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Feynman path integrals offer a convenient and elegant tool for dealing with the statistical physics

of quantum-mechanical systems. By using the Trotter product formula, one can evaluate directly

the propagation of many-body quantum systems in imaginary time. The idea of an inhuence func-

tional arises when one wishes to consider division of the physical system into a primary system and

a bath. We present a general approach to the problem of constructing inAuence functionals, one

that is capable of dealing both with Boltzmann baths {classical oscillators) and quantum baths of bo-

sons or fermions. The fermion bath of special interest is generally a submanifold of the electronic

state such as the bridge structure connecting chromophores or electron localization subunits which

are common in problems of mixed valency and superexchange. The fermion bath is treated by a

general rewriting of the influence phase S as a sum of an eigenvalue part SEv and a remainder, S,
that describes transitions. Reduction of the original Hamiltonian leads to a reduced Hamiltonian

with effective off-diagonal matrix elements and influence functionals which can include memory

effects. We present a general formalism for construction of influence functionals, and discuss partic-
ular applications to systems of interest, especially in electronic-structure problems. The following

paper presents a variational technique for finding effective Hamiltonians.

I. INTRODUCTION

There are many physical problems in which only a
small number of states is required to describe quite com-
pletely the energetics and/or dynamics; examples include
coupled spins, minimum-basis electronic-structure mod-
els, and angular momentum systems. More generally,
however, one is interested in situations in which attention
is focused on a subsystem of a larger system that contains
a very large (perhaps infinite) number of states. Examples
include an atom or molecule interacting with a solvent,
impurity levels in solids, chromophore subunits of large
molecules, optically strong vibrational levels in a far
larger overall vibrational problem, adsorbates on solid
surfaces, and colloidal particles in a host. For all of these
systems, solution via diagonalization of a large matrix
representation is impractical; rather one would like to ob-
tain a proper technique for describing the subsystem of
primary interest, with proper consideration of the secon-
dary states. One powerful technique for studying such
influence problems includes the use of Feynman path-
integral methods, in which influence functionals charac-
terize the effect of the secondary manifold of states.

Influence functionals provide a method to deal with de-

grees of freedom which are known either precisely or
only statistically. " A standard model is the influence
functionals for a harmonic bath. ' ' The great advantage
of this functional comes from the fact that it leads just to
gaussian integrals and these can be handled very easily.
An alternative (non-Gaussian) influence functional was
constructed by Soper. Our aim here is to extend a
method introduced in Ref. 4(a) to derive a general class of
influence functionals for a decomposition of a Hamiltoni-
an. Starting from a mathematical point of view, we ob-
tain a very useful tool for a large variety of problems. It

even contains the idea of an inAuence functional dealing
simultaneously with the effects of a harmonic bath and of
a fermionic bath.

We give the basic idea in Sec. II and derive from this a
general formula for the evaluation of influence function-
als. Further, we discuss some connections to known
theories like the influence functional for a harmonic bath
or a bath of two-level systems. ' ' In Sec. III we create
some algebraic techniques to make the basic theory appl-
icable. We work out two fundamental properties of tran-
sitions of a system and discuss the connection with sym-

metry properties. An-important eigenvector property of
constant paths is investigated; this facilitates the separa-
tion of the overall influence functional into an eigenvalue

part characterizing propagation in given eigenfunction
space and a remainder, characterizing transitions. In
Sec. IV we evaluate three straightforward, but realistic
examples in order to demonstrate the characteristics of
the application of the evaluated mathematics. Section V
embeds the harmonic-bath idea in our formalism, and
presents a discussion of the harmonic bath, that will be
extended in the following paper. In Sec. VI we finally
construct the influence functionals for two general exam-

ples explicitly and describe the main features. The fol-

lowing paper contains variational techniques for the gen-
eral construction of influence functionals, based on the
formalism developed here.

II. GENERALIZED PATH INTEGRALS
AND INFLUENCE FUNCTIONALS

A. Basic theory

Path integrals are a special tool for evaluating propaga-
tors, i.e., exponential functions of Hamiltonians, using
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Trotter's product formula. This formula shows that a
propagator can be calculated by multiplying its first-
order short-time expansion so often that the sum of the
short times is just a given time. The essential physical
idea is that one gets the same result if one propagates a
system in time all at once or if one breaks the time in ar-
bitrary slices and propagates the system one time slice
after the other. We are especially interested in statistical
properties of a quantum system and therefore always
work in imaginary times PA=Pi/kT. Time slices are
denoted throughout the presentation by eR =f3'/P,
where P is a large natural number, the number of time
slices used. If one has written a time propagator of a
given system as a product of short-time propagators and
one tells how to perform these operator products, name-
ly, by inserting a resolution of the identity in some basis
between every single product, than a usual path-integral
representation of the propagator is obtained. The gen-
eralization of path integrals in imaginary time that we
will employ arises from the fact that one can calculate
with blocks of a block-decomposed matrix precisely as
with matrix elements, in the sense that a square or any
power of a block-decomposed matrix is evaluated by
summing up products of blocks in the same manner as
one does with matrix elements evaluating matrix prod-
ucts.

We start our theory very formally by defining a block
decomposition of a given Hamiltonian. Equivalently, we
first define a resolution of the identity of a given Hilbert
space H, called the original system space; let K, ,
i =1,2, . . . , N be a complete set of orthogonal projectors
operating on H. Then we can write the Hilbert space H
as a direct sum of the subpaces H, =K, (H),

H=+, ,H, .

X might be a natural number or infinity. Let now H(r)
be an arbitrary Hamiltonian on H dependent on the
imaginary time ~. The imaginary-time variable ~ runs of
course between 0 and /3A. The number P of time slices equi

is assumed to be large in the sense that Trotter's product
formula can be applied to the imaginary-time propagator
of H using a first-order expansion of the short-time prop-
agator of H in e:

p~
exp ——f H (r)dr

o

P —1

= Q (Id —eH' ')
o. =0

A P —1 —~a(

b(0) b(P) ) ~ —0

with the abbreviation H' ':H(aeh') for a=0—, 1, . . . , P
The operator product is understood to be time ordered.
The operators in the last line of Eq. (2) are mappings be-
tween the subspaces H; of H and therefore represent a
block decomposition of the Hamiltonian H. We obtained
a generalized path integral for the propagator of H.
Given the propagator of a system one can by definition

calculate the thermal-equilibrium average of any Hermi-
tian operator I on H by

Q(f3)(L ), „=Tr exp ——J H(r)dr L
pa

where Q (P) denotes the partition function of H and Tr
the trace operator. But a path-integral representation of
the propagator as in Eq. (2) has an advantage only if we
can solve the path integral, at least together with the
trace operator in Eq. (3); the usefulness of the concept
arises from success in evaluation, not just from rewriting.
Whereas the purely theoretical part of this paper is also
true for real time, we restrict the treatment to imaginary
time when we discuss variational solutions of the path in-
tegral. These variational techniques are very effective but
applicable to imaginary time only.

Generally we like to treat the path integral by reducing
the system space H to a (smaller) space H of dimension X.
We call H the reduced system space. Further, we assume
an orthonormal basis of vectors

~

i ), i =1, . . . , N, which
spans the reduced system space H. If N is finite we can
take without loss of generality H=C and i ), the ith
unit vector of (L . To the Hamiltonian H' ' defined on
the original system space H we associate now a Hamil-
tonian H ' operating on the reduced system space H so
that for all a and for all i&l the following condition is
fulfilled:

(i H'I~i)=0 —K,H"K, =o. (4)

For the rest, H is for the moment left arbitrary. The path
sum equation (2) can of course be considered as a path
sum in the reduced space H because the labels have
values between 1 and N. It is now most important for the
formal part of the theory to express the original short-
time propagators by reduced short-time propagators and
an inhuence from the reduction. With the shorthand no-
tation for the matrix elements of the reduced Hamiltoni-
anH,

& ';
'—= (~~H' '~~), &, ,

'—= (i~H '~l ) for @I,
we define block operators from the original Hamiltonian
Hby

H' '=K H' 'K —h ' 'K- T' '=K H' 'K /t '- '
I i i i& i I = i I i, 1

The first factor is a complex number and therefore com-
mutes with all the operators. Inserting the factorization
Eq. (7) in the path sum formula Eq. (2) we obtain

if t, I'&0. If t ', I' vanishes we choose T,'&' arbitrary. Fur-
ther, we set for notational convenience for equal indices
T, ,

'—=K,-. Note that H, ' ' is a Hamiltonian on the sub-
space H, of H whereas the operators T,-'I' are dimension-
less. With these definitions the following basic observa-
tion connects the short-time expansions of the original
and the reduced propagators:

~(rr )

K e ' K&=(i~e ' ~l)T,'&'KIe ' KI .
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pa
exp —— H (r)dr

o

N P —1 P —1 —~0( '
—~H (~) —(~+1) (~) g(a+1)

b(()) b(P) 1 ~ —O
)

This is, up to the norming partition function g()c3) of H,
just the average of the last operator product with respect
to the reduced system. The T, &

part represents, of
course, just the transitions between different blocks.
Such transitions have to follow after every time-slice
propagation. Inserting this result in Eq. (3) one further-
more gets for thermal averages

I

Taking now for the reduced space just H = Ho and for the
reduced Hamiltonian H =Ho we calculate

H, =K, (HI +H, )K;

and for i &l

T, , = ~i )(1 sId„„

b(0) b(P)
n g (tz) —eH i I (n+]) 8(cx) S (L)

b e

and get for the influence phase Sz the result

( )
—/3H

1Ss [cr ]= ln Tr, , e

B. Special example

Motivated by the usual reduction of a bath of harmon-
ic oscillators-" ' or a bath of two-level systems " we treat
here as an original system space a tensor product space

H=—HoH (10)

where a time-independent Hamiltonian H operates hav-
ing the form

(9)

S~(L)
where e can be written down explicitly as a trace of a
well-defined product of operators. Choosing for I. the
identity operator we obtain the partition function Q(f3)
We write simply Sz for Sz(Id). The index B reminds us
that S& describes the influence of the block decomposi-
tion of H Sh depend. s on the specific path b ' '),
a=O, . . . , P, through the reduced state space and we
denote it sometimes more clearly by S~ [b'"'].

