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Multiconfiguration Hartree-Fock (MCHF) calculations recently predicted a positive binding en-
ergy for the p electron in the s’p 2P state of Ca™, in good agreement with experiment. The present
paper explores the binding of electrons in several alkaline-earth elements. Fixed-core Hartree-Fock
potentials demonstrate the angular momentum barrier. From a simple correlation study it is shown
that the 3d%4p configuration relative to the 3s23p configuration in Mg~ lies much higher than the
(n —1)d*np configurations relative to ns?np in the heavier alkaline-earth elements. Accurate
MCHEF correlation studies are reported for two and three electrons outside a core from which bind-

ing energies are predicted for Ca™, Sr™, and Ba™.
polarization) and correlation within the core.

Not included is correlation with the core (core

The same procedures were also applied to Sc.

Theoretical results with relativistic shift corrections are compared with experiment in the case of

Ca™ and Sc.

I. INTRODUCTION

Most neutral atoms are able to bind an extra electron
to form a stable negative ion, but the rare gases are well-
known exceptions. The extensive survey on binding ener-
gies of negative ions by Hotop and Lineberger' shows
that the alkali-metal elements acquire a second s electron
to form stable s? states; the alkaline-earth elements are
listed as having an electron affinity (EA) <0, implying
that a stable state of the negative ion does not exist. In
the case of the light elements (Be, Mg, Ca), this con-
clusion was based on some theoretical calculations and
semiempirical extrapolation, whereas for the heavier ele-
ments of Sr and Ba, the evidence was based entirely on
extrapolation. The extensive calculations by Bunge
et al.,? for elements up to Ca, were motivated largely by
a study of metastable states rather than stable negative
ion states and semiempirical extrapolation, at least
isoelectronic extrapolation, requires a knowledge of the
designation of the lowest state of the negative ion.

Recently, Pegg et al.’ reported a positive electron
affinity for Ca and identified the ground state of the nega-
tive ion as 4s24p 2P. The identification agreed with the
theoretical predictions of Froese Fischer et al.,* who
used both a multiconfiguration Hartree-Fock (MCHF)
method and a density-functional theory for their predic-
tions. The MCHEF electron affinity was in good agree-
ment with experiment. The fact that the extra electron
was a p electron, resulting in an odd-parity state, is coun-
terintuitive. The spectrum of Ca~ would be expected to
be similar to that of Sc, where the ground state is
3d4s2?D and the first excited state is 3d%(’F)4s *F.
Configurations involving d electrons, particularly pairs of
d electrons, tend to be “plunging configurations” in that,
as the effective nuclear charge increases, they rapidly de-

- scend to the lower levels of a spectrum. Alternatively, as
the charge decreases,they rise within the spectrum. The
plunging nature of the 3d? levels is evident in the study of
levels of the Mg sequence where, towards the neutral,
lowly ionized region of an isoelectronic sequence, the 3d?
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configurations are above the ionization limit, but as the
nuclear charge increased, they rapidly descended into the
bound portion of the spectrum.’ In going from a neutral
atom to the negative ion of the same isoelectronic se-
quence, as in going from Sc to Ca™, the states whose
dominant components contain 3d? electrons can be ex-
pected to rise rapidly. The 4s23d configuration may have
a similar, though less pronounced behavior. The 4s24p
state has been identified in Sc (well above the ground
state) but not in Ti™", and so isoelectronic extrapolation is
not possible for predicting the binding energy of the 4p
electronin Ca™.

