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Attractor dimension of nonstationary dynamical systems from small data sets
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Several sources of error in the calculation of attractor dimension from time series by the

Grassberger and Procaccia or similar algorithms can be avoided or minimized by appropriate
choice of algorithm and of criteria for selection of parameter values. Some problems and means of
avoiding them are demonstrated, and statistical results are presented for dimension calculated from

many independent sets of each of a wide range of data set size, to show that sets of a few hundred

vectors or even less are useful for dimension calculation. This method with small data sets is shown

to be effective in following changes in attractor dimension of a nonstationary dynamical system.

INTRODUCTION

Widely used and efficient methods for calculation of at-
tractor dimension from experimental time series' may
give results which depend strongly on details of the way
in which the method is used. We have particularly
noted this problem in calculation of dimension of the at-
tractor of the dynamical system producing the electroen-
cephalogram (EEG). Much of the uncertainty of re-
sults for this system may be due to nonstationarity of the
system, so that consistent results may require use of small
data sets, covering only short time intervals during which
the system may be approximately stationary.

Several sources of error in dimension calculations will
be described, together with methods for reduction or el-
imination of these errors, by suitable choice of algorithm
and of values of parameters needed for the algorithm.
Results are illustrated for a stationary mathematical
dynamical system having an attractor information dimen-
sion of 7.5, which is sufficient to show some problems
which may not be evident with systems of lower dimen-
sion. Statistical results from many independent data sets
of each of many sizes show the variability to be expected
from small data sets. These results show that useful esti-
mates of dimension can be obtained from small data sets

of a few hundred vectors or even less. This is consistent
with other reports using very small sets. ' '' Dimension
calculations from many small successive but overlapping
sets allow dimension to be studied as a function of time,
for nonstationary dynamical systems in which the system
is approximately stationary over the time interval of
small sets.

METHODS

Problems and solutions are illustrated with a time
series generated by the Mackey-Glass equation' with de-
lay parameter ~,

dx (t) 0.2x (t —T) —0. 1x t
dt 1+x (t —T)'

0.2T x (t —T)
2+0. 1T 1+x(t —T)io

x(t+T —T)

1+x (t + T —T)'

where period T is the delay parameter ~ divided by the
number of dimensions of the difference equation set. Ex-
cept where noted, we use ~=100 and T=0.1. Random
numbers are used to initialize the system, and Eq. (2) is
iterated 200000 times to allow the system to settle onto
the attractor. The time series from continued iteration is
normalized to zero mean and standard deviation of 512,
and rounded to the nearest integer for consistency with
experimental data digitized to 12 bits.

The phase-space trajectory for this Mackey-Glass sys-
tem is formed from vectors X; constructed from the sca-
lar time series x z- by the method of lags, ' '

+i I Xiaj&XiaT+bT»' ' ' XiaT+in —1)bT I (3)

where n is the embedding dimension. The time interval
aT between the first elements of successive vectors and
the lag bT between vector elements are independent, and
neither is necessarily equal to the sample period.

Each data set for dimension calculation consists of N
vectors and M reference vectors formed from the time
series, with M not greater than N and less than N when N
is large.

Statistical results from many small sets of the same
size, from the same time series, and for a range of set
sizes, will be shown. Differences in results may have two

which we integrate by a 1000-dimensional set of
difference equations' of the form

2 —0. 1Tx(t+T)= ' x(t)2+0. 1T
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sources: small sets may show dift'erences which are
directly due to the small number of vectors, regardless of
how the system is sampled, but small sets may also show
differences which are the result of sampling over a short
time interval which does not adequately characterize the
attractor. Two types of sampling are used in order to es-
timate the contribution of each of these sources of varia-
bility. Sequential sets use the same interval between vec-
tors, regardless of the size of the set, so that the time in-
terval sampled by a set is proportional to the number of
vectors in the set. Interleaved sets of various sizes use
greater intervals between vectors for small sets, so that
each set, regardless of number of vectors, spans substan-
tially the same time interval.

The major results of this paper will use an algorithm
which calculates information dimension, but, in order to
illustrate problems and their solutions, the correlation di-
mension of Grassberger and Procaccia will serve as the
starting point. For each value of embedding dimension n

from 1 to 32 and for each of a predetermined set of values
of distance r, the distance from a reference vector to each
of 1V vectors is calculated, and the number j(r, n) of vec-
tors is counted for which this distance is not greater than
r. The maximum norm is conventionally used for dis-
tance so that the vectors counted for a particular refer-
ence vector are those within an n-dimensional cube of ra-
dius r centered on the reference vector.