We call Se the influence phase (of the block decompo-
sition and reduction) of H That we c. an write down S~
explicitly enables us to examine a large range of exam-
ples; this was never easily done before. The terms
"influence functional" and "influence phase" were intro-
duced in the literature some time ago by Feynman and
Vernon, ' and we have to show that our terminology
does not contradict theirs. In fact the known terminolo-

gy is contained in ours, as we now show.

P —1

+ln exp ——g /3c n ~ cc

a=o Hl
(14)

XF[o' ' X( '] (15)

The result is a functional of o. ' alone. Equation (14) is
in fact used traditionally, e.g. , in deriving the influence
phase for a harmonic bath. In the harmonic-bath case
the average ( ) JI can be done analytically with

1

Gaussian integrals. For brevity we will not repeat the
standard procedure to derive the influence phase for a
harmonic bath; but we collect the results which we will
use in Sec. V and make some clarifying remarks. The
dressed-states model is not only a specific example for us;
properly extended, the dressed-states model will even
contain the general theory mentioned in Sec. II A, and
therefore provides just another interpretation for the
reduction process.

C. Restatement of the dressed-states model

where c, ~=(X
~

(i Hl i)
~

X) is the coupling matrix
element and ( . . . )H denotes the usual path average

l

with respect to the operator H, , i.e., for a functional
F[ola) X(a)]

P —1 —eH(X(a)~ ) iX(a+) ) )

(F[&( ) X( )])
I
~(a)

I

H=HoIdH +Hr+Idn H

and Ho and H, are defined on Ho and H, , respectively.
Let

~

cr ), cr HMo, an orthonormal basis of H() and X),
X&M], an orthonorrnal basis of II~3, . Then the dressed
states cT ) X) form a basis of the original system space
IHI. We consider Ho as a system Hamiltonian and H, as a
bath Hamiltonian. The interaction HI shall be diagonal
in the given dressed-state basis. The usual reduction pro-
cedure integrates out the dressing of the system states

~

cr ). We show that this procedure is equivalent to a
reduction in our sense using the following decomposition
of H-

Let Ho be a Hilbert space with an orthonormal basis
~o ), ~(T ) EMO, and for every o HMo, let H be a Hilbert
space. Now we dress any state ~o ), o &MD, with its
specific bath H and define the original system space H as
the following direct sum:

H= (1) [(C
~

o))@H ] . (16)
o

Now we define a complete set K, , i EMO, of orthogonal
n

projectors on H by

K, = ~i)(i gId„

K, =K, —= i ) (i Id)) for all i EMo . (12)
One discovers immediately that the example in Sec. II B
is just the special case where all the bath spaces H are
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the same. On the other hand, there is even an isomor-
phism between the general theory in Sec. IIA and the
model here because the direct product notation in Eq.
(16) is trivial up to an isomorphism. (C~o ))sH is of
course isomorphic to H and therefore H is isomorphic to
the direct sum of H,

N

+ g (r '(, )T,(()+adjoint),
i, l =1
i (I

H= e H:—H.
a EMo

(18) H( ) yi ( )~;~(;~

This isomorphism includes operators in the sense that
linear operators L on H correspond uniquely to operators
L on H. First we set K, equal to the canonical projector
of the direct sum H on H, . Then we assign

L= g KLK, g Ii)(l ~(aL(=L, —(19)

where L;, denotes the operator K;LKI restricted to the
subspaces HI and H;. There is an interesting interpreta-
tion of this mapping. One can imagine that L is a big
matrix defined on the space H. The operator sum on the
left-hand side of Eq. (19) describes an additive decompo-
sition of L into its subspace components. All the parts
K,-LKI have, as a matrix, the same size as L. L; I are in
general smaller matrices, namely, the nontrivial part of
K,-LK, . To know only the submatrices L,-, is unfor-
tunately not enough to build up the matrix L because L, I
does not specify into which block location (i, l) of L it has
to be inserted. But the tensor product ~i)(l~L,

&
con-

tains the full information we need; the operator
~
i ) ( l

~

acts as a pointer to the right location within L. Deriving
now the influence phase Sz in the space H, we end up
with the formula

(20)

III. TECHNIQUES FOR EVALUATION
OF INFLUENCE FUNCTIONALS

A. Permutationlike transitions and separable transitions

Equations (5) and (6) lead to the following representa-
tions of the original Hamiltonian 0 and the reduced
Hamiltonian H:

where for equal indices T,-, is the identity operator on the
space H;. S2) defined as in Eq. (9) in the time-independent
case and the functional S2) here in Eq. (20) are, of course,
the same. There is only a slight difFerence in the organi-
zation of the calculation. In Sec. IIA we used subma-
trices of H imbedded properly in matrices of the size of H
for the calculation. The transition matrices T, I described
jumps from the i block of a big matrix to the l block and
the connection of different short-time propagators. In
Eq. (20) we work only with the submatrices, denoted by
the overbar. The trace with respect to the pointer space
Hp is already carried out. Of course, the isomorphism de-
scribed here is also valid in the case of a time-dependent
Hamiltonian, we just suppressed time-dependency for no-
tational simplicity.

+ g (t ,'('~i)(T~+adjoint) . (22)
i„l = 1

i(l
We omit the time dependence via a in the following for
simplicity. The reduction process of an original system
defined above leads, according to Eq. (9), to the reduced
Hamiltonian 0 and the influence phase Sz describing the
influence of the reduction. For further treatment the re-
duced Hamiltonian has, of course, to be considered as the
easy, solvable part whereas the influence phase Sz
represents the difficult part characterizing the much more
complicated original-system behavior. In this section we
show how to produce, in important cases, formulas in
closed form for the influence phase Sz by choosing the
parameters h,- and t; &

of the reduced Hamiltonian so that
the influence phase S~ will be small compared to the re-
duced Hamiltonian. The transition operators T; t play,
due to Eq. (8), an important role in the calculation of the
influence phase Sz. But these operators also occur in Eq.
(21) for the Hamiltonian. Comparison of Eqs. (21) and
(22) leads to the conclusion that H will describe H better
if the transition operators T;, I have more algebraic prop-
erties of the operators ~i ) ( I ~, and then the influence S~ is
expected to be less serious. First we observe for the cou-
pling part of the Hamiltonian H

(rT( )+at » T(a)t)(rT(a+1)+r «T(a+1)t)
i, l — i, I i, I — i, I

+ ~i(2( T( )T( +1)+T( )T( +)))
i, I I, i I i i, l (23)

The right-hand side of this equation shows that this
operator acts on the subspaces H, and H& alone and we
can evaluate functions of this coupling part readily if
these operators on H, and H& are projectors. Motivated
by these observations we examine here, in the time-
independent case, the following basic property of the
transition operators T;, i.

Definition Let K,'":—. T, & T, , and K&"=T&, T; &. We-
say that a pair (i, l) leads to a permutation like transition
if and only if K "and KI" are projectors.

We first remark that in the special dressed-states exam-
ple in Sec. II B all the transition operators T; &

are permu-
tationlike and even have maximal rank, K,' '=K; and
K&"——K&, there. With the definition of permutationlike
transitions we extracted the basic algebraic idea which
made the dressed-states model tractable. The most
powerful method we can get is a combination of permuta-
tionlike transitions of maximal rank as in the special
dressed-states model and permutationlike transitions of
minimal rank defined below as separable transitions. But
before we do so, we justify the terminology permutation-
like for the projector property of K,' ': For any analytic



868 KURT ALLINCxER AND MARK A. RATNER 39

function f one can show with Eq. (23) if the pair (i, l)
leads to a permutationlike transition

f (tK,'"T, , +t*K,('T„)
=f (0)(Id —K,I"—K(('()+f, (

~

t
~

)(K,("+K(('()

where f+ and f represent the even and the odd part of
f, respectively. Using this result for the function
f (z)—:1+z —z one sees immediately that the operator

P, , =f (K,'"T, (+K('T(, )

pairs (i, l) and (m, n), which lead to separable transitions,
a memory function Y, i.

