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Proton maser gain

Donald L. Ensley
California Applied Physics, P.O. Box 955, Bodega Bay, California 94923

(Received 24 May 1988)

It is shown that in the low beam space-charge limit the small-signal gain for a proton maser, cal-
culated from a dispersion relation, is proportional to (cop /coo), and agrees to this order with that de-
rived from orbital velocity perturbations, to order (qE„/m~oU0) . The rf current density in the in-
teraction space is derived; "self-bunching" and the underlying physics of the gain ("self-catching")
are explored and a comparison is made between the collective formulation and that of single-
particle orbits.

Motivation for using protons to drive a simple transit-
time oscillator lies in its potential ability for both produc-
ing very intense microwave beams as compared with
those using electrons, and for fusion research in terms of
obtaining the necessary very large energy densities that
are needed.

A self-excited microwave oscillator, or free-particle
maser, can be obtained simply by passing a beam of
charged particles through a resonant cavity under ap-
propriate boundary conditions. ' This simple system
represents a maser, equivalent to a purely quantum-
mechanical treatment for stimulated emission from indi-
vidual particles, with the momentum balance taken up
by the radiation mode itself acting against the cavity
walls, exactly analogous to the role played by the heavy
nucleus in bound-state systems.

Electron masers, sometimes referred to also as monot-
rons, studied heretofore, ' have shown relatively low
efficiencies at high power levels, principally because of
relativistic effects, which even at relatively high energies
have little effect on performance of a proton maser. This
result remains unchanged even in those cases where a
guiding magnetic field is applied to the electron beam in
an effort to render the motion one dimensional, as it is in
the case of the proton maser.

A dispersion relation will be derived by computing the
linearized current density and using this as the source
term for a solution of Maxwell's equations. We will com-
pute in detail only the gain for the fundamental cavity
mode. The methods developed, however, are general and
could be used to compute operation in any higher modes
as well. A rectangular cavity model is chosen for simpli-
city, but without loss of generality, with the fundamental
TEpi i mode corresponding to polarization of the electric
field across the particle-transit gap, and the eigenfrequen-
cy independent of that gap and determined by lateral di-
mensions (see Fig. 1).

An energy exchange relation and associated gain will
also be derived by directly perturbing the orbital velocity
of the particles, with the resulting growth for the mode
fields identical to that derived above using the dispersion
relation.

The particle velocity V and density N are perturbed
about the steady-state low-charge-density values Uo and
No, where Uo is the beam streaming velocity and No the

an+U an+N av 0
at ax ax

(2)

From Eq. (1), a solution for u which satisfies the bound-
ary condition v (0, t) =0 is

(3)

where k is real and of magnitude k =coo/Uo, coo is an ar-
bitrary real frequency, which we will identify later for
convenience as the real part of the loaded cavity-mode
frequency. E represents the fundamental-mode electric
field amplitude in the absence of any beam loading. With
this value of v, the perturbed beam density is found from
Eq. (2) as

—NoqE kx
e

m coo Uo
(4)

which also satisfies the boundary condition n (0, t) =0.
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FIG. 1. TED» mode geometry.

initial uniform beam-particle density. Inside the cavity,
these quantities are functions of (x, t) only, and the cavity
gap extends from x =0 to x =Ax. The perturbed quanti-
ties, v and n, are defined by V = Uo+ v and N =No+ n.
The resulting linearized equations of motion and con-
tinuity are

av+U av qE
e

at ax m
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To first order in the perturbed quantities, the current
density J is given by

qNo Uo+ qNoU + q

2

=Jo+ [i (1—e'" ) —kxe'""]E e
47Tcop

where cop 4mNoq /m and Jo is the initial unperturbed
current density. The fundamental-mode electric field in
this case is along x, is independent of x, and depends
upon y and z. The field components for the unloaded
mode are given by the following:

E =Eo sin(my /b) sin(nz/L),
ETC I Q)ptB = Eo sin(cry/b) cos(mz /L)ie

1TC l CaptB,= — Eo cos( cry /b ) sin( m.z /L )ie
ci)OL

where Ep is the assumed initial excitation amplitude
present in this mode, and the magnetic field interaction
was neglected since the cyclotron radius for the protons
is assumed much greater than the cavity gap Ax, and par-
ticle velocities are only along the x direction. Note that
at energies of interest this simplification is not in general
possible for an electron beam. '

The perturbed current density (5) is now used to derive
the source term in order to solve Maxwell's equations for
the cavity-beam interaction, which, for the case of a
current density having only an x component and in terms
of the electric field is given by

BE BE BE', B E

4 BJ„
Bt

(7)

where, in general, the cavity fields are superpositions of

the (l, m, n)th eigenmodes,

E = g EP „cos(k„x)sin(k y )sin(k, z)e
I, m, n

E» = g Ef „sin( k„x ) cos( k y )
I, m, n

X sin(k, z)e

E,= g EI' „sin(k„x) sin(k y)
I, m, n

X cos(k, z )e ™
with

k„= lvr/Ax, k =me/b, k, =n~/L,
and

B = (i/—col „)VXE,
EI" „k„+Ef„k +E; „k,=0,
kI „=k+k+k, .