For data with finite resolution and limited numbers of
vectors, the effective correlation dimension at embedding
dimension n is

kin[( j (r, n) ) ]
Aln(r)

(4)

where the angle brackets indicate averaging over all
reference vectors. Here radius r is the independent vari-
able, and the dependent variable j(r, n) is calculated at
predetermined values of I for each value of embedding di-
mension n. The 6 symbols indicate the slope of a log-log
plot of (j (r, n) ) and r, estimated by a least-squared error
fit of a straight line over a selected range of r. The form
of this equation is chosen for consistency with equations
introduced below, rather than in terms of the integral
correlation eoefIieient as originally given by Grassberger
and Procaccia. ' The caret indicates an "effective" corre-
lation dimension, which may be taken to be an estimate
of correlation dimension Dc if sealing and saturation are
satisfactory at embedding dimension n.

The ideal log-log plot of ( j(r, n) ) and r is a straight
line over a wide range of (j(r, n)r ), re(lecting the scaling
property of the attractor, so that the slope of the curve
for each value of embedding dimension is well defined.
This approximately straight region will be referred to as
the scaling region. In addition, ideally, the efFective di-
mension increases with increasing embedding dimension
until it saturates at a.constant value with further increase
in embedding dimension. This saturation value of
effective dimension is taken to be the dimension of the at-
tractor, and the region of saturation will be referred to as
the saturation region. The success of variations in
methods may be judged by the quality of the scaling and
saturation regions.

Calculation of correlation dimension with Eq. (4), and
using values of aT and bT of Eq. (3) such as are common-
ly used, may result in several problems in approaching
the ideal of long scaling regions and saturation of
effective dimension, as shown in Fig. 1(a). The scaling re-
gions are of poor quality, apparent saturation results only
from an arbitrary choice of scaling region, and dimension
is about 40% less than the correct value of 7.5. ' The fol-
lowing paragraphs describe variations of dimension
definition, method of calculation, and choice of parame-
ter values, which improve the accuracy and stability of
results.

(1) Increased time interual between reference Ueetors
and neighboring Vectors. The prominent distortion of
slope of the curves of Fig. 1(a) at large n and near j =2 is
moved relatively downward by increasing the size of the
data set, leaving a longer scaling region and contributing
perhaps to the general belief that large N is essential. A
better solution is to remove the cause of the distortion,
without increasing N, by decreasing the correlation be-
tween reference vectors and their neighbor vectors. This
can be done by increasing a T of Eq. (1),' but this may
reduce unnecessarily the effective size of the data set. We
use a method also described by Theiler which maintains
a minimum temporal spacing greater than aT between
reference vectors and their nearest neighbors, by deleting
a number W of vectors on each side of the reference vec-
tor in use. The results of skipping four vectors on either
side of the reference vector in use are shown in Fig. 1(b).
Scaling regions are improved though not yet satisfactory,
and the effective correlation dimension is increased but is
still highly dependent on the choice of region for slope
measurement. The apparent excellent saturation of
effective dimension in Fig. 1(a) is seen to result from the
distortion which is absent in Fig. 1(b).

(2) Radius as dependent variable In the met.hod of
Eq. (4), each of the curves for a single data set is the aver-
age of M curves, each of which results from distances
from a single reference vector to N vectors. The points
averaged together are the values of j (r, n) at each of the
predetermined values of the independent variable r. This
can be thought of as vertical averaging, because the
points averaged are the intersections of the unaveraged
curves with a vertical line through the specified value of
r. Holzfuss and Mayer-Kress have shown that unaver-
aged curves may vary greatly in position along the ln(r)
axis so that points lying in the scaling region of some
curves may be averaged with points outside the scaling
region of other curves, resulting generally in reduction of
slope of the averaged curve. Short scaling regions, from
small data sets, are particularly distorted by this problem.