Y (. „(A)—= ln(v, (Aw „)
for arbitrary operators A . (29)

Then the right-hand side of Eq. (28) is just
exp[ Y, (., (( A 2 A i ) j. An important case is if all transition
operators are separable. Then the functional S~ can be
described by memory functions Y, (. „(A), where the
operators A are simple propagators in time of the Hamil-
tonian blocks H, defined in Eq. (6). In general we observe
for separable pairs (i, l), (m, n), and (p, q) the possibility
of decomposition for the memory,

=Id —K, "—Ki"+K 'T, i+Ki"T, , (25) Y(. „(A,T Az)= Y(~ (A, )+Y . ,„„(A2) . (30)

P, ,K,("P, (
—K,'" . (26)

We will use this property later for expressing exponential
operators after a transformation with the permutations
P; i by exponentials of the transformed original operators.
If the permutation property is fulfilled the remark after
Eq. (20) that the operators T, ( describe jumps from the i
block of a big matrix to the l block can be visualized nice-
ly.

Now we give the second basic definition and show how
it meets the permutation property.

is a permutation of the spaces K, ' (H; ) and K("(H(), i.e.,
P, i is unitary and Hermitian and

One of the most successful tools to write down the
influence phase Sz for examples explicitly is to determine
the separable transitions and to decompose paths maxi-
mally. The reason we call Y a memory will become clear-
er with the application of the preceding idea, especially if
we have developed enough formulas parallel to the
harmonic-bath case so that we can compare Y with the
well-known memory function for a harmonic bath.
While it was very obvious how to use separable transi-
tions after having worked out Eq. (28), we have to think
about a more fundamental principle of physics in order to
take advantage of the permutation like transitions of
maximal rank.

Definition We say t.hat a pair (i, l) leads to a separable
transition if and only if T, i is a dyadic product, i.e.,
T, i

——w, iv, -
i for states w, i and v, i in the original system

space.

One easily verifies that separable transitions are permuta-
tionlike up to a norm factor: With T, i

——w, iv, i,

B. Symmetry properties and permutationIike transitions

Nonseparable permutationlike transitions T, i are most
e6'ective to calculate influence phases if their correspond-
ing permutations, Eq. (25), represent symmetries of the
given Hamiltonian H, Eq. (21), or of a modified dimen-
sionless sub-Hamiltonian, e.g. ,

(T, , T„)'= Iv, , 1' w, , (27) h—:g PH+ g T(, (31}
and therefore T, i is permutationlike if the vectors w; i

and v,-
i are normed to unity. Therefore it will be con-

venient to choose t, i in this case so that the vectors v, i

and w, i are normed. We also observe from T, i =0 that
for a nontrivial separable transition the vectors v, i and
w, i are orthogonal to one another. If T, i=w, iv, i with
normed vectors w, i and v; i then the associated permuta-
tion P, , see Eq. (25), permutes just the orthonormal
states w; i and v, i. Further, permutationlike transitions
form a closed algebra in the sense that with T; i and Ti „
the product T; iTi „ is also a dyadic product. Separable
transitions can immediately be used to characterize the
influence phase S~ for block decompositions for special
paths by memory functions. First we observe that for a
separable T,- i,

Tr( AT, (A)2=v; A(z Aw, ( (28)

for arbitrary operators 3
&

and 32, i.e., if there is at least
one separable transition contained in a path

~

b ' (),
a=0, . . . , P —1, then St([b' '] can be expressed by the
logarithm of a quadratic form. Therefore we define for

where No is a subset of the set IO, . . . , N I. One shows
straightforwardly that for a permutationlike transition
the symmetry property

HP, (
—P, ,H

is equivalent to the following five equations:

Im(H. K'")=Im(t; ()K("

Im(H(K( ') = —Im( t; ( )K(",

(H(+h(K(}(T(,K,'")=(T(,K,' ')(H, +h, K, ),
t iT iTi,-K,'"=t,T,K,'" for all rn&i, l,
t,„,T,-T, iKi' ——t (T iKi" for all m&i, l,

(32)

(33a)

(33b)

(33c)

(33d)

(33e)

where we used for an arbitrary operator 3 the abbrevia-
tion Im(A)—= (A —A )/(2i). Similar conditions can, of
course, be written down if h, Eq. (31) or any other
modification of H commutes with the permutation P, i.
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In that way we obtain a scheme for treating partial sym-
metries of a Hamiltonian.

Now let us discuss permutationlike transitions of maxi-
mal rank, i.e., we assume now K,'"=K, and K&' ——K&.
Then the first two equations (33a) and (33b) just demand
that t, i is real. In the last two equations (33d) and (33e)
one can omit the factors K,'" and K&'. These two equa-
tions enable us to contract some sequences of transitions
to much shorter sequences. Furthermore, we obtain from
these equations for m &i, l the relation

Sz [b' I —=i]=ln(TrK;e 'K; )—:ln(Tr, e ' ), (38)

the free energy of a system described by the Harniltonian
H, . If

I

i ) were an eigenvector of the reduced Hamil-
tonian H then the constant path b' ':—i would be the
only one containing I for some time a and delivering a
finite Boltzmann weight. Eigenvectors are time invari-
ant. In general, we declare the eigenvector part SEv of
the influence phase Sz as

I

2K&/I —
I

K( I (34)
N —PH,

~ ()SEv[b' ']= g ln(Tr, e ') g n I (39)

A very important tool follows from Eq. (33c), namely,
that the commutator

[H T, iH(T(, ]=0 . (35)

We could write here P, t instead of T,-
I concluding that

the permutation P, &
transforms in some sense H, into H&

and vice versa. From this we get for the following piece
of path occurring in the calculation of the influence phase
S~..

(36)

Equation (36) combined with the memory Y; is the chief
instrument to writing influence phases explicitly. Here
we make clear that this equation arises from symmetry
properties of the Hamiltonian. One easily verifies—
starting from Eq. (31) with Ii, I I C:No —that partial sym-
metries are enough to obtain Eq. (36).

Let us discuss briefly what the symmetry properties
mean in the special dressed-states example in Sec. II B.
We already said that in this example all the transition
operators are permutationlike of rnaxirnal rank. We cal-
culate for the corresponding permutations

P, I
——P; IIdH (37a)

(37b)

We then interpret the operators
I

i ) (1
I

as pointers to a
certain block location, visualizing the eA'ect of P, I as a
proper permutation of two blocks. Equations (33a),
(33b), (33d), and (33e) are fulfilled for the modified Hamil-
tonian h, Eq. (31), with No the whole set IO, . . . , N I.
Equation (33c) is in general not true, it is equivalent to
the condition that the i and l block of the interaction are
equal, i.e., (i

I
HI

I

i ) = (I
I
Hi

I

l ).

C. Eigenvector part of influence phases

Whereas we have discussed until now algebraic proper-
ties of transitions, we consider here, in contrast, paths
where no knowledge about transitions is required: the
paths without transitions or constant paths. For a path
b' ', which is i for all values of n, one gets immediately

where P, I is an ordinary permutation matrix in the space
@o

i&&i
I
+ Ii&&i

I
+ Ii&&i

S~ =S~ —S~y .0 (40)

The superscript 0 reminds us that this part of Sz vanishes
for constant paths. The decomposition of S~ into an
eigenvector part and a remainder (in general complicated)
will play a fundamental role for variational calculations.
SFy creates, for every reduced state, a reference line, the
free energy of the Hamiltonian H, , around which the real
system fluctuates. One expects very good results if one
adjusts variationally a parametrized Hamiltonian H and
an influence phase SFy neglecting S&. Having in mind a
trick that martingale theory is based upon, one could ex-
tend the decomposition of Sz also, treating paths sepa-
rately which are constant from time 0 to Pfi/2 and from
Pfi/2 to Ph' but have a transition at time P i/ir2 and so on.
A distribution can be characterized not only by its rno-
ments but also by partial averages. However, we restrict
ourselves to the first step, the "mean spherical approxi-
mation" only pulling out S~y, and not considering fur-
ther paths with a finite number of kinks.

If Sz =0 we can show an obvious physical interpreta-
tion for the eigenvector part SEv because in that case SEv
is just the influence phase Sz for block decomposition of
H. In fact we can show that there exits in any case a
Hamiltonian H which delivers, after reduction to H, just
SEv as influence phase of the reduction. With a Hamil-
tonian, a physical interpretation of SEv is constructed.
Note that the eigenvector part SEv competes with the di-
agonal of H, i.e., with the levels of the reduced system, as
one can see from the values of the total action functional
S for constant paths,

—Ph, —PH, —PK, HK,S[b' '—=i]=-ln(e ' Tr, e ')=ln(Tr, e ' ') .

