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Molecular theory of smectic- A liquid crystals
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A generalization of the McMillan-Kobayashi mean-field theory of smectic-2 liquid crystals to ex-

plicitly include anisotropic hard-core interactions is described. Hard-core effects are incorporated
using perturbation arguments on a reference system of aligned parallel ellipsoids with effective
shape parameters, which is treated by a nonlocal-density-functional approach. The results reveal
the necessity of including both anisotropic repulsions and certain "symmetry-breaking" attractive
interactions, usually omitted from McMillan-Kobayashi treatments, for obtaining stable smectic-3
phases. The theory shows explicitly how the interlayer distance in a smectic phase results, varia-
tionally, from incompressibility of the hard cores. Phase diagrams that include nematic, smectic, as
well as isotropic liquid and vapor phases are presented, using both temperature and density (or pres-
sure) as independent variables.

I. INTRODUCTION

Current theories of nematic liquid crystals have
stressed the importance of both repulsive and attractive
anisotropic intermolecular forces in stabilizing the
nematic state. ' The situation regarding smectic phases
is less clear. The widely used theory of smectic-3 liquid
crystals introduced by McMillan and Kobayashi, which
is based on mean-field treatment of a model Quid contain-
ing only attractive anisotropic interactions, yields many
results in qualitative agreement with experiment. On the
other hand, recent theoretical works have given evidence
that smectic ordering can be induced by purely hard-core
interactions in model systems composed of rigid rods.
With few exceptions, ' ' the joint eA'ects of hard-core
and attractive interactions on smectic behavior have not
been studied. The works in Refs. 10—12 are limited by
use of a low-density second-virial approximation and ei-
ther a truncated spherical-harmonic expansion"' or, at
the opposite extreme, a square-wave representation' of
the effective ordering potential due to the hard cores.

In this paper we investigate smectic-3 liquid crystals
using an approach similar to that of generalized van der
Waals theories of bulk' and inhomogeneous' ' nematic
liquids. The contributions of anisotropic attractive in-
teractions to the free energy are treated by mean-field ap-
proximation, in common with most works referred to
above. Hard-core contributions are analyzed using a
nonlocal-density functional method developed in the con-
texts of crystallization and interfaces of simple hard-
sphere fluids. ' ' The extension of this method to aniso-
tropic Auids is based on notions of molecular perturba-
tion theory developed elsewhere' as well as on the map-
ping' ' between perfectly aligned hard ellipsoids and
hard spheres. The present model has the restriction that
anisotropic hard-core interactions alone should not be
sufficient to produce smectic phases. Nonetheless, we
shall demonstrate the necessity of accounting explicitly
for such interactions in the description of these phases.
Our work clarifies the significance of several eAects that
are either omitted or treated in an empirical manner by

the classical McMillan approach; for example, the
variational nature of the interlayer distance (smectic
period) and the role of symmetry-breaking terms' ' '

in the model intermolecular potential. We predict several
aspects of the joint inAuence of temperature and pressure
on smectic phase diagrams which are of experimental
relevance.

The general theory is presented in Sec. II A. Sec. II B
discusses calculational details; in particular, on obtaining
numerically exact solutions of the theory in contrast with
the more common analyses using low-order Fourier
series. The application of a Landau expansion of the
smectic free energy is described in Sec. II C. Numerical
results are given in Sec. III, while Sec. IV concludes with
a discussion.

II. THEORY

A. Free-energy functional

F=F„+—,
' f d 1 d2 p(1)V„(1,2)p(2), (2.1)

where i stands for the coordinates r, and cu;, i =1,2.
Here FR represents the contributions to the free energy
due to repulsive intermolecular forces in addition to
ideal-gas eftects.

If we retain only the ideal-gas limit of FR,

F d
= kz Tf d 1 p(1)[lnp( 1)—1], (2.2)

where k~ is Boltzmann's constant and T is temperature,
then the resulting approximation for F is equivalent

A bulk smectic liquid crystal is characterized by a
one-particle probability density p(rco) that depends on
both position r and orientation cu. This is analogous to a
nonuniform nematic liquid. ' '' '' On separating the total
intermolecular potential V ( 1,2) between each pair of
molecules into repulsive and attractive parts, where the
latter is denoted V„(1,2), the conventional mean-field ap-
proximation to the Helmholtz free energy of such a sys-
tern is
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FR =Fg+&FHs[[p(r) I], (2.3)

where the interaction term AFHs is a functional of the
angle-averaged density p(r)= Idaho p(res). By appropri-
ate scaling, ' ' the expression in (2.3) also applies if the
repulsive interactions are taken between perfectly aligned
hard ellipsoids. Arguments given in Ref. 18, based on ex-
tending current ideas of molecular perturbation theory
to liquid crystals, suggest that incomplete orientational
order can be approximately incorporated in the latter pic-
ture by considering the shape parameters of the ellipsoids
(i.e., major and minor axis diameters) to be functionals of
the angular probability distribution. This is a nontrivial
extension, however, and in the present work we shall sim-

ply investigate a lowest-order model in which the axis di-
ameters have constant effective" values. We denote the
major diameter, parallel to the direction of alignment,
and the minor diameter by o.