To solve this problem we previously used an alignment
method in which each unaveraged curve is shifted along
the radius axis, without change of slope, so that all
unaveraged curves pass through a common point in their
scaling regions. The curves are then averaged vertically
as before. We now prefer horizontal averaging along
lines of constant j, which has equivalent benefits in im-
proved averaging, and leads to other benefits as well.
This is accomplished by exchanging variables so that j is
the independent variable and r (j,n) is the dependent
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FIG. 1. Problems with calculation of correlation dimension of attractor of Mackey-Glass equation with delay of 100. Means of 32
s«s with & =400, M =200, aT =3.7&, bT =7.5, W =0 in (a), W =-4 in (b). Effective correlation dimension 8 (cn) is the slope of the
»( j(r, n)) vs»(r) curve for the corresponding value of embedding dimension n, calculated by least-squares fit of a straight line to
the section of the curve between the short bars. The major fault in (a) is the distortion of curves at high embedding dimension near
j =2, due to highly correlated neighbor vectors about each reference vector, from 6'=0. This fault is absent in (b) because W =4,
but other faults remain.

variable. The problem is then to find the radius of the
smallest n-dimensional sphere, about each reference vec-
tor, which contains exactly j vectors, for each of a
predetermined set of values of j. In this respect this
method is that of Termonia and Alexandrowicz, but we
follow Grassberger in using different definitions of di-
mension.

Effective correlation dimension with radius as the
dependent variable is

where the angle brackets indicate averaging over all

reference vectors. Euclidean norm is used for this and
subsequent calculations, for reasons discussed below.

(3) Averaging of log of radius Averagi. ng ln[r(j, n)]
rather than r(j, n), that is, using (1n[r(j,n)]) rather than
ln( r (j,n) ), results in effective information dimension

b, ln(j)
b (ln[r (j,n)] )

Information dimension may be more interesting than oth-
er similar dimensions but our main reason for adopting it
is that this change, in combination with others, leads to
some computational convenience.

(4) Independence of vectors. Figures 2(a) and 2(b) show
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(c)

4- 4- 4-

N 2-

3.0 3. 2
&1og10 r (j, r))&

3.0 3.2
&1o&10 r (j, n) &

3.0 3.2
&1og10 r (j, n) &

FIG. 2. Two problems with slopes at small j, for Mackey-Glass equation with delay of 100, and with parameter values as in Fig.
1(b) except as noted. Scales are expanded to show problems at small j and high embedding dimension. (a) Equation (6) and Euclidean
norm are used with aT =3.75. Small value of aT results in excess correlation of vectors and excess slope of curves, partially reduced
by lack of Poisson correction. (b) As in (a) but with aT = 15, reducing correlation of vectors, but slopes are now too small because of
lack of Poisson correction. (c) Equation (7) with Poisson correction and Euclidean norm are used. Compared to ln( j) in (b), l(( j) in
(c) stretches the j axis at small j, extending the scaling region to j = 1.
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that varying the time interval between vectors changes
the slope of dimension curves at small scales. The
difference in mean ln[r (j,n ) ] at j = 1 and j =2 is abnor-
mally small in Fig. 2(a) because the closeness of vectors in
time results in an increased probability that they are close
in phase space. Increasing the time interval between vec-
tors from half of the lag in Fig. 2(a) to twice the lag in
Fig. 2(b) avoids the excess slope at small scales. Vectors
must be sufficiently independent, by being sufficiently
separated in time, if the scaling region is to extend to the
smallest scales. This is distinct from the problem of in-
dependence of reference vectors with respect to their
neighbor vectors, which has the opposite effect on slope.

The need for independence of vectors, and for even
greater independence between reference vectors and
neighbor vectors, is in contrast with the common practice
of using sample rates greater than the Nyquist frequency,
such as would be needed for spectral analysis or for phase
portraits, and using the sample period as the interval be-
tween vectors. We believe that such close spacing of vec-
tors in time is not only unnecessary for dimension calcu-
lation, but is a source of error.

(5) Correction for Poisson distribution Gra.ssberger
has shown that numbers of vectors j within a specific
volume have a Poisson distribution which requires a
modification of Eq. (6),

D (n)=
b, (ln[r(j, n)])

where the digamma function P(x) =dlnI (x)/dx has the
effect of stretching the j axis at small j, thereby increas-
ing slope, as shown in Fig. 2(c). The scaling region ex-
tends to the smallest values of j when vectors are in-
dependent and the Poisson correction is used, resulting in
an increase in effective information dimension.

(6) Optimum lag. Lag can be chosen almost arbitrarily

if infinite amounts of noise-free data are used' but in
practice the choice of lag, bT in Eq. (1), is found to be
critical.