(41)

a=O

SFy checks the contributions of S~ if the system stays all
the time in one and the same subspace H;. n ', '=0, 1 is
the occupation number of the reduced state

I

i ) at imagi-
nary time cx. It checks the occupation of the space H, at
time a. For nonconstant paths b' ', SEv[b ']=0; for
finite N especially the handling of SEv requires a finite
number of operations and therefore SEy is a solvable part
of the inhuence phase, exactly as the matrix problem H is
considered to be solvable. For any specific model of H
and reduction, the eigenvector part SEv is with certainty
a part of the influence phase S~. We define the rest of
S~, namely, the complicated part,
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In order to separate the two components we extend H to
H'. Let

1 —PH,a;:———ln(Tr, e ' —1) for i = 1, . . . , N (42)

IV. CHARACTERISTIC EXAMPLES

The discussion up to this point has been rather forrnal,
stressing the separation of the influence functional into an
eigenvalue part and a (more complicated) remainder, as
well as the nature of the various types of transition. It
seems appropriate to give some simple examples in which
this sort of analysis is applied to reasonable model prob-
lems.

A. Discretixed Laplacian with cyclic closure modulo 4

and define a (2N) X(2N) matrix H' by putting H in the
left corner and making the rest diagonal with h, +a, in
the (N+i)th diagonal place. Identifying now via a pro-
jector K,

' level i and level N+(., one can easily see that
the reduction of H' to H delivers just SFv as the influence
of the reduction. The construction of H' is not unique.
Of course, one can use a larger diagonal part and then
identify more levels. Once again, the name "eigenvector
part" for S~v is justified by the form of H'. We remark
that Tr, e ' might be smaller than 1 and therefore a, is
not necessarily real and H' can be a complex Hamiltoni-
an. The preceding interpretation of H together with S~v
can naturally lead not only to shifted energy levels but
also to certain lifetimes. H might already be H'. We
then obtain from the above certain cases where the eigen-
value problem of H is exactly solvable by a matrix prob-
lem. Embedding H in the larger H' does not mean that
we go back to our old "large" Hamiltonian H. The
second N lines of H' are diagonal and therefore trivial. It
just shows in a compact way that the problem with
S~ —=S~v is solved if H is diagonalized. But this reflects
just the fact that only N constant paths are necessary to
describe SFv completely.

First H is the topological matrix of a Huckel treatment of
cyclobutadiene. Reduction with K, and K2 identifies
carbon atoms so that the cyclobutadiene is contracted to
an ethylene molecule. Second, H is the Hamiltonian for
the simplest singlet —molecular-orbital treatment of the
hydrogen molecule H~ assuming a ls orbital with a and P
spin localized at every H atom as the fundamental atomic
orbitals. The two spin wave functions

I

1 ) and
I

3 )
represent neutral structures whereas 2 ) and

I
4)

represent ionic ones. Third, we remark that the double-
symmetric difference V,

V a( =a(+]—2a(+a(2 (46)

and further that the permutation P, 2
——T, 2+T2, just

permutes H, and H2,

(47)

i.e. , we can apply Eq. (36) to evaluate the infiuence func-
tional and discover that it is independent of time, even in-
dependent of the selected path,

for any sequence a(, 1EX, has, modulo 4 with cyclic clo-
sure, H as matrix representation with 6 = 1, Eo = —1. In
other words, H describes a discretized free particle prob-
lem with cyclic closure.

Of course, the eigenvalue problem of H can be solved
immediately but here we want to demonstrate how the
reduction technique works and how the influence phase
Sz is obtained. We have a simple situation where all
transitions are (not trivial but) permutationlike of maxi-
mal rank. The parts H), H& and T( z of H, Eq. (6), are
all equivalent to the 2 )& 2 permutation matrix

I
» &21+

I
» &11,

H, =6[11)(2 + 12)(11],
H, =3 [13)(41+ 14)(31],
T(, =

I
1)(41+12)(31

Therefore we find that T, 2 is permutationlike with

K] —= T, 2T2 ]
——K], K2 —= T2 ]T] 2

——K2,(2) (])

We study here the 4)&4 Hamiltonian matrix

2EO 6 0
S//[b' ']=S/3(P):=in Tr, e ' =in[2 cosh(Pb, )] . (48)

2EO 6 0

0 5 2EO

0 5 2EO

using the partitioning

~, =
I
» &11+

I
» &2

f(' =13&&31+14&&41

and the reduced Hamiltonian

(43)

2Eo

2E0 (45)

where 11), . . . , 14) is the canonical basis of R and Eo
and 5 are real parameters.

There are several realizations of this Hamiltonian.

Actually, the permutation P, 2 permutes even with the
Hamiltonian H, i.e., Eq. (32) is true and the time invari-
ance of Sz is a consequence of symmetries. Because of
this time invariance the partition function Q (p) of H is

Sthe partition function of H up to the factor e ~. Further-
more, the equilibrium average of the energy is the same
for the original and the reduced system,

S~ (/3) /3g
—/3( Eo + 5 ) —/3( Eo —6 )

(49)

The reduction formalism enables us to use symmetries
immediately for the calculation of partition functions
without doing a spectral decomposition first. Of course,
we can give the square form of the partition function
Q(p), Eq. (49), by just interpreting H as the molecular or-
bital (MO) Hamiltonian of H2. In this case, no calcula-
tion needs to be done because in the MO picture the two
electrons of I-I2 are treated as noninteracting particles, if
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Coulomb repulsions are ignored.
We remark that one might also think of identifying, in

the H2 case, the homopolar structures on one hand and
the ionic ones on the other hand. This procedure would
correspond to a new partitioning marked by primes,

KI=
I
»&1I+ I3&&3I

K;= I2&&2I+ I4&&4I,

EO

(50)

H'=2
Eo

St'] =SEv ——ln(2)
P —1 P —1"+ rr
a=O a=O

(52)

Here is K', '&K', and Kz"&I(:z, but nevertheless the
permutation P', 2 commutes with H, as one can see from
Eqs. (33). Thus the primed decomposition is a decompo-
sition by symmetries but less trivial then our original
decomposition.

B. One-fermion problem

In our next example we use memory functions rather
than symmetries. But for demonstration we restrict it
again to a simple case. In Ref. 4(a) the one-fermion hole
system was reduced to a two-state system. Of course, fer-
mions and fermion holes are isomorphic. We reformulate
here the simplest case, namely, the reduction of three
one-fermion states which are occupied by one fermion to
a two-state system. We study the 3X3 Hamiltonian ma-
trix

Then one gets H', =Hz=0 and the transition T1z is se-
parable and permutationlike,

T', z =(K]v) (Kzv)ot, (51)

where &i
I

v= 1 for all i =1, . . . , 4. In this case the
influence phase Sz is totally defined by the transitions.
One can easily show that then S~ is equal to its eigenvec-
tor part and

Hamiltonian H',
3H'—= y g, a,"a, + (t, ]a, a]+adjoint),

1&i &1 &3
(56)

i = m1m2m3 (57)

with m, =1,mI ——0 for l&i. The occupation numbers m,
are here not only one-fermion level occupation numbers
but also occupation numbers for the real states Ii &.

Since we have only one fermion available this statement
is of course trivial.

Now we determine the influence phase S~. We write
here S„,. for S~ to indicate that we contracted the two
secondary states. Equation (39} gives immediately the
eigenvector part SEv of S„„

—pB, P —' ()SEv =ln(Tr„,e ') g (1 —m', '),
a=O

(58)

where Hz is defined in Eq. (6), Tr„, is an abbreviation for
Tr(Kz K2), and m', =0, 1 is the occupation of the
primary level g1 at imaginary time e. The rest S„,:—Sz
of Sz depends on the transitions. But there exists only
one transition matrix T, I

——T, 2 and this matrix is separ-
able,

&1I HK,
T, z

———K, HK2lz=
z

(59)

Taking for z the norm (
I
t, z I +

I
t, 3 I

)' of the tran-
sition vector & 1

I
HK2&0 we get T] z to be permutation-

like. In general S„„.can be expressed by a memory func-
tion defined in Eq. (29),

where a, are annihilation operators for fermions and the
adjoint a, the corresponding creation operators. Using
the Hamiltonian H, Eq. (53), we intend to integrate out
two secondary one-electron levels gz and g3 and to keep
one primary level il] untouched. The three states

I
1&,

I

2 &, and
I

3 & can be characterized by their occupation
numbers m, =0, 1, which determine the occupation of
state i with the fermion.

I
i & is the "determinant" wave

function

'91 t1Z t1 3

t1, Z

t2 3 '93

(53)

—~PH 2Y(r):—Y],p p ](Kpe

=InI &I
I
HK2e '(HKz)

I

I &/ z
I ], (60)

using the partitioning

K, = l&&l
I

K2= I2&&2I+ I3&&3I
(54)

with 0 (~ & 1. Proper decompositions of paths in the re-
duced two-level space shows that

P —1 P —1 k k+1
Y —m'~] g (1 m]~+r])m]~+k+2]

k =0 a=O y=1

and a two-level system as the reduced Hamiltonian &

—z* h2
(55)

where
I

1 &, I2&, and I3& denote the canonical basis of ](

g; and h2 are real parameters, and t; I and z complex pa-
rameters.