In this paper we first investigate the nature of the Har-
tree potential (no exchange) for an electron outside a Ca
and Ba core, respectively, as a function of the angular
momentum of the outer electron. Then we report on a
study of the dynamics of configuration-interaction effects
in the s2p 2P states of the atoms Mg~, Ca™, Sr~, and
Ba~. The latter include configurations with ns, np, and
(n —1)d electrons, whereas in Mg, all s, p, and d elec-
trons have the same lowest principal quantum number,
n=3. We will show that this greatly diminishes the
correlation contribution. Finally, we present MCHF
binding energies from more extensive studies for Ca™,
Sr~, and Ba~, which have included outer correlation
effects, and discuss the difficulties associated with more
extensive calculations. As a check on these predictions,
calculations have also been performed for the binding en-
ergy of the 4p electron in the 4s%4p 2P state in Sc where
experimental data are available for comparison. The
present calculations predict bound states for Sr~ and
Ba~, the extra electron being a p electron. It should be
pointed out that, according to Hotop and Lineberger, !
both Sc and Y (atoms adjacent to Ca and Sr in the
Periodic Table) have stable negative ions in which the ex-
tra electron is a p electron. In La (adjacent to Ba) the ex-
tra electron is a 5d electron. The present MCHF studies
show the 6s26p state to be lower than 6s25d in Ba~ and
with a positive electron affinity, but relativistic effects are
now much greater.
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FIG. 1. The potential, V(r)=—[20—Y (r)]/+1(I+1)/2r?,
for p and d electrons outside the Ca core.

II. POTENTIALS FOR OUTER ELECTRONS

A comparison of the Hartree potential for an electron
outside a closed ns? core provides a qualitative under-
standing of binding. Figure 1 shows the potential for
both a p and d electron outside the neutral Ca core. Note
that there is a distinct well for a p electron and, at best, a
very shallow well for d electrons. Figure 2 is a closeup of
the region near zero, that also includes the potential for
an s electron. This figure clearly shows the angular
momentum barrier, /(I +1)/2r?, that a d electron would
have to overcome. For the p electron, the barrier is
small. For s electrons, there is no barrier, but the Pauli
exclusion principle prevents an s electron from entering
the well. In the case of the p electron, the exclusion prin-
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FIG. 2. The potential, V(r)=—[20—Y(r)]/+1(I +1)/2r?,
near zero for s, p, and d electrons outside the Ca core. The
mean radii of the occupied 4s and 3p orbitals are 4.2 and 1.3
a.u., respectively.
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FIG. 3. The potential, V(r)=—[56—Y(r)]/I(I +1)/2r? for
p and d electrons outside the Ba core.

ciple also applies, but the mean radius of the outermost
3p electron is only 1.27 a.u. We will see later that, when
outer correlation is added, the 4s orbitals move out
slightly, reducing the small barrier, and permitting a 4p
electron to bind.

The situation in Ba differs somewhat. Figure 3 shows
that the d well is deeper than the p well was in Ca. The
closeup view in Fig. 4 shows the substantial angular
momentum barrier that remains for the d electrons.
There is virtually no barrier for the p and s electrons, and
only the exclusion principle keeps them from entering
deep into the well. The mean radii of the occupied 6s, 5p,
and 4d orbitals are 5.3, 1.9, and 0.8 a.u., respectively.
Thus a 6p electron is likely to bind, compared with Ca,
but a lot of correlation would be needed to overcome the
angular momentum barrier for the 5d electron.
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FIG. 4. The potential, V(r)=—[56—Y(r)]/+1(l +1)/2r%,
near zero for s, p, and d electrons outside the Ba core. The
mean radii of the occupied 6s, 5p, and 4d orbitals are 5.3, 1.9,
and 0.8 a.u., respectively.
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III. LARGE CORRELATION EFFECTS
IN s2p 2P STATES

States are usually classified or labeled by their dom-
inant component in the configuration model of the atom
(exceptions are highly mixed stats where no single
configuration can be associated unambiguously with the
state). Other configurations are present in a wave-
function expansion because of the possibility of interac-
tions between configurations. Let W(alS) be an approxi-
mate total wave function for a state with label a, where

W(aLS)=S ¢;®(y,LS) , : 1)

and where ®(yLS) is a configuration state function (CSF)
for the configuration y. In a configuration-interaction
calculation, the CSF’s are defined in terms of a fixed basis
of the radial functions for orbitals and the stationary
principle leads to the secular problem,

Hc=Ec

where H=(H,-j) is the interaction matrix, and the com-
ponents of the eigenvector, c=(c;), are the expansion
coefficients of the wave function in Eq. (1). The elements
of the interaction matrix are defined as