ll

and a~, respectively.
Thus we take FR to be given by (2.3) using a suitably

scaled hard-sphere functional AFHs. We shall evaluate
the latter using the nonlocal-density-functional theory
developed by Tarazona and co-workers, ' ' which
preserves much of the simplicity of a local-density ap-
proximation to b,FHs (see, e.g. , Ref. 13) but remains
physically sensible when p(r) exhibits significant oscilla-
tions over molecular length scales. This expresses AFHs
as

bFHs keT jdrp(1)All/Hs(p(r)) (2.4)

where ki]Tb, pHs(p) is the excess hard-sphere free energy
per particle in a uniform bulk phase of density p. Taking
account of the mapping between hard spheres and paral-
lel hard ellipsoids, ' ' the averaged (or "coarse-grained")
density p(r) in (2.4) is given by

p(r) = f ds t]]( ~s~;p(r)cr )p(r+o. .s) . (2.5)

Here m is a dimensionless weighting function of the di-
mensionless separation s, and also depends on the re-
duced density p(r)o. at position r, where the equivalent
hard-sphere diameter o. satisfies a =a2all. The explicit
form of t]] is described in the Appendix. In (2.5), o
denotes a diagonal tensor with components o j, aj, and o.

ll

in the x, y, and z directions, respectively, where the align-
ment direction is chosen to be parallel to the z axis. We
take b]t Hs(p) in (2.4) to be given by the quasiexact
Carnahan-Starling expression

g(4 —3g)
~

p
(1 —g)' ' 6

(2.6)

Returning to the attractive potential V„(1,2) in (2.1),
we shall model that by the form

[apart from specifying V„(1,2), see below] to that of
McMillan and Kobayashi. However, there is no basis
for neglecting the effects of intermolecular repulsions at
liquid densities. For studying interfaces of nematic liquid
crystals, Telo da Gama' modeled the latter forces by
simple hard-sphere interactions. In that case, we can
write exactly

V„(1,2) = V] (r ]7 ) + V2(r]2 )Pp(cose]~)

+ V, (r]z)[P2(cos0'])+Pz(cosOz)] . (2.7)

B. Method of solution

A closed integral equation for the probability density
p(res) can be obtained by functional minimization of the
free energy derived in Sec. II A. For the case of a bulk
smectic-3 phase, p(res) =p(zen) varies only in the z direc-
tion, coinciding with the direction of alignment. The in-
tegral equation can be expressed as

po exp —[H(z)+P V,]r(zen)]
p(z~) =

1—f dz f den exp —[H(z)+PV„]r(zen)]
(2.8)

where P=(k]] T) ', po is the mean number density,

(2.9)

Here r, 2
= Ir]2l:—Ir2 —r, l

is the intermolecular distance,
0, 2 is the angle between the symmetry axes of the mole-
cules, 0,'- is the angle between the axis of molecule i and
the intermolecular vector r~2, and I'2 denotes the second
Legendre polynomial. On omitting the last term, involv-
ing V3(r]z), (2.7) reduces to the "Maier-Saupe" form
used by McMillan and Kobayashi, as well as many oth-
ers. The limitations of the latter for a realistic descrip-
tion of interactions between mesogenic molecules have
been pointed out several times. ' ' ' Indeed, for
weakly anisotropic nonpolar molecules, the term in
V3 ( r ] 2 ) provides the dominant angle dependence of the
potential, while evidence given in Ref. 18 indicates that
the functions V2(r]z) and V3(r, 2) are of comparable
magnitude for attractive rod-shaped molecules with
elongations typical of mesogens. [We add that contribu-
tions to the functions V„(r]z) can arise from pure spheri-
cally symmetric attractive forces that are cut off inside an
angle-dependent core. '''' ] At the level of spherical-
har]nonic truncation assumed in (2.7), additional angle-
dependent terms also arise, as considered, for example, in
lat tice-model calculations of Ronis and co-workers.
These terms appear' to have significantly smaller magni-
tudes than those displayed in (2.7) and hence will be
neglected here. The specific forms of the functions V„(r)
used in this work will be introduced later.