First we discuss a realization of the Hamiltonian, Eq.
(53}. For one available fermion H is isomorphic to the

(61)
The product over occupation numbers describes quite
clearly what we mean by proper decomposition of paths.
Not the memory function alone but the function Y to-
gether with the product of occupation numbers (long
range in time) has to be considered as the memory of the
reduction process. The difference to the well-known
memory of a harmonic bath is first structural: the prod-
uct over y would not be there in the harmonic-bath case.
Second, the form of the memory function, Eq. (60), is
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different in the harmonic-bath case. But there are also
similarities, namely, the rest of the structure of Eq. (61).
We will discuss this point later.

Besides imaginary time the influence phase S~ is
I

characterized only by the occupation number m. From
this, one might get the impression that we integrated out
the two levels g2 and g, . In fact one can show by
transfer-matrix method that

122
( a )

122
( a )I ( a )

I
e

—eH
I
m ( a + 1 ) m ( a + 1 )m ( a + 1 ) )

s+s
a=0

(62)

where S denotes the action functional for the two-level
system given by H and the sum extends over all m2 ',

m 3
' ——0, 1 under the restriction of conservation of parti-

cles, i.e. , m ',
' +- m 2

' +m, ' = 1. The transfer matrices
we mentioned above are, of course, isomorphic to the ma-
trices H, , H2, and T, 2. Equation (62) demonstrates an
isomorphic way to calculate S~, a realization of the iso-
morphism discussed in Sec. II C.

In Sec. VI we will treat an important generalization of
this example variationally. But in our special case with
H2 belonging to a two-level system our advantage is that
we can write out the memory function Y. We will do so
to demonstrate that our general theory only looks simple
because it is formulated in a compact way with the basic
ideas given in some algebraic definitions. In fact, the gen-
eral formalism is far from being trivial. Because H2 is a
2X2 matrix its propagator (and any other function) can
be obtained readily by spectral decomposition of H2:
define with the eigenvalues k, and k2 of H2,

H2 ——A. 131+A.232, (63)

f (A. ) ) f(A2)—
(64)

This formula allows us to write down the memory func-
tion Yin the form

—7.PA,
I

—7.PA.)—7.PH )Y(r) =ln Tre

—pl.
1

—pA,
e ' —e

1,2~ 1,3) H2

0
1, 2

the spectral decomposition of H2. Then the projectors
3, and 3 2 are expressed by the unit matrix Id and H2
by inserting A2:Id 31 leading for any analytic func-
tion f in the nontrivial case A, )&A,2,

(A. ) ) —A (k2)f (H2) = Trf (H, ) — Id

logarithm one might find irrational expressions like
square roots. In fact, expanding the exponential func-
tions in Eq. (65) leads to the following formulas, valid
even for A. , +A, &0:

Ik&2] k

i=O

k —2i 2~

kj +k2 k1 k7

~1 ~2 [(k —1)/2] k

2v+ 1

(67)
~1+~2

2v

The right-hand sides are of course rational in g2, g3, and
t2 3. In Eqs. (67) we developed the basic sum formulas to
be used for summing out the occupation numbers m 2 and
m3. The existence and use of the sum formulas Eq. (67)
teaches us that our formalism to sum up a subset of paths
is not trivial. Furthermore, Eq. (65) tells us something
about the nature of the paths summed up,

~1,2

(r), 2 rl 3)H2 s (212 h2)
I &), 2

1, 3

+(q3 —h2)
I r), 3 I

'

+2Re(r) 2t23r31) . (68)

C. Four states and two fermions

The only term which is not symmetric in the transitions
is the last one. Following in time the two fermion holes
instead of the one fermion, one sees that due to this last
term the two fermion holes have exchanged their states
from time 0 to the end. There are just two different ini-
tial (and final) occupations of the holes leading to a com-
plete determination of the system and so leading to the
factor 2 in Eq. (68). This does not reflect any antisym-
metry of fermion holes, it only reflects the fact that fer-
mion holes are indistinguishable.

g1 2
—+ =+

2

2
'92 l3 +

I r, 3 I

'
1/2

(66)

But there is no reason to expect that in Eq. (65) under the

(65)
Here the ( ) notation indicates that the vector is
normed to unity, and assuming for z the norm of the vec-
tor (t) 2, t, 3). Further, we choose h2 so that TrH, =0,
i.e., h 2

——I g2+ g, ) /2. Then the secondary part H2 has
the eigenvalues

For the last example of this section we have to combine
the two methods demonstrated above. One part of the
Hamiltonian can be treated by symmetry, the rest by se-
parable transitions. We start with a physical form for the
Hamiltonian, namely, the analog of Eq. {56)but with four
orthonormal states instead of three. We insert two fer-
mions so that all the six real states, two fermion states,
are given by determinants

I
m) m2m3m4) with m, =0, 1,

the occupation number of single fermion state a,
I
0),

and rn1+m2+m3+m4=2. Ordering the basis of two
fermion states by
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I

1)—:
I
1100),

I

2)—:
I

0011),

I
3) —:

I
1010),

I

4)—:
I
1001),

I
s) —=

I
0110),

I6)= I0101) .

(69)

T„=I»(s +I4)(6I . (74)

The transition from state
I

1 ) to state
I

2 ) is forbidden
and therefore the transition matrix T1 2 can be chosen ar-
bitrarily. This is caused by the fact that in one time step
only one fermion can be moved because H contains no
operators a,- aj,.a&a . A11 the other transitions are permu-
tationlike, T3 4 even of maximal rank,

We obtain the following matrix representation of H:

01+ '92

0

0 t2,
3+q4 —t, 4

—t14 g, +g3

t2, 4

t34

—t*, ,
t2 4

t1, 2

t2, 3

0

t24 ' t13
—t2, 4

t3, 4

0 92

0 t1,2

t3, 4

t2, 3 0 t34 92+ 94

(70)

By reduction we want to identify the two states with

m, =1 and m2 ——0 and the two states with m1 ——0 and

m2 ——1. Then we can characterize the system by the oc-
cupation numbers m, and m2 alone. We therefore define
four projectors K, , . . ~, K4 by

1)(1

By the corresponding permutation just H3 and H4 are
permuted and Eqs. (3S) and (36) can be applied for i =3,
I =4. The consequence is that propagation in the K3
space and in the K4 space have the same effect in the
influence phase S~. The effect of transitions from state

I
1) and 2) to the K3 and K4 spaces and back still

remains to be studied. The remaining transition matrices
are, however, separable (and permutationlike). They are
isomorphic to the normed transition vectors. For
i E t 1, 2

I and I E ( 3, 4I

0
2 —m

1
'4 m

I
m

1
'm

1

(7s)

The indices of the transition vectors characterize the
transitions by the occupation numbers m, . With the oc-
cupation numbers n, defined after Eq. (39) one observes
the relations

K —= I2)(2I

K, —= I3)(3I+ I4)(4I

K, —= s)(s + I6)(6

(71) tl1 =m1m2

n2 ——(1 —m] )(1—m2),
(76)

This decomposition of the Hamiltonian H is already indi-
cated in the preceding matrix representation. Denoting
the transition vectors by

n3m, (1 —m2

n4 ——(1 —m, )m2 .

Sl 1=(t2,3~t2, 4)~ Sl,o: (tl )alt, 4)

So 1=( tl 4i/1 3), So 0=( t2, 4&t2, 3)

we define the reduced Hamiltonian H by

(72) This shows that after reduction the knowledge of the two
(primary) occupation numbers m, and m2 is sufficient.
Furthermore,

91+ I2

0

I si, o I

n3+ n4 I So, 1 I

I
so 1 I nl

s„,

I sl. o

So, o I

(73)

3n+ n4
I
m, —m2 (77)

Now all we need to do in order to get a closed formula
for the influence phase Sh is to put together the preced-
ing parts of information. We make the following ar-
rangement for the 16 needed memory functions,

'93 t 34Y, „„,(r)—:ln 's, exp —rP0
m&, m&, m&, m& m l, m

1 3,4 l4
0+

III IIm1, m
&

(78)

where m, , m ', , m", , and m 1" are 0 or 1 and 0 & ~ & 1. Then we get for S& ——SEv+Sz the following result:

'93

SEv =ln ' Tr exp —P
3, 4

t34 P —1'g Im' ' —m
~4 - . a-—-0

(79)

P —2 P —1

0 (a) (cx)S, = g y Y „„„„„„„,„, , «".» (1 —Iml —m,
1

'
1 l

/ =0 a=-0
A:+1

Im ' —m'" " ''' —' + —m'—m2
) =1

(80)
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There is a close analogy of this remarkable result to the
result of example in Sec. IVB, Eqs. (58) and (61). It be-
comes apparent that the occupation difference in the two
primary levels has here the same effect as the occupation
number had in example 8. Of course, exactly as in the
one-fermion example, we can write down the memory
functions explicitly. Furthermore, we can show that S~
meets well our starting point in the sense that S+Sz can
be obtained by integrating out the occupation numbers
m 3 and m4 under conservation of particles, i.e.,

, m,
' '=2; it is just analogous to Eq. (62}.