H;=(®(y,LS)|H|®(y,LS)) ,

where H is the many-electron Hamiltonian for the sys-
tem. For simplicity, let &, =®(y,LS).
Suppose now that &, =®(s%p 2P) and that the other

~

d2(3P)p
1 d2(1s)p

d2(1p)p

w <7
' sd(3D)p
pu =4
“ sd(1D)p
’ \
2_1 \ -

TABLE 1. Short wave-function expansion for the s?p 2P

states of some negative ions showing correlation trends.
Mg~ Ca™ Sr™ Ba™

s?p 0.9530 0.9179 0.9073 0.8748
p’ 0.2012 0.2304 0.2283 0.2340
sd('D)p —0.0239 —0.0449 —0.0485 —0.0595
sd (*D)p 0.2119 0.2930 0.3168 0.3717
d*('S)p —0.0620 —0.0973 —0.1124 —0.1433
d*('D)p —0.0277 —0.0524 —0.0602 —0.0837

CSF’s have expansion coefficients that are relatively
small. Then, by perturbation theory,

¢;=H,/(H,—H),
AE;~H} /(H,—H;) ,

where AE; represents the lowering of the total energy by
the configuration state i. Thus the strength of an interac-
tion, in energy terms, depends on the square of an in-
teraction matrix element divided by an energy difference.
The effect may be strong if either the Coulomb interac-
tion matrix element is large or the energy difference is
small.

There are several well-known, strong interactions. One
is the s2'S—p?!S interaction which, with a spectator p
electron, becomes an s2p 2P—p3 2P interaction. When the
principal quantum numbers of the s and p electrons are
the same, this interaction is always very similar. The

0.0

Ca~ Sr~ Ba~

FIG. 5. Energy levels of s2p, sdp, and d?p configurations for the alkaline-earth elements, Mg™, Ca™, Sr™, and Ba".
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FIG. 6. Interaction diagram for s2p, sdp, and d*p configurations in Mg .
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FIG. 7. Interaction diagram for s°p, sdp, and d’p configurations in Ca™.
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s21S-d? 'S interaction is never as strong when the princi-
pal quantum numbers are the same. Another interaction
is sd 'D—p2'D [or sd ('D)p 2P-p>*P in the present case]
but now the energy difference plays a more important
role. Indeed, in the aluminum isoelectronic sequence®
where the interaction is s2d 2D—sp??D, the order of the
diagonal energies changes as the effective nuclear charge
is varied. In the atomic systems studied in this paper, the
principal quantum of the d electron will be 1 less than
that of the s and p electrons, except in Mg where all prin-
ciple quantum numbers are the same. Finally, there are
the sp "3P—dp "*P interactions which usually are not as
strong as s2-p? interactions when the principal quantum
numbers are the same, but now may be larger when the
principal quantum number of the d electron is reduced,
causing a smaller energy denominator. These interac-
tions enter in the s?p state with the s electron as the spec-
tator electron. Similarly, the s?S—d? 1S interactions also
are larger because of the smaller energy denominator.

MCHEF calculations were performed for s2p 2P states of
Mg, Ca™, Sr™, and Ba~ with a wave-function expan-
sion over the configuration states

{s2p,p3,sd ("3D)p,d*('S, *P,'D)p} *P ,

where the set of s,d, p electrons for the different ions were
the following:

Ion Electrons
Mg~ 3s,3d, 3p
Ca~ 4s, 3d, 4p
Sr~ S5s,4d,5p
Ba™ 6s,5d,6p

The mixing coefficients of this calculation are reported in
Table I. Notice that the mixing of sd ('D)p is small in all
cases.

Table I, in effect, shows the results of all these interac-
tions. To get a better understanding of the dynamics of
the interactions between the different pairs of config-
uration states, the diagonal energies relative to the final
total energy for the state are depicted in Fig. 5 as levels.
It is clear now that p? and sd (!D)p cross in going from
Ca~ to Sr~ but, because of the small interaction of the
latter with s2p 2P, this crossing does not have a pro-
nounced effect on correlation, other than to introduce an
irregularity in the mixing coefficient for p>, as seen in
Table I. Clearly evident is the fact that the d?p
configurations have energies much closer to the lower-
lying configurations in Ca™, Sr~, and Ba™ than in Mg,
particularly the sd (°D)p and p? configurations which in-
teract strongly and directly with s2p 2P.