The total Helmholtz free energy F of our theory is
given by the combination of Eqs. (2.1)—(2.7). For uni-
form bulk phases, i.e. , isotropic and nematic fiuids, p(r)
equals a constant p and (2.5) reduces [by normalization of
t]] (Refs. 15 and 16)] to p(r) =p. The hard-core contribu-
tion to the free energy in these cases is identical to that
for hard spheres of diameter a, and the thermodynamics
of the model are the same as in Ref. 13. For modulated
phases, the hard-core contribution is the same as if the
system consisted of perfectly aligned hard ellipsoids, al-
though we shall apply the theory under conditions of ar-
bitrary orientational order. In the absence of the attrac-
tive potential V„(1,2), stable smectic phases should not
occur in this theory, a point which we shall check in
Sec. III.
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and d is the smectic period. Here V,~(zen) is the effective
one-particle potential due to attractive pair interactions,

V,~(1)=f d2 V~(1,2)p(2), (2.10)

while H(z) is a somewhat analogous effective potential
resulting from hard-core interactions. Specifically,

S„,(z) = —f dm f(zu) In[4mf (zen)], (2.17)

where f(zen) =p(zen)/p(z) is the normalized angular dis-
tribution function. Using the Fourier series representa-
tions (2.14) and the model for V~ (1,2) in (2.7), the inter-
nal energy defined in (2.16) becomes

H (z) = b QHs[P(z)]+ f dz'p(z')AtiHs[p(z') ] 5p(z)

(2. 1 1)

eMF
V)o z Vzo zP0+

2
'90

M
+ —g (V, p +V, g +2V, p ri ),4 m m

where 61iHs(p)—:db, gHs(p)/dp. The functional deriva-
tive 6P(z')/6p(z) can be worked out using (2.5) and the
results for m described in the Appendix.

Using (2.7) and assuming uniaxial orientational sym-
metry appropriate for smectic-3 phases, the eA'ective po-
tential (2.10) takes the form

(2. 18)

where V„=V„(mq) denotes appropriate Fourier trans-
forms of the functions V, (r) For a.rbitrary wave number

Iq,

V,

~(zoo�)

=I, (z) + I2 (z)P2 (cosO), (2.12)

=2' f d O sin(O)p(z, cosO)Pz(cosO) . (2.13)

We shall not give the explicit expressions for I, and Iz ~

From (2.8) and (2.10)—(2.12), one can derive a pair of cou-
pled integral equations for p(z) and g(z) which, in princi-
ple, can be solved numerically without further approxi-
mation. We have done that in a few cases, although we
find it to be simpler and more efficient numerically to ob-
tain solutions of the theory by minimization of the free
energy with respect to the Fourier coefficients p,„and

, using the representations

M

p(z)=po+ g p cos(mqz),
m =1

M

tl(z) =bio+ g g cos(mqz),
m =1

(2. 14)

with a suitably large truncation limit M, where q =2~/d.
[The order parameters traditionally denoted g, r, and
o correspond to the present quantities go/po, p&/(2po),
and ri~/(2po), respectively. ] In this context, it is con-
venient to express the free energy per unit volume f as

k~Tf= f dz p(z)[lnp(z) —1+&PHs(p(z))
0

—S,„,(z)]+eM (2.15)

Here eMF denotes the mean-field internal energy per
volume,

d
eMF =

—,
' dz deep(zen) V,s(zen), (2. 16)

while S„„(z)denotes the reduced local rotational entropy
per particle

where 0 denotes the polar angle of a molecule with
respect to the z axis. The functions I, (z) and Iz(z) in-
volve convolutions of the potentials V„(r ) with the
angle-averaged density p(z)—:f drop(zen) and with the
orientational order parameter

tl(z) = f deep(zoo)P2(cosO)

V„(q')= '
4~ drr V r j0 q'r, n=1 2

0
—4m drr V3 r jz q'r, n=3 (2.19)

where j&(q'r) are spherical Bessel functions. One sees
that V3(q') vanishes when q'=0, as taken into account in
(2.18), which is consistent with the absence of any effect
of V3(r) on the bulk behavior of uniform phases in the
present theory. ' The coarse-grained density p(z) in
(2.15) can likewise be expressed analytically in terms of
the order parameters p, cf. Appendix.

It can be shown that S„,(z) defined in (2.17) is a
universal function of the reduced orientational order pa-
rameter

g(z) =g(z)/p(z) = f des f(zen)P2(cosO) . (2.20)

This follows as a consequence of (2.8) and (2.12), which
are formally exact outcomes of the present theory. Those
equations lead to the form

exp[A(z)Pz(cosO) ]
(zen) =

dao exp A z Pz cosO
(2.21)

At equilibrium, A(z) is identical to the function f3Iz(z)—
introduced in (2. 12). However, we can alternatively view
(2.20) and (2.21) as defining a 1:1 relation between q(z)
and A(z), which establishes the local dependence of
S,„,(z) =S„„[g(z)]on g(z). In the following work, we
have calculated S„,( 1) 7numerically for a large discrete
set of points in the allowed range —

—,
' &q&1. Cubic

spline fitting was then applied to generate a continuous
curve S„„(g)for use in subsequent calculations.