V. BLOCK DECOMPOSITION AND LINEARLY
COUPLED HARMONIC BATHS

A. Theory

%'e extend here the idea of reducing a harmonic bath
to the case where the harmonic bath is coupled linearly
to certain projectors instead of simple states and also
where the subspaces in which the projectors operate are
contracted due to our general theory. To be specific we
define an original system space Ho with a partitioning

tK, i =1, . . . , NI by N orthonormal projectors K, and
a harmonic bath space II( as the J-fold (JH 8) tensor
product of the space of real functions. A basis of the
functions over R is given by the vectors

~

X ), X E R, so
that the scalar product (X' X ) is just the 6 function in

L —X'. The total original space is then spanned by the
dressed states ' o. ) X, ) XJ ) with cr ) in H„.
Now we consider an arbitrary system Hamiltonian Ho on

Ho coupled linearly by an interaction H, to a Hamiltoni-
an H~z on H, , which represents a harmonic bath so that
we get a total Hamiltonian H in the form

with mass M and frequency co of the jth oscillator and
either

P =P" =ML (83b)

in the case of classical harmonic oscillators or

(83c)

T, , =( To), , = K, HoK, /t;,

The short-time propagator of H, restricted to the K,
space can now be factorized into one part originating
from the coupling and harmonic bath and a matrix part
arising from Ho,

—6H
K, e 'K, =exp —e g c, X +H„„

in the case of quantized harmonic oscillators. From time
to time we also use the notations H~q and H~p to be
more specific. The essential difference in the classical and

quantum case is that P" commutes with all other parts of
H whereas P""does not.J

The aim of our reduction is to contract H to a reduced

system Hamiltonian H& defined according to Eq. (22) in

the time-independent case on the reduced system space
C . During this procedure we should integrate out the
harmonic bath totally. Therefore we use as the reducing
projectors on the total original space just K, @Id,, for

1

i =1, . . . , N. Then we obtain for the parts of the Hamil-
tonian H, Eq. (6), which we need to build up the influence
phase Sz,

H, =K, (HO), K, + g c, X K, +H„a,

H =Ho+H, +
By linear coupling in the coordinate we mean

H~(|XI)= g g K, c, ,X, , c,, ER .

The harmonic bath part is as usual

J
H„„(IP,X ) )= —,

' g (P /M, +M, co,'X;:},
i =l

(81)

(82)

(83a)

(85)

This results in the fundamental fact that the influence
phase S~ is only a sum of the influence phases (S„)z for
block decomposition of Ho and the well-known influence

phase Sz& describing only the reduction of a harmonic
bath. Equation (9) now delivers, e.g. , for the partition
function Q (/3) of the problem in the quantum-mechanical
case,

Q(f3) g 0 )) f d IX(0!I.. . I d aX(P —1)$ ( tX(~~)
f

(b (&~1 --EH
$

b (o'+()) IX(&&+1)( ) (86)

Q«)=Qua(P}Q. (II)( ""+ ""),
q (87)

Here the sum runs over all b' ', . . . , b' ' from 1 to N un-

der cyclic closure b' '=b', and the Harniltonian H is

obtained from the total Hamiltonian H, Eq. (81) replac-
ing Ho by its reduced H&. and by replacing in the interac-
tion HI the projectors K, by ~i )(i . The remaining in-

tegrals in Eq. (86) just determine in a standard way the
usual influence phase for a harmonic bath. In the classi-
cal and quantum-mechanical case one obtains the follow-

ing final result for the partition function:

Here QttB is the partition function for HttB, Q& the parti-

tion function for Hv, and ( ) ~. an average with

respect to H~ according to Eq. (15}. The well-known

influence phase S~~ for a linear coupling of a harmonic

bath is defined and shortly discussed in Sec. VB. The
two influence functionals appearing just as a product in

Eq. (87) reflect only the fact that we started from dressed

states, i.e., from a tensor product of spaces. Specific
models of the block decomposition via the K, operators
lead to specific examples for (So)~ in Eq. (87). In Ref. 5

we will discuss a calculation of the complicated path in-
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tegral ( ) v by variational techniques. This possibili-

ty makes Eq. (87) a very practical tool to determine parti-
tion functions.

We remark that there is also another way to obtain Eq.
(87), namely, by reduction step by step. We might first
carry out the reduction of the harmonic bath and in the
second step contract the K, blocks. Then we would ob-
tain in the quantum-mechanical case after the first step a
Harniltonian which depends on imaginary time, namely,
Ho+HI( IX(r) I ). But our general theory in Sec. II A
enables us also to work out the block reduction starting
from this time-dependent Hamiltonian.

B. Review of the idea of an inAuence phase
for a harmonic bath

A derivation of the influence phase S„z can be found
in many places. ' ' ' Therefore we fix here only our
notation and discuss some aspects which we will use.
The value of the infiuence phase SHa, Eq. (87), for a path

b ' '), a=0, . . . , P, in the reduced state space is (in
discretized form)

P —1

SHa[b ]=
~ g psb„„~„,,z~„„b(„,p~ &,b b, b

/

a —a'
P

(88)

Here s, l is the scalar product of the two transition vec-
tors from state i and state l to the harmonic bath,

i, l i l with c, =:
ct j

(2M co )'~
J J

(89)

The memory function Z, &(r) is identical to 1 in the case
of a classical harmonic bath and in the quantum-
rnechanical case is

x cosh[(1 —2r)x]
o sinh(x)

with the density

(90a)

1
(p, ((x)—=

C - . Clt) J l~f

12M'
(90b)

Using Gaussian integrals the memory /3s, ~Z, &(r) can be
written as the time correlation of the matrix elements of
the interaction HI with respect to the harmonic bath, '

We will discuss later how to obtain even better classical
approximations for S~&z by iterative variational pro-
cedures. But Eq. (92) allows us to consider neglect of the
memory Z, l as a good starting point.

There is a similarity in the form of the memory Z,- l,
Eq. (90), and the form of s; &, Eq. (89). s, IZ, 1(r) can be
obtained from formula (89) for s, I if the frequencies
x:—/3A'~ are allowed to vary in time. Setting

1/22x sinh(x /2)

cosh[(1 —27 )x /2]
(93)x,'(r) —=

one gets

s. .(Ix;(r)I)=s, , (Ix, I)Z, , (r) . (94)

Because of the shape of the cosh graph the new frequen-
cies x'(r) have the square root of 2x tanh(x /2) as the
lower bound and the square root of 2x sinh(x /2) as the
upper bound. For small frequencies x, , i.e., in the nearly
adiabatic case where one can expand all expressions in
first order in the x 's, these bounds of the time-dependent
frequencies x'(r) are very narrow and good values from
the classical approximation can be expected.

Further, we remark that the memory function Z, &(r)
goes to 5(r)+5(1 —r) for a monochromatic harmonic
bath if the frequency goes to infinity. This results from
the sum rule for Z, l together with the Tauberian theorem
for Laplace-transformed functions.

Our main interest in comparing the classical and quan-
tum cases is to demonstrate that the calculation of finitely
many Gaussian integrals solves the first case whereas the
other requires the evaluation of infinitely many Gaussian
integrals, which cannot be done on a computer. There-
fore here we work out the main features of the classical
harmonic bath which is coupled linearly to a system. In
Eq. (88) (with Z, l

=—1) the coordinates X and the mo-
menta P are reduced. More important for us is a form
where the coordinates are not yet reduced,

the quantum-mechanical case: The memory Z; l corrects
the classical inhuence phase to a quantum-mechanical
one. One can demonstrate that one gets in the quantum
case in a certain sense the best classical approximation if
one replaces Z; I by 1. Z, I(r) fulfills the sum rule that its
integral from 0 to 1 is just 1. Therefore

f [g /3s, —&Z, &(r)] dr=minimum g=/3s,
&

. (92)

ps, IZ, 1(r)= ( Y, (0) Y&( —irpR) ) H

where

(91a) -«I J
1

P —1—g —+2x,d„„.
J =1 a=-0

(95)

J
Y;—= g c;X

j=1
(91b)

Here we use the abbreviation

d, ,:—&Pc, , /(2M, cu,')' ' (96)

This formula is the basis for an interpretation of
Ps, &Z, 1(r) as a response function. ' ' In Sec. VI we will
derive a similar result for the memory Y(r), Eqs. (60) and
(78). In the classical case Eq. (91) shows that SHB de-
scribes the dispersion of the time-averaged interaction
HI([X] ) with respect to the classical harmonic bath.
Equation (88) makes it easy to compare the classical and

and ( . )
~ ~

means Gaussian averages,

Xf(Ix I) . (97)

The procedure to gain Eq. (95) from Eq. (88) is called
decompleting the square, namely, decompleting the sca-
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lar product Eq. (89). This yields the formula to deter-
mine the partition function of the total Hamiltonian H,
Eq. (81), by (numerical) matrix diagonalization and form-
ing J Gaussian integrals,

the rest is called secondary. The secondary states shall be
reduced whereas the primary states shall be kept un-
changed. Therefore we define a partitioning of the state
space by the projectors

g (l3) = g HB(p)(T«)
(

(98) K, = ~i)(i for i =1, . . . , N —1, (102a)

where the Hamiltonian H depends on J Gaussian fields Kv= Id ——g K, .

and

J
H=13HO+ g 2x, D

D=gd, K, .