In Figs. 6 and 7, the important interactions are depict-
ed graphically [sd ('D)p has been omitted] for Mg~ and
Ca™, respectively. The energy levels are represented as
before, but now lines are drawn between the config-
uration states that interact. The strength of the interac-
tion (or absolute value of the H;;) is shown near the line.
Each interaction, in a local sense, as in a 2 X2 interaction
matrix, reduces the energy of the lower level and raises

the energy of the higher level. In going from Mg~ to
Ca™ the distance between the d’p and s’p configurations
has been reduced by a factor of 1, whereas the square of
the matrix elements has been reduced by about 20-30 %.
In going from Fig. 6 to Fig. 7, the d electrons change
from being nd electrons to (n —1)d electrons. This may
explain why there is not sufficient correlation in Mg~ to
form a stable, negative bound state, but why there is
enough correlation in Ca™. At the same time, this view
would predict that Zn, like Mg, does not have a stable,
negative ion. Indeed, extensive calculations like those
that will be reported for some heavier alkaline-earth ele-
ments, did not predict a bound state for Zn ™.

IV. BINDING ENERGIES FOR Ca™, Sc,
Sr~, AND Ba™

The calculations described in Sec. III can help explain
the difference in the major correlation effects in Mg~
compared with other alkaline-earth systems. They do not
predict reliable binding energies which depend on a large
number of interactions. In this section we describe a
series of calculations for predicting binding energies in
the systems of interest in this paper. In each case, the
binding energy is the difference in energy between a
(core)s? 'S state and (core)s’p %P state. For negative ion
states, this prediction requires that the diffuse part of the
wave function be represented well by appropriate radial
functions. These functions do not contribute a great deal
to the total energy, and so, a variational procedure that
includes correlation in the core at the same time, will
favor the core region where there is far more correlation
over the outer region, thereby providing a poor represen-
tation of the critically important, outer region. We will
treat the systems as two- and three-electron systems, re-
spectively, and in the case of Ca~ (Z=20) and Sc
(Z=21), compare the results with those derived from ob-
servation.

In each case, the two-electron system was computed by
including all possible 'S configurations from the set of
electrons listed in Table II as calculation (a), using the
MCHF method.” In this calculation all radial functions
were varied, including those of the core. In calculations
(b) and (c), additional electrons were allowed to define the
set of configuration states. A generalized Brillouin’s
theorem was applied to eliminate configuration states ob-
tained through single substitution of electrons from large
components in order to produce the “reduced” form for a
IS wave function.® In the latter calculations, all but the
core orbitals were varied. The calculations for the s’p 2P
states were similar, but varied somewhat with each sys-
tem.

A. Calculations for Ca™

In the calculations for Ca™, all possible three-electron
configuration states were generated from the electrons of
calculation (a) and all orbitals (including the core orbit-
als) were varied. In calculation (b), the set of electrons
defining the configuration states was extended. If all the
possible configuration states resulting from this set of
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TABLE II. Total energies and predicted binding energies (AE) for a series of calculations.

Ca Ca~ AE
(a) 4s, 4p, 3d —676.786 09 —676.776 48 —0.261
(b) +5s, 5p, 4d, 4f —676.78705 —676.788 60 0.042
(c) +6s, 6p, 5d, 5f, 5S¢ —676.787 11 —676.789 67 0.070
(d) with relativistic shift —679.566 73 —679.568 99 0.062
Observed (Ref. 3) 0.043+0.007
Sct Sc AE
(a) 4s, 4p, 3d, 4f —759.496 29 —759.69097 5.297
(b) +5s, 5p, 4d —759.497 04 —759.698 88 5.492
(c) +6s, 6p, 5d, 5f, 5g —759.497 18 —759.701 94 5.571
(d) with relativistic shift —762.93897 —763.14200 5.524
Observed (Ref. 11) 5.685
Sr Sr- AE
(a) 5s, 5p, 4d —3131.57128 —3131.566 11 —0.141
(b) +6s, 6p, 5d, 4f —3131.57210 —3131.57539 0.089
(c) +7s, 7p, 6d, 5f, 5¢ —3131.57216 —3131.576 86 0.128
(d) with relativistic shift —3175.256 52 —3175.26041 0.106
Ba Ba™ AE
(a) 6s, 6p, 5d, 4f —7883.568 30 —7883.572 85 0.124
(b) +6s, 6p, 5d, 51 —7883.568 87 —7883.57842 0.260
(c) +7s,7p, 6d, 6f —7883.56891 —7833.57909 0.277
(d) with relativistic shift —8111.70570 —8111.71113 0.148