Given the above considerations and a model for the po-
tentials V„(r), the free energy (2. 15) becomes a function
of the variational parameters g0, g, p (m =1—M) and
d. Apart from some recent works, ' ' most previous
theories have ignored the variational nature of the smec-
tic period. After scaling z by d in (2.15), the parameter d
appears explicitly in the functions V„, cf. (2.18) and
(2.19), as well as in the Fourier series for the coarse-
grained density p(z), see (A8) in the Appendix. The in-
tegral with respect to z in the first term of (2.15) was eval-
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uated numerically using an adaptive Romberg method.
At fixed po and T, we minimize f with respect to the or-
der parameters and d using a quasi-Newton method
(IMSL subroutine ZXMIN). We have used values of M as
large as 20, although for many purposes of interest much
smaller values are sufficient. First-order phase coex-
istence boundaries have been calculated by standard
double-tangent construction on the equilibrium free ener-

gy f(po T).

C. Landau expansion

f f '=c,—p', +c,p', (2.22)

where f ' ' is the free energy of the nematic phase. It has
been shown in previous work ' ' on smectic-3 liquid
crystals that the coefficient c2 depends only on coupling
between the leading-order Fourier components p, and g, ,
while c4 depends additionally on coupling to the second-
order components p2 and g2 as well as gp

—
gp '. In par-(N)

ticular,

cz = ,'(f f „—/f„„—), (2.23)

where f~ &
=(d f /re; BP, ), evaluated in the reference

I J
nematic state. We will pass up showing the correspond-
ing expression for c4, which is considerably more com-
plex. ' ' The second derivatives of the free energy in
(2.23) are found to be given by

fP)P)
kg T'g p—c (q*) + A'(i) )

2 pp 2pp

+ —' V11,

I,T
A'(80)+ —,

'
V2i

2Pp

k~ Tqp
A (r)0)+ 2 V3i

2pp

(2.24)

where gp=—gp '/pp is the mean reduced order parameter
in the nematic Phase, while A'(r10)=dA(i)0)/drjo. The
quantity cHs(q ) in the first line of (2.24) is the Fourier
transform of the hard-sphere direct correlation function
in a uniform phase, evaluated at the sealed' ' wave
number q

*=qcr, /cr (see the Appendix).
As is well known, (2.22) predicts that a second-order

nematic-smectic transition occurs when c2 =0, provided
that both c4 & 0 and no other local minima in the full free

The nematic-smectic phase boundaries predicted by
the theory can by approximately (or exactly, when they
are second order) determined by a much simpler Landau
analysis. This is based on expanding the free energy

f(P, ,Pz, . . . , i)o, rl, , gz. . . ) at fixed Po, T, and Period d
about that of a nematic phase characterized by a non-
zero value gp

' of only the mean orientational order pa-
rameter r)0. On eliminating, by minimization of f, all or-
der parameters pz, p3 ~ ~ ~ 'gp 'gp Q1 Y/2 . . ~ in terms
of the fundamental Fourier component p1, the Landau
expansion takes the expected form

energy preempt that transition. If c4 &0, then the van-

ishing of c2 describes a supercooling spinodal line for the
nematic phase, the true (first-order) transition from
nematic to smectic having occurred at some higher tem-
perature where cz is still positive. Even in the latter
cases, we have found (see Sec. III) that the locus c2 =0 is

generally quite close to the nematic-smectic phase bound-
ary, and so provides a useful method of estimating that
boundary for different molecular parameters. The simul-
taneous vanishing of c4 determines, at least for all cases
we have studied, the location of the tricritical point
separating first-order from second-order N —Srn-3 transi-
tions.

It is straightforward to calculate the "critical tempera-
ture" T, (po, d ) at a given mean density and period which
satisfies the condition c2=0, using the expressions in
(2.23) and (2.24) and the equilibrium condition for the or-
der parameter of the reference nematic state:

~B ( qo) + V20P090 (2.25)

Under conditions that the nematic state is locally stable,
i.e. , the second derivative f„„with respect to r)0 is posi-

10~0

tive, it can be shown that the function f„, „ is also posi-7]1'g
1

tive and so does not lead to a singularity in the expression
(2.23) for c2. Similar to Ref. 12(a), we consider the physi-
cally relevant critical temperature to be T, (po)
= maxd T, (po;d ), i.e., maximized with respect to
d =2m/q. Having determined T, (po), the sign of the
coefficient c4 can be evaluated to establish the order of
the transition. Results are described in Sec. III.

III. RESULTS

We have modeled the components V„(r), n =1—3, of
the attractive potential (2.7) by the following Lennard-
Jones forms, suggested by the Weeks-Chandler-
Andersen treatment of simple Auids:

&n
V„(r)=

on
' 12 6

)21/6 on

—e„/4, r &2' o.
n .