(99)

(100)

The Hamiltonian H of the system is assumed to be given
in a matrix representation in the given basis. From the
decomposition of the basis in primary and secondary
states follows a decomposition of H in a primary and a
secondary block H „;,„,, and H,.„.and an interaction part
t+ t between them,

2
si, l & si, t

s l l (101)

is fulfilled. Nevertheless, one can obtain Eq. (98) from
Eq. (88) also be disregarding such conditions on the s pa-
rameters, but this may lead to more than N Gaussian
ghost fields and even to complex matrices D, Eq. (99).

VI. TWO GENERAL EXAMPLES:
STATISTICALLY CHARACTERIZED LEVELS

AND BRIDGE ASSISTANCE

A. Reduction to a finite basis

From Sec. V, Eq. (87), we know that an explicit formu-
la for the influence phase (So)~ of a block decomposition
is quite sufficient to obtain a complete result together
with a reduction of a harmonic bath. In Sec. IV we al-
ready encountered some special examples of infiuence
phases for block decompositions. Here we will develop
two examples which are general enough to cover a large
variety of applications. Assume that [ ~

cr )
~

o.

=1,2, . . . ) is an orthonormal basis of an original state
space. The original space might be finite dimensional or
the dimension might be infinity. A fixed NEN is given
so that the first N, =N —1 states are called primary and

In fact sometimes even fewer than J Gaussian fields are
quite sufficient. N Gaussian fields are enough in any case
to fulfill Eq. (98). This works because the influence phase
SHa, Eq. (88), is in the classical case totally determined
by the scalar products of the vectors c, , Eq. (89), or of the
vectors d, , Eq. (96). But these N vectors span a space of
dimension J'&N. The construction of an orthonormal
basis for this space shows, of course, that N vectors d,',
i =1, . . . , N, in a J'-dimensional space are enough to ob-
tain all Ps, I as the scalar product of d,

' and dI. Then Eq.
(98) is true if we replace J by J' and D by D~' in Eq. (99)
and d, by d,' in Eq. (100) and if we renormalize the fre-
quencies co, j =1, . . . , J', so that the partition function

QHB is not changed. This phenomenon can easily be un-

derstood considering the fact that there are classes of
harmonic baths which deliver after reduction an identical
influence on a system. On the other hand, we remark
that formal use of Eq. (88) with an arbitrary set of 5, I pa-
rameters does not necessarily describe a harmonic bath
because the scalar product form, Eq. (89), requires certain
constraints, e.g. , that the Cauchy-Schwarz inequality

N —1

H „, ,„= g h, &
i )(1 ~, a (N —1) matrix (103a)

(oc)

H„,=g .h, , i )(l
i, l =N

(103b)

N —1 (~)
t= g i) g t, , (l~

i =1 l =-N

Here h, l and t, l denote just the matrix elements of H.
We define the reduced space as the direct sum
(S;v, ' '(-

~

i ) )t33C and the reduced Hamiltonian H~ as

(103c)

N —1

H &,
——H~„;,. „,. —g (z,

~

i ) ( N~ +z,
"

~

N ) ( i
~

)

+h,.„. N ) (N (104)

HN Hse' h Ky (105)

For i, l & N the transition operators T, l are simply
i)(1

~

and for i (i =N we obtain with the transition
vector (i t

T, , = —~i) (106)
Z

/

Therefore all i, l lead to separable transitions T, l and the
influence phase S~ for the block decomposition can be
described by memory functions

Y; i(r) =in((i te 't 1) Iz, z&*) . (107)

Thus we get for the complicated part S„,. —:Sz, Eq. (40),
the form

P —2 P —1

S,.„.[b' '] = g g Y, I.)

I =0 a=O

I

P
(1 —n ")

l-+1 —{a+y)(1 —lu+/ +2I)jl nN —n v
y

—
1

(108)

with arbitrary parameters z, , . . . , z~ 1EC and h, ,„.E R.
For N =2 we obtain just the one-fermion problem, Sec.
IV 8. The proper method to solve the reduction here is
an easy generalization of the method used in the one-
fermion example. Let us consider the parts H, and T, l,
Eq. (6) of the Hamiltonian H. For i =1, . . . , N —1, H,
vanishes, and H~. is a modification of H„, „
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where
~

b ' ), a=0, . . . , P —1, is a path in the reduced
space C and n ', '=(i

~

b ' ') are occupation numbers.
Comparison of this result with Eq. (61) in the one-
fermion example shows clearly how the generalization is
performed. The indices i, l of the memory functions Y, &

keep track of the fact that we have in general more than
one primary state. The indices solve the additional com-
binatorial problem. The same trick is already used by the
construction of the harmonic-bath inAuence phase with
the indices of the memory function Z, I(r), Eq. (88).

The eigenvector part SEv, Eq. (39), is

P —1

SEv[b ']=In(Tr„,.e ') Q n Iv' . (109)

It contributes only for the path where the system is
trapped in the secondary states. With Eqs. (108) and
(109) the influence phase S~ for the block decomposition
is fully determined. In Sec. III C we discussed the possi-
bility of including the eigenvector part SEv in a trivial ex-
tension of the reduced Hamiltonian H~ with the conse-
quence that the system is completely solvable by a finite
(small) matrix diagonalization if the memory S„„.van-
ishes.

Now we discuss some properties of the memory func-
tions Y, l(r). Expansion of Y; ~(r) in a power series in r
shows that all memories Y, &

vanish identically if and only
if the following two conditions are fulfilled:

(i~t t ~l ) =z, z&* for all i, l,
tH&t =0 for all n ~1 .

(1 loa)

(110b)

Equation (110a) is equivalent to Y, I(0)=0 and it contains
the condition that the absolute value ~z, ~

norms the tran-
sition vectors (i~t. This means that the transition ma-
trices T, ~ are not only separable but also permutation-
like. This algebraic condition is not surprising from our
earlier observation comparing Eqs. (21) and (22) that the
transition matrices T; & are represented after reduction
by the raising operators ~i ) (X~. This suggests that set-
ting z; =

~ ( i~ t
~

is a good a priori choice for the parameters
z, . Having in mind to also minimize the first-order mo-
ment of Y;1(r) leads from Eq. (110b) with n =1 to an a
priori choice of h„, as the arithmetic average of the quad-
ratic forms ((i ~1) PH„,((i~f), where the superscript 0
indicates normalization of the vectors. These observa-
tions are useful for obtaining proper starting values for
the variational procedures discussed in the following pa-
per.

Now assume z, to be the norm of the vector (i
~

t.
Then the operators Kz' defined in Sec. III A are projec-
tors on the space of secondary states. With the aid of
these projectors we get a possibility to interpret the
memory functions Y,- I as two-point two-time correlation
functions similar to the interpretation of the memory
functions Z; &

for a harmonic bath according to Eq. (91).

(111) contains the secondary-part average of the time
correlation of coupling operators, operating only on the
space of secondary states. But in contrast to the
harmonic-bath case only the combination Y, &(r)
+ Y,*~(1—r) has this property, not Y, , (r) alone. This is
easily understood because the entire memory, Eq. (108),
contains not only the memory functions Y, &

but also the
long-range (in time) product of the occupation numbers
n~, namely, the path test. This path test distinguishes
the contribution of the path and the reverse path,
whereas in the harmonic-bath case a path and its reverse
have the same Boltzmann weight. We remark that a for-
mula similar to Eq. (111) is true for the real part of
Y, I(r) The . imaginary part of Y, 1(r) can be written,
however, with a quotient of two different correlation
functions.

In order to make Eq. (108) useful for numerical calcu-
lations, such as variational procedures, one should note
that S„,has as ingredients besides the memory functions
Y, &

a characteristic structure. Therefore one can use
models for the memory functions Y, I starting from physi-
cal arguments instead of straightforward insertion of the
matrices t and H~ in the definition, Eq. (107). Then our
theory is a real help to correct finite basis calculations,
such as Hartree-Fock calculations by a model for the
remaining inhuence of the rest. In Sec. VI B, we will dis-
cuss such a modeling of the Y functions under some
specific assumptions. Besides truncation of a basis we
will demonstrate another application of our develop-
ments. Assume two chemical compounds, such as chro-
mophores, are connected by a bridge and one is interested
in the influence of the bridge (secondary states) on the
two compounds (primary states). Our formalism allows
us to contract the bridge to one additional state and a
memory. By variational procedures we can then renor-
malize the system so that it contains most of the inAuence
of the bridge. In Sec. VI C we will extend this example to
the case of two competing bridges.

