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Electrical conductivity of nondegenerate, fully ionized plasmas
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Within a virial expansion of the electrical conductivity of a fully ionized plasma, which takes into
account many-particle effects, different limiting cases are considered. An appropriate interpolation
formula is compared with experimental values.

The conductivity o of a (hydrogenic) plasma governed
by the Coulomb interaction is given by a universal func-
tion

I /2 2

o (n, T;mI, m„)=, cr,
(k~ T)' (4~co)

where T is the temperature, n =n& ——nz is the density of
electrons (I) or protons (h) in the charge-neutral plasma,
and mt and mz denote the masses of the light and the
heavy particles, respectively.

The behavior of the electrical conductivity has been in-
vestigated by means of quantum-statistical approaches;
see Refs. 1 and 2 and references given therein. Interpola-
tion formulas for o(n, T) have been constructed which
are valid in a wide range of the temperature-density
plane.

The derivation of interpolation formulas for the con-
ductivity implies the correct treatment of limiting cases.
We consider the case m&/mz «1 and perform a low-

density expansion, '

cr '(n, T) = 3 ( T)inn +B ( T)+ C( T)n 'r inn + . . (2)

0 N

N„D,„,
(5)

with the correlation functions N = (R,P,„), D„
= (P„(r));P ), where

( A, B)= —f dr Tr[poA ( i fir)B], —p

p o

(A(rl);B)= f dre"'(A(t), B),

density expansion (4) breaks down for the strongly cou-
pled, nondegenerate region r ~ 1, 0 ~ 1, where new
effects (bound-state formation, structure-function effects)
may become of importance. As discussed below, the
discrepancies to Ref. 1 are clearly pointed out within our
quantum-statistical approach.

A generalized linear Boltzmann equation is derived
from linear response theory which allows for a direct
comparison with respective expressions of standard kinet-
ic theory. Applying a finite moment expansion, the con-
ductivity is given by '

e2 ( 8r= (4am l3)', 0= (3n. n)
4~&ok~ T

(3)

the expression for cr*(1,8~ ~ ) has been found,

cr* =0.591(lnI + l. 102

+0.2391 i lnI i + . ) (4)

which can be applied for I & 1 and I Q ' «1. We
will relax the latter restriction so that we obtain results
for the entire region I & 1, 0& 1. Obviously, the low-

For the virial coefficients 3 ( T), B ( T), and C ( T),
different results can be found in the literature. ' '

Whereas A (T) is given by the Spitzer result, the evalua-
tion of B ( T) includes the treatment of dynamic screening
and ladder- T matrix approaches, and C ( T) is deter-
mined by self-energy effects and nonequilibrium two-
particle correlations. In particular, the quasiclassical
limit of these coefficients has been considered in Ref. 3.
Introducing the dimensionless parameters'

R=— Po, P = g A'k, (PA k /2m)) a~aq,
ml

the time dependence of operators and po are determined
by the system Hamiltonian. Expression (5) is fully
equivalent to the Kubo expression for the conductivity
and allows for the evaluation of the transport coefficients
for arbitrary degrees of degeneration. Many-particle
effects in a strongly coupled plasma can be taken into ac-
count in a systematic way. For this, the correlation func-
tions in thermal equilibrium are related to thermodynam-
ic Green functions which are evaluated by means of a di-
agram technique.

Whereas the values N, = —eNI" (m +—', ) IPI ( —', ) are
immediately obtained in the nondegenerate case (N = n II,
particle number), a perturbative treatment is needed to
evaluate the correlation functions D„, . In lowest order
with respect to the density, the D„are given by a ladder
sum of diagrams. This T-matrix expression relates the
correlation functions to the two-particle scattering pro-
cess. We introduce the transport cross sections Q, , (k)
and Q„,(k) for electron-ion and electron-electron scatter-
ing, respectively,
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The transport cross sections Q (k) can be represented
by integrals over the scattering angle X [or the transfer
momentum q =2k sin(P/2), respectively] in the follow-
ing way:

Q„(k)=2~ (1—cosX)sing dX,
o dA

2
D" "=~A y f d~ q

h, l, q
3

&& &«~+, +E(, ~)fhfl

if the dielectric function is taken in random-phase ap-
proximation; f& and f& denote the distribution functions
of ions and electrons, respectively. Numerical evaluation
of the collision terms within the Lenard-Balescu approxi-
mation yields the low-density expansions

D„"'" =(n +m)!d(lng+c„" + . ),
D«' =&2d(lng+c«' a+ ' ' '

)

(9)

with 1/6

where do. /dA denotes the differential cross section. For
the Coulomb interaction, the behavior of the integrand in
the region of small 7 values leads to the well-known
Coulombic divergences, and we have to introduce the
concept of dynamic screening. However, at present a
rigorous treatment of a dynamically screened T-matrix
approach, where the ladder sum with respect to the
dynamically screened Coulomb interaction is considered,
is not in reach.