(3.1)

Clearly, these are rather arbitrary choices whose only
real claim to reality is the power-law decay ~ r at large
distances, appropriate for dispersion interactions. We
can let the parameter e, ( & 0) be arbitrary, as this merely
sets the temperature scale. Following Ref. 13, we have
fixed the ratio e2/e, =0.3, which is expected to be typical
of real liquid crystals. In the absence of a detailed
knowledge of the functions V„(r), it is reasonable to
choose the range parameters to be equal, i.e.,
o 3 o 2

o.
1
. driven that those functions represent

leading-order spherical-harmonic expansion coefficients
of the potential V„(1,2), ' we expect values of the cr„ to
be on the order of an angle-averaged molecular diameter,
i.e., comparable to the equivalent hard-sphere diameter
o.. However, without loss of generality, we can choose
o. , =o., since any difference between the latter parameters
can be absorbed by suitable rescaling of e, and the anisot-

ropy ratio o-~~/o. . In the following, all distances are ex-
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pressed in units of o and likewise all densities in units of
0 3.

Here we examine the behavior predicted by the theory
as o.~~/o. and the relative strength e3/E'& of the symmetry-
breaking potential V3(r) vary. These parameters aff'ect

only the properties of modulated phases in the theory,
while the behavior of nematic and isotropic fluids are the
same as described in Ref. 13. We take e3 to be negative,
since this results [cf. (2.7) and (3.1)] in a greater attractive
energy between two parallel molecules in a side-by-side
relative to an end-to-end configuration, an expected prop-
erty of rod-shaped molecules. '

Many qualitative features of the theory can be under-
stood by examining the wave-number dependence of the
Fourier transforms V„(q) and cHs(q*). The former were
evaluated from (2.19) and (3.1), using integration by parts
to express V„(q) in terms of elementary functions and the
sine integral. Examples are shown in Figs. 1 and 2,
where q is given in units of o . The functions V, (q) and
Vz(q)' both exhibit a global minimum at q =0, while
weakly oscillating about zero at large wave number. The
function V3(q) vanishes at q =0, as noted earlier, then
exhibits a broad minimum followed by weaker oscilla-
tions. In contrast, the modified direct correlation func-
tion 1/po —cHs(q*) =—cHs(q*) has an absolute maximum
at q =0 (proportional to the hard-sphere inverse
compressibility) and a weak global minimum at a q* in
the range 6=q ~7 which, as indicated in Fig. 2, in-
creases with density.

Let us examine the implications of these features for
the Landau coefficient c2 obtained from (2.23) and (2.24).
Considering first the contribution of the function f z, it

is clear that the behavior of this function for small q is
governed by the opposing behaviors of V» ——V&(q) and
cHs(q*). We have found that cHs(q*) at its minimum be-
comes negative for mean densities p&~1.2. In the ab-
sence of all attractive contributions, that would lead to a
negative c2 and hence instability of the isotropic hard-
sphere or aligned hard-ellipsoid fluid to a one-
dimensionally modulated phase only at densities po ~ 1.2.
However, three-dimensional crystallization occurs in
such a fluid at much lower mean densities [po=0. 94
(Refs. 16 and 20)], so we conclude that the model without
attractive interactions does not produce a stable smectic
phase. On the other hand, in the absence of cHs(q*), the
function V&(q) would produce a global minimum in fP IP I

and hence in c2 at q =0, i.e., at infinite period d. It can
be seen from (2.23), (2.24) and Fig. 1 that the latter out-
come is not modified by including contributions to c2 of
the functions f „and f „.To avoid the unphysical

~1~1

result q ~0 in theories of the McMillan-Kobayashi
type, which omit explicit hard-core effects, the period
has to be inserted "by hand. " In the present theory, a
nonzero lower limit to the equilibrium wave number fol-
lows naturally from the behavior of cHs(q*) shown in

Fig. 2. We have found that the equilibrium wave number
generally lies close to that corresponding to the minimum
of cHS(q*)

The relation between the scales of q and q* is governed
by the ratio crj~/o. When o.~~/o. =1, i.e., on neglecting an-

0.2

0.0

—0.2-

—0.4-

—0.6-

—0.8

—1.0
0 1

I I I

2 3 4 5 6 7 8 9 10

isotropy of the core, Figs. 1 and 2 show that the global
minimum of cHs(q*) approximately coincides with the
weak secondary minima of V, (q) and Vz(q). As for the
case discussed above when cHs(q*) alone operates, we ex-
pect that any "smectic" ordering found under these con-
ditions would be preempted by formation of a crystalline
solid. When aj/o. is increased to 2, the minimum in
cHs(q*) approximately coincides with the relative maxj-
ma in the functions V&(q) and Vz(q). While the positive
values of the latter functions would now tend to oppose
smectic formation, these are compensated by the negative
well in V&(q). Therefore, under these conditions, the
"symmetry-breaking" potential V, (r) should play a cru-
cial role in stabilizing the smectic state, as will be seen
below.