The usual procedure is to synthesize the current source
term in Eq. (7) in a Fourier expansion in the orthogonal
eigenmode series and determine the field-amplitude
coefficients and eigenfrequencies produced by the source.
The wave vectors are real, but coI „ is in general complex,
and may show growth or damping in a particular mode.
This is a particularly simple procedure in the present
case, where the current density contains the y, z depen-
dence of the TEo» mode. The only term from the
Fourier expansion of the source which contributes to the
TEo» cavity mode, which is independent of x, is there-
fore the constant or lowest-order term, essentially just the
average of the source over the interval of orthogonality in
x, and we arrive at the dispersion relation for this mode
from Eq. (7),

Ax
(coo„) —(k c) =(co /hx) (1 e'" +ikxe—'"")dx

2i +,-kgx+ 2ie'

1+ (k& )
2sin(khx) +. 2cos(kbx) + .

(k& )
2

cos x l sin x

=co (a+iP), k =sr [(1/b) +(1/L) ] .

It should be noted that the time factors occurring in
Eq. (7) were cancelled on either side in arriving at Eq. (8).
This comes about because we are comparing terms in the
dispersion relation over many field oscillations, but still
over less than one growth time, so the magnitude of the
electric field is essentially the same on both sides. In ad-
dition, we identify the arbitrary ~p as the real part of
coo», so the relative phase is stationary. The validity of
this procedure, however, depends upon the smallness of

coo&&=+(y +5 )' [ cso(8 2/) +isin((9/2)], (9)

where

the imaginary component in coo» as compared to the real
component, e.g. , that there be only small percentage
growth or damping per oscillation.

The roots of Eq. (8) can be extracted easily, and are
given by
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co.p
tan(8) =

co a+(k c) a+(k c/co )

locity. v is thus arbitrarily small compared to unity.

T= r+(v/Up) f [cos(cop/Upx+P) —cosP]dx

Wz=(y +5')' sin(0/2)=(k c)(cu. /k c) P/2,
or explicitly in terms of the cavity geometry by

CO

E 2k c
2cos(kdx) . 2

also, y= a+(k c) and5=co P.
For cases of interest, (k c/co )»1, so as to avoid

critical density problems, so the phase angle 0 is always
small compared to unity. The imaginary root from Eq.
(9) which determines field gain is then given by

=r+ ( v/cop) [sin(copr+ P) —sing —cop~ cosP] . (14)

—v sing —vcopr cosP+P] —cosPI

Next, we use the first-order transit time from (14) in (13)
to compute the second-order perturbed velocity when the
particle crosses x = Ax,

5v( T, P) = —(qE„/m ~p) [cos(cop T+ P) —cosP]

vUp [cos[Bp7+ v sin(cc) pr+P)

(10)

The cavity-stored energy growth for this same beam-
cavity system can also be estimated from a perturbation
in the particle velocity. Particles incident at x =0 with
velocity Up and which exit the gap at x =hx with veloci-
ty Uo+ 5v then have a change in energy given by

be =
—,™vp+5v) —

—,™Up
=mUp5v+ —,'m(5v )

The mode electric field is represented as E,sin(cot+/),
where P is the arbitrary phase when the particle enters
the cavity at x =0.

First calculate the perturbed transit time T in terms of
the perturbed velocity and the perturbed velocity from
the equation of motion as follows:

T= Ax dx
o Uo+ 5v

f«dx
o Up , f 5v(x)dx,

U2 p
(12)

qE
5v(t) = f sin(capt'+P)dt'

m 0

= —(qE„/m cop) [cos(capt +P) —cosP] . (13)

Then, using the zeroth-order orbit t =x/Up in (13) to
define 5v(x) for use in (12) results in the following per-
turbed transit time to first order in the natural expansion
parameter v=qE /met)pUo the ratio of maximum parti-
cle velocity imparted by the mode field to the incident ve-

We can express this result in terms of the unperturbed
transit angle through the cavity gap by noting that
kAx =coohx /Up N07 where 7 is the unperturbed tran-
sit time Ax / Up. Note that growth or damping depends
upon the sign of the oscillating function of transit angle
above, growth if positive and damping if negative. Note
also that this growth is for the cavity field strength, with
the growth for cavity-stored energy twice as great and
which can be written in terms of e, with mo -k c and
c=co07/2, as

2'
W„= (cote —1/e)sin e .

Ct70

We now compute the energy gain up to second order for
a particle crossing the cavity gap, after averaging over
the initial field phase parameter P. The beam is com-
posed of completely uncorrelated incident particle veloci-
ties, evenly distributed in phase and uniformly covering
the cavity cross section, as in the previous dispersion cal-
culation. Using the above value, Eq. (15), for 5v we need
to evaluate the following expression for the average ener-

gy gain

be= f 5vdg+ f (5v) dP.
2& 0 4' o

(16)

while the second member produces the remaining
second-order terms

mUpv
[1—cos(cppr)] .

By combining these terms, the phase average energy gain
per incident particle through second order in v can be
written

2q E„
b, e = (e cote —1) sin e .

m coo

Equation (17) is a result in agreement with an earlier
quantum-mechanical calculation by Marcuse for a
transit-time oscillator. If we multiply this result by the
incident uniform particle flux No Uo, we obtain the power
gained by the cavity per unit of area. If we then integrate
this over the cavity cross section, we obtain the total
power delivered to the cavity. Denoting the cavity stored
energy by W, we then have

dW ~z Uo
(e cote 1)sin ef—fE„dy dz .

dt 2~~0

We can also express the cavity stored energy at any in-
stant in terms of the volume integral of the energy densi-
ty,

W= ' f f fE dxdydz= f fE dydz,

The first term in (16), linear in 5v, contributes the quanti-
ty

mU v
[1—cops sin(cope) —cos(cope ) ],
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