electrons were included in the MCHF wave-function ex-
pansion, the radial functions would not be uniquely
defined. In calculations for neutral atoms, a generalized
Brillouin’s theorem would normally be applied to the
dominant component, 4s24p, so that the 4p energy pa-
rameter would be close to the binding energy (Koop-
manns’s theorem for a MCHF wave-function expansion),
but because the 4p radial function is to be bound even
when the energy for Ca~ may still be above that of the
Ca ground state, Brillouin’s theorem was applied to the
4s3d (°D)4p component. As a result, the singly substitut-
ed state 4s25p, for example, was allowed to remain, but
the configuration state 4s3d (°D)5p was removed. The
same process was applied to the 4s — 5s replacement and
the 3d-—>4d replacement. With this procedure, the
MCHEF calculations were then sufficiently stable to allow
for the variation of all the orbitals outside the core. No-
tice that this energy is already nearly as low as the longer
wave-function expansion described previously* where
only new orbitals were varied.

Finally, in calculation (c), the set of electrons defining
the configuration states was extended further, but not all
configuration states were retained. Among those omitted
were the high-angular states such as

415g% 5f5g% 6pSp>, 5d5f5g, 6s5f5g ,
5s5f5g, 5d4f5g, 4d4f5Sg, 6s4f5g .

The remaining new configuration states were added to
the results of calculation (b) after configuration states

with coefficients less than 0.0002 had been omitted. This
reduced the length of the wave-function expansion for
calculation (b) from 130 configuration states to 116, but
raised the energy by only 1.1X1077 a.u. Brillouin’s
theorem was applied and all outer orbitals varied.

B. Calculations for Sc

Calculations were performed for this case because it is
in the same isoelectronic sequence as Ca~ and a binding
energy is available from observation for comparison pur-
poses.

Neutral Sc is interesting because the Hartree-Fock en-
ergies of 4s5%4p 2P and 4s3d (*D)4p ?P are as close to being
degenerate as any ever computed, namely, —759.631 682
and —759.631866, respectively. Correlation is greater
for the former than the latter and, once it has been
represented in the wave-function expansion, the lower en-
ergy is predominantly 4s24p. Because of this degeneracy,
the calculation for Sc could not proceed exactly as that
for Ca™: even in calculation (a), the configurations con-
taining 4 electrons were needed to break the degeneracy.
As more electrons were included, Brillouin’s theorem was
applied to the 4s24p component when deleting singly sub-
stituted configurations arising from 4s — ns replacements
[such as 4555 (1S)4p] and 4p —np, and 4s3d (*D)4p when
deleting configuration states arising from 3d — nd single
replacements.
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TABLE III. The eight largest configuration states in the wave-function expansions of calculation (c).

Ca~ Sc Sr™ Ba™
0.7856 4s%4p 0.8220 4s%4p 0.8259 5s25p 0.8526 6s%6p
0.4873 4s%5p 0.4498 4s3d (°D)4p 0.3987 5s%6p 0.3328 6554 (3D)6p
0.2251 4s3d (’D)4p —0.1802 4s3d('D)4p 0.2530 5s4d(°D)5p —0.2217 6s¥7p
0.1875 4p3 0.1764 4p3 0.1973 5p? 0.2150 6p?
0.1385 4p*('S)5p —0.1475 3d%('S)4p 0.1178 5s6s('S)6p —0.1210 5d%('S)6p
—0.1315 4s5s5('S)5p —0.0959 3d*(*P)4p —0.1141 5p*('S)6p —0.0939 5d**P)6p
—0.0632 3d*('S)4p —0.0744 3d*('D)4p —0.0794 4d*('S)5p —0.0923 6s7s(!S)7p
—0.0513 3d*°P)4p 0.0773 4s4d ('D)4p —0.0616 4d*°P)5p —0.0695 6p%('S)7p

C. Calculations for Sr™

These calculations followed those described for Ca™,
except that now the principal quantum number of s, p,
and d orbitals have increased by 1.