The effect on effective information dimension satura-
tion of various values of lag is shown in Figs. 3(a), 3(b),
and 3(c) for data sets of moderate size, for small inter-
leaved sets, and for small sequential sets, respectively.
For small values of lag the effective dimension increases
slowly with increasing embedding dimension and reaches
saturation only at high embedding dimension, if at all.
At large values of lag, the effective dimension increases
rapidily with increasing embedding dimension and does
not saturate at the attractor dimension. Saturation is
found only for lags near 7.5.

Figure 3 indicates that 12800 vectors does not ap-
proach the number at which choice of lag is not critical.
Lag is even more critical for small data sets, and more so
for sequential than for interleaved sets. The most evident
problem for small sets is an inability of a small number of
vectors, drawn from a short time series, to represent the
fractal structure of the attractor at high embedding di-
mension, as seen by the failure of saturation to extend to
high embedding dimension for sequential sets.

We estimate lag from inspection of the power spectrum
or phase portraits, and refine this estimate by testing
larger and smaller lags. Familiarity with the shapes of
saturation curves for lags greater than or less than op-
timum leads rapidly to optimum lag. We have not used
mutual information' for estimation of optimum lag be-
cause it is said to require very large data sets unless di-
mension is very low, with noisy data producing addition-
al difficulties. '

(7) Euclidean norm Maxim. um norm for distance be-
tween vectors and reference vectors results in counting
vectors within cubes, whereas Euclidean norm results in
counting vectors within spheres. Representative
differences in dimension curves for maximum and Eu-

3-
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FIG. 3. Effect of value of lag on effective information dimension as a function of embedding dimension, for the attractor of the
Mackey-Cslass equation with delay of 100, using Eq. (7) and Euclidean norm, with aT = 15 and lag bT as shown, 8' = 1, M =200. (a)
One set with N =12 800. (b) Means of 64 interleaved sets with N =200. (c) Means of 64 sequential sets with N =200. Choice of lag
is critical for all set sizes, but especially so for small sequential sets.
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the Mackey-Glass equation with delay of 100, using Eq. (7), aT = 15, bT =7.5, X =2200, M =200, and W = 1, for embedding dimen-
sion of one and even values to 32.

clidean norms are shown in Fig. 4. Maximum norm
tends to underestimate dimension.

Successive points in the reconstruction of the trajecto-
ry in phase space are significantly correlated when op-
timum values of lag are used. The attractor tends there-
fore to be clustered about the positive diagonal of the
phase space. We believe that the distortions of dimension
curves with maximum norm result from the tendency of
the diagonals of cubes to be aligned with surfaces of the
attractor. The spheres of Euclidean norm show no such
selectivity.

EFFECT OF DATA SET SIZE QN DIMENSION

Information dimension of the attractor of the
Mackey-Glass equation with delay of 100, using Eq. (7)
and Euclidean norm, is shown in Fig. 5(a) for a moderate-
ly large set of X =12 800, and in Fig. 5(b) for 64 small
sequential sets of X =400. Mean eftective dimension for
the small sets is about 5% less than dimension for the
large set. The scaling regions used for dimension calcula-
tion are shown by the dots on the curves, and are taken
to be the best region for each case. The region for small
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FIG. 5. Information dimension for large and small data sets, for the attractor of the Mackey-Cilass equation with delay of 100, us-

ing Eq. (7) and Euclidean norm. (a) One set with N =12800, M =200, aT =15, bT=7. 5, W=1. (b) As in (a) but means of 64 inter-
leaved sets with N =200, aT =960. (c) As in (b) but with sequential sets, aT =15. Standard deviations of information dimension for
sequential small sets are much greater than for interleaved sets of the same size.
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sets has smaller slope, resulting in lower dimension, be-
cause, at the smallest scale available with small data sets,
the scale is not small enough to be free of effects of the
finite size of the attractor.

The result of about 7.5 for the large set agrees with the
correlation dimension value of Grassberger and Procac-
cia' but it is unclear how their assertion that the effective
dimension saturated at embedding dimension of 16 could
result from lags of 50 and 100. Termonia and Alexan-
drowicz report dimension of 12.6 at embedding dimen-
sion of 30, with lag of 100. This is consistent with our
effective dimension values at this lag, but because no sat-
uration is found at that lag this value cannot be taken as
an estimate of attractor dimension. We find the
Mackey-Glass equation attractor to be sufficiently uni-
form so there is little difference between correlation and
information dimensions.