Let us now turn to the predictions of the full model.
Representative phase diagrams are shown in Figs. 3 —6.
In contrast to previous theories of smectic liquid crystals,
with the exception of Refs. 10 and 12, two independent
thermodynamic variables enter the present description,
namely, temperature and density (Figs. 3 and 4) or tem-
perature and pressure (Figs. 5 and 6). Here the reduced
units for temperature and pressure are T*—=kz T/e, and
P*=Po. /e, . The results in Figs. 3 —6 have been ob-
tained for a fixed value o.~/o. =1.8, while the relative
strength parameter ~e3/e, ~

equals 0.28 (Figs. 3 and 5) and

c„(q'1
6-

p = 0.9
0

p = 1.1
0

2

10 12

FICs. 2. Fourier transform of the modified direct correlation
function for a hard-sphere fluid, c»(q ) =—1/po —cHs(q*).

WAVE NUMBER q = 2'/d

FIG. 1. Fourier transforms V„(q) of the components of the
attractive pair potential, in units of e,o, for ~e, /e, ~

=0.34. The
function V, (q) is not shown, as this is identical to V, (q) with
amplitude scaled by e2/e&.
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FIG. 3G. 3. Temperature-density phase diagram at o.~~/o =1.8,
lE, «, 1=0.28.
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FIG.G. 4. Temperature-density phase diagram at o. / =1.8,
I E, /Ei I

=0.&4.

0.34 (Figs. 4 and 6). For computational convenience,
smectic phase boundaries were calculated using M =5
terms in the Fourier series (2.14) for the order parame-
ters. Selected checks indicate that all first-order smectic
phase boundaries shown differ by less than 0.5% from
those obtained using a much larger number (M =20) of
Fourier components.

The diagrams show isotropic vapor and liquid as well
as nematic and smectic phases, separated by second-order
(dashed) or first-order (solid) phase boundaries, where the
latter naturally exhibit density gaps. In Figs. 3 and 4, the
extension of the dashed lines into the regions of first-
order nematic-smectic coexistence represents the spino-
dal loci determined by vanishing of the Landau
coefficient cz. In the temperature-density plane, the
boundary of the condensed phases on the left of the dia-
gram is part of the liquid-vapor coexistence curve, which
extends up to the isotropic critical temperature
T, Lv

=0.3557. Although usually ignored in liquid-
crystal studies, we see that inclusion of the vapor is
significant in establishing limits of thermodynamic stabil-
ity for the condensed phases. This is also of fundamental
interest for several questions concerning interfaces of
liquid crystals. ' ' ' On the other hand, we have not ex-
amined the stability of the phases with respect to solid
formation, but in view of earlier remarks the latter is ex-
pected to preempt much of the phase domains shown in
Figs. 3—6. At present, the treatment of solid phases by
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Smectic Nematic
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0.200
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0.205 0.210 0.215

FIG. 5. Pressure-temperature phase diagram corresponding
to that in Fig. 3. Part (b) shows the low-pressure region on a
magnified scale.

theories similar to the one used here is somewhat prob-
lematic when attractive forces are included, ' "and fur-
ther studies are needed.

At ~e3/e& ~

=0.28, two triple points involving the vapor
phase ( V) are present, the one at higher T* due to simul-
taneous coexistence of the isotropic liquid (I) and nemat-
ic (X) phases, ' that at lower T* due to coexistence be-
tween nematic and smectic (Sm- A) phases. At
~e3/e, ~

=0.34, the stability range of the smectic phase is
increased, as expected, and the phase diagrams now ex-
hibit V—I—Sm-3 and I—N —Sm-3 triple points. As far
as we are aware, none of the triple points involving vapor
has been directly observed in experiments. Experiments
on liquid crystals are usually performed under a fixed at-
mospheric pressure, although there are several excep-

36 38 39tions. We estimate that atmospheric pressure cor-
responds to about P*=10 to 10 in our reduced
units, which is comparable with the triple-point vapor
pressures shown on Figs. 5 and 6, so that the latter
should be within the resolution of experiments. We know
of only one instance where a pressure-induced
I——N —Sm-3 triple point in a pure compound has been

38observed, although this phenomenon should not be un-
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FIG. 6. Pressure-temperature phase diagram corresponding
to that in Fig. 4.

common. Data given in Ref. 37 suggest that such a triple
point may occur in the cyanobiphenyl series nCB for
n ~9.