D. Calculations for Ba™

These calculations were similar to the ones for Sr—,
with principal quantum numbers increased by 1, but the
5g orbital was replaced by a 6f orbital. Stability prob-
lems were encountered with the 5g orbital, partly because
its contribution to the correlation was negligible: the
contribution from 6f, though small, was somewhat
larger.

V. DISCUSSION AND RESULTS

The results of all these calculations are presented in
Table II. Also included are the energies obtained by in-
cluding the relativistic shift corrections (mass-velocity,
spin-spin contact, and Darwin terms’) in the energy cal-
culation for each two- and three-electron system. For
both Sr and Ba, the configurations deleted through the
application of Brillouin’s theorem were now included in
the expansion since they could affect the relativistic shift
correction. These nsn’s “‘cross terms” were particularly
important for the relativistic shift correction of the Ba
ns?1S state. For each calculation, the predicted binding
energy of the p electron is tabulated computed from the
difference of the two energies. In the case of Ca™ and Sc,
the final results are compared with experiment.

Notice that calculation (a) underestimates the binding
energy. Indeed, for Ca and Sr, the binding energy is still
negative. Calculation (b) is a significant improvement,
though for Ca™ and Sr ™, calculation (c) is still important.
The relativistic shift effect is greater in the two-electron
system than the three-electron system and therefore
reduces the binding energy by about 0.008 eV in Ca™, by
0.022 eV in Sr~, and by 0.129 eV for Ba, increasing as
expected for heavier systems.

Experimental observations are available only for Ca™
and Sc. In the case of Ca™, the binding energy predicted
by the present calculation is too large, whereas for Sc it is
too small. Perturbation theory!® can yield the correction
to the binding energy as a second-order correction to the
energy difference. The situation is a little more complex
than the alkali-metal elements where the theory is well
established and where the core of the atom and the ion is

essentially the same. The most important correlation
effect omitted in the present study is the correlation be-
tween (n—1)p® and the outer electrons, a core-
polarization effect. In the 2P states, there is both a core-
polarization correction for ns? and for np. Thus, in Sc,
where the 4s orbitals of both systems are essentially the
same, the core-polarization correction from the 4s? shell
would cancel, leaving the correction from the 4p electron.
The present study has underestimated the binding energy
of the 4p electron by omitting this effect. In the other
systems as well, there are similar core-polarization
corrections. Table III lists the eight largest components
of the wave function of calculation (c) of Table II and
shows that the np orbital plays an important role in the
representation of the wave function. Its mean radius is
only between 8% and 13% larger than that of ns.
Though the core polarization is less for p electrons than
for s electrons, as in Sc, this neglected effect would in-
crease the binding energy. But there is an important
difference, namely, the relaxation of the ns orbital. In
each case this radius has increased by about 15%. Thus
there would be more correlation between the core and the
ns? subshell of the neutral atom than the negative ion,
and this would tend to reduce the binding energy of the
negative ion electron. This is consistent with the present
result for Ca~ which overestimates the experimental
binding energy.

Relativistic effects have been estimated in this calcula-
tion and, as mentioned earlier, in Ba the cross terms,
which could be omitted in the nonrelativistic calculation
because of the variational nature of the orbital calcula-
tion, were included in the wave-function expansion for
the estimation of the relativistic shift. These terms were
more important in the calculation of the neutral atom
than the negative ion and reduced the electron affinity of
Ba by almost 0.1 eV. On the other hand, studies of core
polarization'? for the simpler nsnp *P state of Cs~
showed that the relativistic correction to the binding en-
ergy decreased as core polarization was added. Because
of the importance of the relativistic effect, the results for
Ba have the greatest uncertainty associated with them.
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