The regularization of the Coulomb divergences in the
region of small scattering angles [2k sin(Y/2)
&(2ne p/eo)' ] is already obtained from the Born ap-
proximation which is justified for the evaluation of the
differential cross section in this region. The treatment of
the linearized Lenard-Balescu equation yields, e.g. ,

2

V(q)
o( Eq +E( —co )

e(q, co)

For 2k sin(X/2) »(2ne pleo)', the differential
Lenard-Balescu cross section converges to the differential
cross section of the Coulomb interaction in Born approxi-
mation. The ladder-T matrices are immediately evalu-
ated for effective static Debye potentials

2

V„(r)=— exp( —r/R„" ),
4~@or

e2
V„(r)= exp( —r/R„" ) .

4~@or

(10)

D &'&
——&2d [in/+ —,

' ln(2ne Pleo)+lnR t',

+c",, + ]

with c"' = 1. 170, c"
, = 1.670, c", ,

' = 1.920, and
c ]1':0.8235. Comparing with the Lenard-Balescu re-
sults (9), we find for the effective Debye radii

(R;, '
) =1.4727ne P/eo,

(R;; ) =0.4313ne P/eo .
(12)

This result indicates that the potential strength of dy-
namic screening corresponds to a static screening by
about half of the density of electrons, if e-e collisions are
considered, whereas in e-I collisions the total electron
density and about one half of the ion density contribute
to the effective static screening.

Taking the Debye potentials (10) with the effective De-
bye radii (12) as an optimized static potential, the trans-
port cross sections Q (k) can be evaluated from a phase-
shift calculation. Introducing the classical parameter
e=k a~R/2 and the quantum parameter K=~ k a~,
we propose the following interpolation formula for the
transport cross section:

Usually, the Debye radii R,", and R„" are taken by
putting co=0 in the dielectric function of Eq. (8). We will
determine the open parameters R," and R," by the con-
dition that the Born approximations in evaluating the
collision terms D„coincide with the Lenard-Balescu re-
sults. In evaluating the D, , the T-matrix results with
respect to the effective potentials (10) are expected to be a
reasonable approximation for the dynamically screened
T-matrix results because at small scattering angles the
correct Lenard-Balescu behavior is reproduced, whereas
at large scattering angles the differential cross section of
the Coulomb potential comes out ~

The evaluation of the collision terms D, for the
effective potentials (10) in Born approximation gives the
results

D„",„=( n + m )!d [in/+ —,
' ln( 2ne p/eo ) + inR „"'

+c„" + ),

1 3 (o/r)'",
4 2~
c (2 )1/2 2~ 1/2P1/2

(4rreo)

and c"'" = 1.323, co", ——1.823, c",1'" ——2.073, and
ce' = 1.590.11

k a~
Q (k) =aoln e
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(13j
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with ao ———,
' for e-i and 0.'0 ———,

' for e-e collisions. The
correct classical asymptote gives a, =y e/16=0. 5389
for e-i and a] ——y e /64=0. 3662 for e-e collisions, y
denoting Euler's constant. The coefFicients a2, 0.3, and o.'4

of the Fade approximation (13) can be chosen to repro-
duce the Born approximation for ~ ~) 1, and the first and
second WKB approximation for small quantum correc-
tions K «1. The parameters a5 and e6 are introduced to
fit the behavior of Q (k) in the quasiclassical limit for
small values of e. In contrast to the interpolation formu-
las given in Refs. 7 and 8, the general form (13) yields a
strictly positive behavior of Q (k). In detail, we have for
e-i collisions a2 ——1.9804, a3 ——3.4035, a„=2.0298,
a~ =0.6276, and F6=4.5. For e-e collisions, we find

a2 ——1.4644, a3 ——102.69, 04 ——3.4166, a5 ——0.25, and

a6 ——2.25. We mention that the estimations for 0.
&

and a6
are not of relevance for the evaluation of the virial
coefficients A ( T), B ( T), and C ( T), but are introduced to
give a good fit (relative error (1% for e) 1, ( 15% in

the entire e region given in Ref. 7 for the quasiclassical
limit of e ic-ollisions) to the numerical results.

In analogy to (13), we can also give interpolation for-
mulas for the collision terms D„which reproduce the
correct limiting cases in the quasiclassical and in the
Born approximation. However, we discuss here immedi-
ately the results for the inverse conductivity.