The nematic-smectic phase boundaries in Figs. 3 —6 are
first order over most of the their extent, becoming second
order only at very high densities when ~e3/e, ~

=0.28
(where, however, the true stable phase is probably solid).
The predominately first-order nature of the nematic-
smectic transition disagrees with previous studies based
on the McMillan-Kobayashi model, although such stud-
ies have usually restricted the Fourier series (2.14) to
M=1, the limitations of which were first pointed out
some time ago by Meyer and Lubensky. We have also
found that the range over which the N —Sm- 3 transition
is second order becomes much larger when we truncate
the series (2.14) at M =1. Additional examples showing
the effects of model parameters on the order of the transi-
tion are given below.

Another feature of interest is the behavior of the equi-
librium smectic period. We find that this is always a de-
creasing function of density, which is due to the behavior
of the minimum of cHs(q*) shown in Fig. 2. In contrast,
at fixed density the period weakly decreases when the
temperature is increased, as indicated in Fig. 7. Such a

FIG. 7. Variation of the smectic period d with temperature
at three different densities, for o.

I
/o = 1.8 and at indicated

values of e3/e, . The high-temperature end points are at the
limits of srnectic stability. The bottom curve in the figure corre-
sponds to a second-order N —Sm-A transition, while all others
correspond to first-order transitions.

tendency has indeed been observed experimentally and
previously ascribed to increasing orientational disorder
with rise in temperature. Here that phenomenon is
more directly related to the competition between repul-
sive and attractive interactions in our model, as discussed
earlier in this section, but we do rule out the previous ex-
planation. That would apply if we generalize the model
as described briefly in Sec. II A and account for depen-
dence of the effective diameters o.

~

and o. on the degree of
orientational order.

We close this section by indicating in more detail the
effects on phase behavior due to variations in the parame-
ters o.~~/o. and e3/e, . Results are shown in Figs. 8 and 9,
where for simplicity we have plotted only the spinodal (or
second-order) loci T, (po) determined by c2=0. A strik-
ing feature of Fig. 8 is the nonmonotonic variation in
smectic stability with a~~/o. at fixed F3/E& and especially
the decrease in transition temperature with increasing
o ~~/o. when the latter is near unity. This again can be ra-
tionalized in terms of the opposing effects of attractive
and repulsive forces. There is also seen to be a qualitative
difference between the curves with small ( ~ 1.5) and
large values of o.~~/o. . In particular, the transition tem-
peratures in the former cases are more rapidly increasing
functions of density. Comparison with Figs. 3 and 4
shows that these will intersect the I-N transition line and
thus lead at higher densities to direct transitions between
the isotropic liquid and a one-dimensionally modulated
"plastic" phase with very weak orientational order. [The
orientational order in the latter phase vanishes identically
only if the interaction term V3(r) is zero. ] As discussed
earlier in this section, we expect these transitions to be
unstable relative to solid formation. Figure 8 clearly
shows the role of large core anisotropies o. ~~/o. in stabiliz-
ing smectic formation at lower densities, where solid
phases may not be stable. Note also the unusual behavior
of T, (po) at o-~~/o. =1.7, in terms of both the reentrant
nature of the second-order %—Sm-3 transition and the
fact that T, (po) decreases with density over a wide region.
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FIG. 8. Smectic-nematic transition lines at different values of
o.~~/cr (labeling the curves), for e, /e, ~=0.28. Spinodal lines
and second-order transition lines are drawn as solid and dashed
curves, respectively.
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Features similar to the latter have been observed in some
experiments. This behavior is also shown by some cases
in Fig. 9, where o ~~/cr is fixed at 2 and the ratio ~e3/e, ~

varies. In this figure the 1om-density boundaries of the
curves at ~E3/e& ~

=0.20 and 0.24 (as well as at
~e3/Et ~

=0.28 and o ~~/o =2 in Fig. 8) correspond to the
limits of nematic stability. At lower densities, these give
way to isotropic-smectic transitions such as seen in Fig.
4. The decrease in smectic stability with decreasing mag-
nitude of ~e3/e, ~

is quite apparent in Fig. 9. The small
domain of smectic formation indicated when @3=0 is not
realizab1e, as this is entirely enclosed by the liquid
(nematic) —vapor coexistence region.

IV. DISCUSSION

In the theory presented here, formation of a smectic- A

phase results from coupling of repulsive and attractive
forces between rod-shaped molecules. On the one hand,
we have shown that the theory is consistent with the fact
that one-dimensionally modulated phases of paral1el ellip-
soids must be unstable with respect to crystalline solid
phases. (Although this should hold in an exact theory,
it is not necessarily satisfied by approximate density-
functional theories. ) On the other hand, we have given
evidence, albeit not proved conclusively, that any smectic

phases apparently induced by anisotropic attractive in-
teractions with weakly anisotropic cores (o ~~/o = I) are
also unstable relative to solid phases. Only when the core
anisotropy o.~~/o and the relative strength ~e3/e, ~

of the
symmetry-breaking attractive component V3(r) are
simultaneously large do smectic phases occur under
thermal conditions which may not favor solid formation.
The theory also shows explicitly how incompressibility of
the hard cores determines the equilibrium smectic period
d, a quantity which is arbitrarily prescribed in theories of
the McMillan-Kobayashi type.

