
screening effects due to the outer electrons and

IFz, , z, (q) i for Wz, , & 2(1 —ez, )/(nZz, ) is given
by Eqs. (2)-(4) for the discrete final states, with n'
considered to be a continuous variable, multiplied
by the factor
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TABLE I. Sample numerical results of the relativistic excitation functions for Hg(Z= 80), pi= 0.004, qi ——0. 007 as
functions of the energy transfers Wi .. See the text for the definition of Wi ..i'

Wi,

0. 18
0. 20
0. 22
0. 24
0. 26
0. 27

0. 285
0.315
0. 405

0. 18
0. 20
0. 22
0, 24
0. 26
0. 27

0. 285
0.315
0. 405

3, 9751x 10 3

3.0902 x 10 3

2. 2262 xlp 3

1.5383 x 10-'
1.0420x 10 3

8.5482x 10 4

6.3224x 10 4

3.4659 x 10-4

6. 5805 x 10 ~

6. 8690x 10
4. 6548x 10 3

4. 2510 x 10 3

3. 8244 x 10&
3.2300 x 10 3

2. 9087 x 10 3

2. 4290 x lp-3

l. 6119x10 3

4. 2617x 10 4

Wi2

p. 18
0.20
0.22
0.24
0. 26
0.27

0. 285
0.315
0.405

0. 18
0.20
0. 22
0.24
0.26
0.27

0.285
0.315
0.405

gi =0. 004

gi =0.007

5. 8063 x 10-'
2. 5615x 10-'
l. 1905x 10-3

5. 7638x 10 4

2. 9Q48x 10 4

2. 0911x 10-4

l.2929x 10 4

5.2054 x 10-5

5. 0085 x 10-6

4. 7077xlp ~

2.3080x 10-'
1.1840 x 10 2

6.2012x 10 3

3.3406x 10 3

2. 4767 x 10-'

1.5932 x 10-3

6. 8553»0-4
7.4681 x 10 5

0. 16
0. 18
0. 20
0.22
0.24
0.25

0, 26
0.29
0.35

0. 16
0. 18
0. 20
0.22
0.24
0. 25

0.26
0.29
0.35

2.4gg4x lp-'
l. 045 g x 10 2

4. 6Q78x 10
2. 1084x 10 3

1.0046 x 10"3

7. 0347 x 10-4

4. 9556x 10 4

l. 8217x 10 4

3.0727 x 10-5

l. 73lg x 10-'
8.2 832 x 10 2

4. ]787x].0-2

2. 1298x 10 2

].]134x]Q"2

8. 1249x 10 3

5.g44g x 10-3

2.4096xlp 3

4. 6652 x 10 4

These spaces divide the discrete and continuum final states.

d~' (a.Z~)a 3(a

dW, ( '+ )'
io-4

Z=67
I

f

I I I I

For evaluating the energy distribution, we have
squared the series in the form-factor expressions
and integrated over q term by term algebraically.
Thus the numerical work leads to summation of the
series in negative powers of q &„, which considera-
bly reduces the laborious work. In general, the
numerical accuracy of the present calculation is
better than 1%.

TABLE II. Relativistic cross sections, in units of
ao, as a function of the proton incident energy gi
=E/ [~/~) Zi2R„]

C4

0

b

io-'—

io-'

Io 7

Element

Ho

Hg

0.001
0.003
0.004
Q. 005
0. 006
0. 007

0. 001
0. 002
0. 003
0. 004
0. 005
0. 006
0. 007

ai/a 20

8.29x 10
2, 40xlp ~

5.29x 10 ~

9.47& 10
1.4gxlp 6

2. 14x 10-'

3.51x 10-&

2. 79x 10-8

8, 87x 10-8

1.g4x 10 7

3.47& 10
5.47x 10-'
7.95x 10 '

lo 8

(o 9
.OOI

I I I I I I I

~005 .OI

FIG. 1. Relativistic I.-shell ionization cross section
oi in units of ao (solid line) for holmium compared with

experimental data (marked by 0) as a function of incident

proton energy in units of Qf/m)ZiR„. Experimental
data were taken from Ref. 9.
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10-'
Z=80

I I [ I

10-'—

CV ()0

1

10 8

10-'—

10-lo

.001
I «) ) I

.005 .Ol

FIG. 2. Relativistic L-shell ionization cross section
01, in units of ao for mercury as a function of incident
proton energy in units of (M/m)Z~R„.

III. RESULTS AND DISCUSSIONS

The relativistic cross section for the L-shell ion-
ization by collisions of incident heavy charged par-
ticles was computed for several values of incident
energies up to gi =0.007 and for several species of
target atoms.

It was found that at most eight partial waves
(tc& = + 8) were needed for reasonable accuracy in the
calculation.