The values of the virial coefficients of o ' (2) depend
on the number L of moments taken in Eq. (5), and a
quick convergence is expected with increasing numbers
L. The Spitzer value

3 ( T) = —32.676T (14)

is obtained with an accuracy of 0.2% in a five-moment
approximation. (We use the units m for the density, K
for temperature, and (Qm) ' for the conductivity. ) For
the evaluation of B (T), we consider the three-moment
approximation (L =3) which yields the Pade approxima-
tion

1 —(2 139X10 ')T
B ( T) =98 030T .

' ln T+ 10.612+ —,
' ln—

1 —(1.833X10 ')T —(1.038/10 ' )T
(15)

For C(T), we refer to the value given in Ref. 3 for the
single-moment approximation (L =1, Debye-Onsager re-
laxation effect) which is also given in Eq. (4).

The virial coefficient B (T) interpolates in the region
I & 1, 0) 1 between the quasiclassical limit I 0)) 1 and
the Born limit I '0 «1, where in both cases the correct
behavior /i&lnT+/3z for the bracket in (15) is reproduced.
Comparing with the results for the quasiclassical limit
given in Ref. 3, our more rigorous recalculation of the
constant /l2 gives a lower value (10.612 instead of 11.256).

An interpolation formula for the conductivity has al-

ready been given in Ref. 1 which correctly reproduces the
Born limit of the Coulomb logarithm. Our fit further-
more reproduces the quasiclassical limit [(cr *

)

—ln(T In)]. As mentioned in Ref. 1, a single-moment
approximation is not able to give the correct prefactor
A ( T) in the low-density limit of the conductivity.
Adopting the prefactor from the Spitzer theory [cf. Eq.
(14)] as proposed in Ref. 1, already the next-order term /3z

of the virial expansion is not correctly obtained. Our fit,
however, is based also on the correct value for /32.

To give an estimation for the Coulombic part of the

TABLE I. Experimental values o.,„„,of the electrical conductivity for different plasmas by Ivanov et al. (Ref. 9) and the theoretical
predictions o.,h„„„based on Eq. (16). For comparison, the values o. ,z according to Ref. 1 are also given.

Gas
T

(10' K)
n„

(10" m ')
expt

(10' n-' m-')
orr

(10 0 ' m ')

Ar

Xe

Air

22.2
20.3
19.3
19.0
17.8

30.1

27.5
27.0
26. 1

25. 1

24.6
22.7

19.8
19.6

1 1.0

2.8
5.5
8. 1

14
17

25
59
79

140
160
200
200

1.1
1.9

0.13

0.368
0.505
0.604
0.736
0.838

0.564
0.822
0.922
1.150
1.260
1.380
1.500

0.303
0.367

0.267

56.9
33.2
24.4
16.7
13.7

17.9
9.24
7.47
4.93
4.34
3.66
3.38

94.6
65.0

218

190
155
170
255
245

450
680
740
690
780

1040
930

130
165

60

238
248
257
288
288

474
542
580
679
699
753
735

182
197

200
203
209
234
232

442
506
546
657
660
728
694

148
160

53.1
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conductivity also for I —1, we propose the following in-
terpolation formula which is suggested by the expression
(13) for the transport cross section:

T3/2 l —
y /r 20~

yo 3 y2
l

l —y, /r'0 —y3/I- 0
& [y, +y, ln(7 6f' '+ 1)]'+ 1

(16)

As already discussed for B(T), the constants yo, . . . , y4
are fixed by the Born and the second WKB limit. The
parameters y5 and y6 are fitted to the numerical evalua-
tion of the conductivity using the expression (13) for the
transport cross section. We find yo =3.060 & 10
y, = 1. 1586, y, =3.1355, y, =3.0369, y4 ——3.6588,

5= y6=
Comparison between expression (16) and experimental

values for the conductivity can be performed with data

for extremely nonideal plasmas such as given in Ref. 9.
The results are shown in Table I. Taking into account an
experimental error of about 30%, theory and experiment
are not in contradiction. However, the experimental
values are systematically smaller for the lower-density
plasmas (I -0.2, . . . , 0.7), but for the higher-density
plasmas, they are higher than the theoretical ones. This
situation is slightly improved (about 5% correction) if the
Debye-Onsager relaxation effect according to Eq. (4) is
taken into account. For comparison, we present also the
results of Ichimaru and Tanaka' in Table I which in-
clude, especially, the effects of degeneration and structure
factor. They found also an overall agreement with the
experimental results within the error bars of about 30%.
More precise experiments on the electrical conductivity
are needed in order to verify the region of validity of the
different fit formulas.

The present approach can be immediately generalized
by including further effects as bound-state formation and
degeneration. In this way, the theory can be extended to
describe, e.g. , partially ionized plasmas and is able to give
an improved approach to the strongly coupled case.
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