A feature missing from the present theory is the oc-
currence of smectic ordering due to hard-core interac-
tions alone, such as shown by recent computer simula-
tions and density-functional theories of hard
cylinders and spherocylinders. These works clearly
demonstrate that the appearance of smectic ordering is
sensitive to the details of molecular shape, given the ab-
sence of such ordering for hard ellipsoids. However,
apart from simulations in Ref. 6(b), the above studies
have considered only systems under the constraint of per-
fect parallel alignment. (Note added in proof. This con-
straint has been relaxed in recent work by Poniewierski
and Holyst, ' using a density-functional theory similar to
the ones described here and in Ref. 9.) While it is found
that relaxation of that constraint does not destroy smec-
tic ordering of hard spherocylinders, ' ' it is plausible
that sensitivity to the precise shape of the core becomes
less severe when some orientational disorder is present.
One can argue heuristically (but with some support from
perturbative arguments' ) that fluctuations in alignment
of rigid rod-shaped molecules produce an "effective"
repulsive core which is roughly ellipsoidal in shape. Al-
lowing for dependence of the core-shape parameters on
the degree of orientational order, the present theory
could be extended to accommodate a variety of molecular
shapes. Such an extension will be examined in future
work. We note that on generalizing the equivalent hard-
sphere diameter a to be a functional of f(zru), core in-
teractions will also inAuence the nematic-isotropic phase
boundaries, ' an effect not present here.

The density-functional theory developed in this paper
can be generalized to discuss interfaces between the vari-
ous isotropic and liquid-crystalline phases. This is espe-
cially relevant to liquid-vapor interfaces involving the
smectic-3 phase, which have been modeled in previous
work using an impenetrable wa11 in place of the coexist-
ing vapor. This application wi11 also be considered in fu-
ture work.
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APPENDIX p„—:p„(r)= f ds w„(s)p(r+o s) . (A7)

Here we summarize several results related to the aver-
aged density p(r) defined in (2.5). In the following, all
densities are dimensionless and given in units of o. . We
use the semiempirical model developed by Tarazona, ' ' '

which expresses the dimensionless weighting function
w(s;p) in (2.5) as a quadratic expansion in p:

M

p„(z)= g p w„(mqo.
~~)

cos(mqz) . (AS)

We note that when p(r) =p(z) varies only as a function of
z, only the eigenvalue 0.

~~

of the tensor o defined below
(2.5) is relevant. Using the Fourier representation for
p(z) in (2.14), the last equation then gives

w(s;p) =wo(s)+ w, (s)p+ wz(s)p

The functions wo(s) and w~(s) are given by' ~ I

wo(s) = 8(1—s ),= 3

4~

(A 1)
m=0

For completeness, we list the expressions for wo(k) and
w~(k) obtained from (A2) and (A3):

= 3wo(k)= (sink —k cosk),

w, (s)= (6—12s+5s )e(1—s),
144

(A2)

5 2

wz(k)=
36k

61+ cosk
k

(A9)

where B(t) is the unit step function. An analytical ex-
pression is available for the Fourier transform w, (k),
where in general (for dimensionless wave number k)

3 30 . 24
k
—+ sink+

k

w(k) =
8[1+wo(k)]

4~
w„(k) = ds sw„(s) sin(ks) .

0

We have

(A3)

(A4)

The limits of these at vanishing k are wo(k =0)= 1,
w„(k =0)=0 for n =1,2.

From a calculation discussed in Ref. 16(b), the Fourier
transform of the direct correlation function for an isotro-
pic hard-sphere fluid of mean density po and molecular
diameter o is, in units of o. ,

cHs(q)= —26$Hs(po)w(qo. )
—pobitHs(po)w (qo )

where
2pob tt'Hs(po)w(qo )w'(qo ), (A 10)

f(k)=— 5 6 12 2 12
k' k4

—+ + cosk + —+ sink
k

—12 +1 1

k k
(A5)

2Po(r)=-
I —Pi+ l (I —Pi)' —4PoP~~'"

(A6)

where p„—=P„(r) is defined as

Inserting (Al) into (2.5), a quadratic equation is ob-
tained for P(r), which has the physical solution' '

where kit Hs(po) and b, gHs(po) denote the first and second
derivatives, respectively, of the excess free energy (2.6)
with respect to po. Here

w(k) =wo(k)+pow, (k)+powq(k),

w'(k)=w, (k)+2powz(k) .
(A 1 1 )

As all correlations in the modulated phase involve the di-
mensionless wave number qcr~~, cf. (A8), we can view
these as obtained from corresponding hard-sphere quanti-
ties on evaluating the latter with the scaled wave number
q*=(o.~/o)q.
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