A separate program similarly yielded numerical
results for the relativistic excitation functions,
etc. , for E-shell ionization, employing the form
factors given by Jamnik and Zupancic and reproduc-
ing their tabulated values. '

For purposes of illustration, a few sample nu-
merical results for the excitation functions of each
L subshell are presented in Table I for mercury
using an effective Zi. ='75. 85. It should be noted that
the relativistic excitation functions as functions of
&J., W~ also separately depend on Zr„while the non-
relativistic excitation functions do not explicitly de-
pend on Z~. We have compared our results for the
excitation functions with the nonrelativistic plane-
wave Born approximation calculations. In the low-
energy-transfer region, the two excitation functions
are not significantly different and for a certain inci-
dent energy, the relativistic excitation functions are

even slightly smaller than those of the nonrelativis-
tic calculation near +g, +g~, mgn'

On the other hand, in the large energy-transfer
region, the relativistic excitation functions are al-
ways larger than the nonrelativistic ones and this
discrepancy becomes significant for heavy ele-
ments.

This can be understood from the fact that, for
large energy transfers, the momentum transfer q
becomes large. Hence, the contributions to the in-
tegration in Eq. (3) mainly arise from the region
quite close to the nucleus. Since the bound-state
relativistic wave functions are much larger than
those of the nonrelativistic theory near the nucleus,
the relativistic excitation functions are significantly
increased for large energy transfers.

It can be seen also from Table I that much more
than half of the contribution to the total cross sec-
tion comes from the discrete final states. It is in-
teresting to note that the transition between the dis-
crete and continuum final states is very smooth.

The relativistic cross sections for the L-shell
ionization of holmium (Z= 67) and mercury (Z = 80)
are presented in Table II.

In Fig. 1, calculations are compared with experi-
mental data for holmium given by Khan et al. Cal-
culations for mercury are shown in Fig. 2 for com-
parison with experimental data.

Here gi. = 0. OOV corresponds to approximately VOO

keV and 1 MeV of the proton incident energy for
holmium and mercury, respectively. For holmium,
the agreement between theoretical results and ex-
perimental data in the high incident energies are
somewhat better than in the low-incident-energy
region.

Yet, the discrepancy between experiment and
theory is still considerable.

This might arise partly from the use of the plane
wave for the incident particle, that is, the neglect
of deflection effects due to Coulomb repulsion be-
tween the incident particle and the atomic nucleus.

Computations for the K- and I -shell contributions
to the stopping numbers' have also been made using
the relativistic excitation functions. However, in
the energy range below 1 MeV and for high Z, the
K- and L-shell contributions to the stopping num-
bers are negligible. Relativistic cross section for
the I -shell ionization by an impact of heavy charged
particles, obtaining the explicit expression for the
form factors, Eqs. (2)-(4), are the results of this
paper.

The relativistic effect on the electronic wave func-
tions for the L-shell ionization process are signifi-
cant for heavy elements, comparing the relativistic
excitation functions with the nonrelativistic ones.
Therefore, it will be interesting to compare the rel-
ativistic theory with the experimental data on the
L -shell ionization cross sections for heavy elements
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(say p ~ SQ) in the present incident-energy range. "
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Low-Energy Electron Scattering in the Random-Phase Approximation

Barry Schneider and Joel I. Krugler
GTE Laboratorie, Incorporated, Bayside, Nese York 11360

(Received 29 March 1971)

A general formalism for the computation of low-energy inelastic and elastic electron scat-
tering cross sections within the context of the particle-hole Bethe-Salpeter equation is pre-
sented and shown to reduce to the random-phase approximation (RPA) in lowest order. The
theory is then applied to triplet elastic electron-He scattering. A short discussion of the dif-
ferences between the BPA for scattering processes and for low-lying bound states is given,
and the numerical methods used to solve the equations are considered in some detail in an

appendix.

I. INTRODUCTION

One of the major problems associated with low-
energy elastic and inelastic electron scattering
from atomic systems is the role of electron cor-
relations. Straightforward application of the
close-coupling formalism of Burke and Schey, ' 3

while quite successful in predicting scattering
cross sections, requires a great deal of computa-
tional effort. Although a number of new numerical
techniques adapted to handling large numbers of
coupled differential equations, ' or in some way
circumventing their direct solution, ' have reduced
the time needed to obtain cross sections, there
are still considerable difficulties when there are
large numbers of exchange terms. One of the basic

difficulties associated with low-energy electron
scattering is the need to antisymmetrize the total
scattering wave function. In configuration space
this necessitates the inclusion of large numbers of
nonlocal potentials in each scattering channel. An

alternative to this procedure is to introduce crea-
tion and destruction operators as in field theory
and utilize the formalism of modern many-body
theory. " Such methods have been used quite suc-
cessfully in nucleon scattering by systems of iden-
tical nucleons and, as we shall show, exhibit prom-
ise in electron scattering problems. In this article
we present a discussion of inelastic and elastic
scattering which in lowest approximation reduces
to the solution of the eigenvalue problem of the
random-phase approximation (RPA). ' " The for-