B. Modeling of memory functions
from a random-noise argument

The discussion thus far has considered mostly fermion
systems, but the idea of inhuence functionals is equally
powerful in the boson case. We consider now a situation
in which a set of energy levels of primary interest is cou-
pled to another, larger set of levels about which only sta-
tistical information, such as the mean spacing of the lev-
els, is available. Examples include energy levels in nu-
clei, ' '' in small metal particles, ' and in molecular vi-
brations. '

We start again from the Hamiltonian H, Eq. (103), and
the partitioning due to Eq. (102) but the given basis
I ~

cr ) ] should be constructed so that the parts H „;
and H„, are diagonal in this basis,

Y, ((r)+ Y,*((1—r)

=ln(Tre ' )+ln((K~K~I"( —irf3fi))n ) .

As in the harmonic-bath case the right-hand side of Eq.

X —1

H„„; „,= g A, , )i)(i
(

i =1
M

H„,= g E,
~

N —1+i)(X—1+i
~

(112a)

(112b)
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—PH~ —PEln(Tr„,.e )=ln g e
m =-1

(i
~

t
~

N —1+m & (1
~

t
~

N —1+m &*
Y, , r =ln

m =1 ~i ~l

(113a)

—rPE
1rl (113b)

where we have used the reduced Hamiltonian HN as in
Eq. (104) but with h„, =0. The m sum extends over all—7.PE,„secondary states but the exponential factor e '" de-
pends only on the energy E of the mth secondary state.
Doing the sum over degeneracies first, we obtain the fol-
lowing result, which is the exact analogue to Eq. (90) in
the harmonic-bath case,

Y, &(r) = Y; &(0)+In f e '~
p, I(E)dE

with the density

(114a)

(i
~

t
~

N —1+m & ( l t
~

N —1+m &*

( itt ii&

One might think of a few (N —1) main vibrational levels
A, ; coupled via f. to a larger number (M) of uncertain vi-
brational levels EI and we will study the inAuence of the
statistically described levels E& on the levels A, The
influence phase Ss is given according to Eqs. (108) and
(109) but now the coefficients have a special form,

(E)= X (E) .
/co (s 1)) ' o

(117)

Here co is the frequency of the oscillators, s is the number
of modes, and Eo the dissociation energy. The charac-
teristic function X(o z l

is 1 on the interval [O, EO] and 0
otherwise. Inserting the model, Eq. (117), and exponen-
tial coupling functions f, as given above, the integral
defining Y, 1(r) in Eq. (116) can be done immediately by
the truncated y functions and these functions are, for
natural numbers s, easily expressed by exponential func-
tions and truncated exponential functions. So we ob-
tained a model for the memory functions which can im-
mediately be calculated from simple exponential func-
tions and a logarithm. But Eq. (117) is not the only possi-
bility to model the density of states p(E)/M. Numerical-
ly given power laws can be inserted in Eq. (116) and with
our formalism we get a method to test such models by
looking at the inAuence resulting from it. Furthermore,
the sensitivity to different algebraic forms of the density
of states can be tested. We remark that beyond the densi-
ty of states of the statistical part of the Hamiltonian, one
can, as in Eq. (114a), derive a formula for the memory
Y, &(r) using the joint distribution of the eigenvalues of
the secondary part. But then one has to evaluate multi-
fold integrals. Nevertheless, this shows a way to perform
joint distributions derived for certain matrix ensembles'
which may be useful in the physical context of a large
(statistical) secondary system.

X5(E E) . — (114b) C. Two competing bridges

This means that exp[ Y, &(r)] is, up to the norm factor
exp[ Y; I(0)], the Laplace transform of the density p, I(E)

As in the harmonic bath case' it remains to give a
model for the densities p, &. First we remark that in the
monochromatic case, i.e. , if E„=E, for all m, p, I is a
simple 5 function 6(E E, ) and the—refore the memory
Y;1(r) is linear in r. In general we proceed here with an
assumption which allows us to discuss coupling and ener-
gy distribution of the secondary part separately. Let

(i
~

t
~

N —1+m & =z, f, (E„, ) with a function f, ,

(115)

i.e., the coupling matrix element (i
~

t
~

N —1+m &—7.PE,„varies —as is true for the exponential factor e '" —via
its energy only. A reasonable form for the function f, (E)
is a gap law exp( —a,

~
X, E~ ). With Eq—. (115) one ob-

tains for the memory function

Y;1(r)=» J f, (E)f~*(E)e ~ p(E)dE, (116)

where p(E)/M is just the density of states with energy E.
The norm factor exp[ Y, I(0)] is here the scalar product of
the two coupling functions f, and f& with the weight p.
The norm of ( E

~

t divided by
~
z,

~

delivers the p norm of
the function f, . It is of course easier to model the func-
tions f, and the weight p, separately because their physi-
cal meaning is clear. From the assumption of degenerate
oscillators we obtain the following continuous model for
p'.

+N —1=
N —2+N2

i —N —1

/i&(i
/

N —2+ N2+ N)

i =N —1+N,
li&(i

I
.

We assume that the two bridges compete only, i.e., they
are not coupled among one another. They are only cou-
pled to the systems. Thus we get the following decompo-

There is very widespread interest in electron transfer
between two localization sites via a bridging structure;
examples include superexch ange coupling and mixed
valence in binuclear metal complexes, ' through-bond
transfer in proteins, and bridge-assisted transfer in gen-
eral. ' We will approach the purely electronic aspects of
this problem of bridge assistance using the reduction of
the effective Harniltonian and construction of SFv and of
S

As in Sec. VI A let
~

cr &, o =1,2, . . . , be an o«ho»r-
mal basis of an original space but now we take a parti-
tioning of the basis following the idea that the first
X] ——X —2 states describe a system of two chemica1 com-
pounds. The next N2 states

~

N —1 &, . . . ,
~

N —2+Nz &

describe a first bridge between the two systems and the
remaining X3 states describe a second bridge between the
two compounds. Our aim is to contract the two bridges
separately. Therefore we define projectors K, by

E, = ~i&(i
~

fori=l, . . . , N —2,
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sition of the matrix representation of the Hamiltonian H:

primary

t(2]~

(1) t(2)

H"' 0
0 H''

(119)

Here the superscripts 1 and 2 denote the first and the
second bridge, respectively. H"' has N2 lines and H' '

has N3 lines. To reduce the two bridges separately we
define the reduced Hamiltonian HN as

N —2

& (z, , I
t &(N —1I +z,

+adjoint

+hI'I N —1)(N —1 I +h
"I

I
N l(N

I

. (120)

The method of solving the reduction problem is the same
as in Sec. VI A and shall therefore not be repeated here.
Besides that all quantities occur twofold, namely, for
every bridge, the only complication is the existence of a
different transition matrix TN 1 N. But a transition be-
tween the two bridges is forbidden and therefore accord-
ing to our general theory, Eqs. (4) and (6), Ttv, ~ can be
chosen arbitrarily. So we obtain for the influence phase

SB —SEV +SEV +Ssec +Ssec

with

P —1

S [b' ]=ln(Tr 'e ' ' ') ~ n '
EV JJ N —2+v &

a=O

(121a)

(121b)

P —2 P —1 k
( )~I;.[b"]= g g Y,'(. ) „I.,k+z) —(1—n iv' g+, )

k =0 a=O P
k+1 —la+7) (1 —(a+k+2))
y=l

(12lc)

The memory functions Y, &' are

H'''-=H' '+E'EN, and the coupling leads to a permuta-
tionlike transition which permutes only H'" and H' '. A
special example for this case is the four states two elec-
tron problem of Sec. IVC. It is obvious that also three
and more uncoupled bridges can be treated with our for-
malism.

VII. CONCLUSIONS

Starting from a general observation, the construction
of discretized path integrals for operators with the help
of Trotter's product formula, we developed a formalism
to write down influence functionals for a large class of
problems explicitly. In a variety of special and general
examples, we have demonstrated that the formalism can
be applied successfully and yields many new insights.
Two sorts of influence functionals are considered, one
corresponding to a heat bath, the second to a second sub-
system coupled directly to the subsystem of primary in-
terest. The reduction of a heat bath formulated tradition-
ally as a harmonic bath is a possibility to describe the sta-
tistical effect of a system coupled to an environment.
Reduction of a block structure of a Hamiltonian is a nat-
ural way to introduce either a distribution of only statisti-
cally known levels around the levels of the main spec-
trum, or the effects of one subset of levels, such as a
bridge or a manifold of electronic states, on the system
being described. Considering once again Eq. (42) and the
following discussion we see how lifetimes of (reduced) lev-
els can be extracted from reduction of a block structure.

The formalism presented works in real time as well as
in imaginary time. But the statistical, purely temper-
ature-dependent problem can be solved numerically in a
very effective way by a variational procedure, whereas
the rea1 time-dependent problem does not permit such an
easy way to calculate partition functions and correlation
functions. In real time, path integrals usually have to be
evaluated by Monte Carlo techniques. In a second, very
formal paper we will derive all the equations in analytic
form which enables us to calculate partition functions
variationally in the imaginary-time case starting from the
general examples of Sec. VI.
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