Table I summarizes results for various data set sizes,
from N =50 to N =12 800, using sequential and inter-
leaved sets. The scaling regions stated in the caption of
the table are not chosen to yield the best estimates of di-
mension, but use the same range of j/N, so far as possi-
ble, in order to determine if differences with respect to set
size shown in Fig. 5 are due directly to set size or to
differences in choice of scaling regions. It is seen that
there is little difference in mean dimension of large and
small sets when the same range of scale is used for slope
calculation, although this choice of scaling region, to be
useful for the smallest set sizes, results in underestimation
of dimension by about 10%%uo. There is also little difference
in mean dimension for sequential and interleaved sets,
but the standard deviation of dimension for sequential
sets is about 3.2 times that of the interleaved sets.

Some of the variance of dimension is assumed to be due
directly to the number of vectors, independent of how
they are distributed in time, and the rest of the variance
is assumed to result from the way the vectors are distri-
buted in time, independent of their number. Interleaved
sets of various sizes sample the same length of time series
so that only the former component of variance contrib-
utes significantly to the variance of these sets. The vari-

ance of sequential sets is the sum of both components.
Applying this linear model to the data of Table I indi-
cates that about 90% of the total variance for small
sequential sets is due to variations in short sequential
time series, and only about 10% of the variance is due
directly to the use of small numbers of vectors. This sup-
ports the view that a few well-selected vectors may be su-
perior to a large number of poorly selected vectors.

Slope of mean effective information dimension as a
function of embedding dimension is not greater than 0.01
or less than —0.02 for all sets of Table I over the range
n =14 to 18, indicating good saturation, and the mean
effective information dimension over this range is taken
to be a good estimate of information dimension. For very
small sequential sets, effective information dimension in-
creases beyond the saturation region, as in Fig. 3(c) for
bT =7.5. This is not seen in Fig. 3(b) for interleaved sets,
suggesting that the short saturation region for small
sequential sets is not due to the small number of vectors
but to the short time interval from which they are taken.

The standard deviations in Table I are calculated from
the distributions of dimension for many sets of the same
size, using the same method. They are not necessarily es-
timates of error because they do not include any bias re-
sulting from the method. Error, including bias, can be
estimated by comparison of means of Table I with the
best estimates from large data sets, as described above.
Mean dimension estimates in Table I are less than the
best estimates from large sets because of the decision to
use as nearly as possible the same scaling regions for all
set sizes, in order to isolate sources of variability. Bias in
estimates of dimension for small data sets is thereby
shown to be due primarily to short scaling regions, where
slopes are decreased by effects of the finite size of the at-
tractor.

Standard deviation of slope estimates from least-
squared error fitting of a straight line are much less than
the standard deviations of Table I and very much less
than error estimates. The error estimates of Holzfuss and
Mayer-Kress are much larger than our experimentally
determined values.

TABLE I. EfT'ect of size of data sets on mean information dimension of the attractor of the Mackey-
Glass equation with delay of 100, for sequential and interleaved sets. Means and standard deviations
are calculated for many sets of each size, except for the largest set sizes, M =200 except where N is less
than 200, aT=15, bT=7. 5, W=2, using Eq. (7) with Euclidean norm. For comparison over corre-
sponding radius scales, slope is calculated over the same range of j/N, from 0.02 to 0.00125, except
that the lower limit is 1/N for N less than 800 and the upper limit is 4/N for N less than 200.

Data set
Size N

Number
of sets

Information dimension DI
Sequential sets Interleaved sets

50
100
200
400
800
1600
3200
6400

12 800

256
128
64
32
16
8
4
2
1

6.44+ 1.74
6.68+ 1.49
6.71+1.22
6.77+0.50
6.77+0.45
6.82+0.27
6.71+0.10

6.66
6.69

6.17+0.58
6.48+0.46
6.53+0.41
6.78+0.23
6.98+0. 11
6.72+0.05
6.70+0.04

6.73
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MINIMUM DATA SET SIZE

Mayer-Kress' has derived a formula for the minimum
number of vectors needed for dimension calculation, in
support of the assertion that large data sets are required,
though no numerical results are provided in support of
the formula. The central idea is that many loops of the
attractor must be sampled to adequately represent its
structure. Because this idea seems reasonable, but the
conclusions contradict our results for small sets, this
problem is examined in some detail ~

The formula, Eq. (1) of Ref. 17 with some rearrange-
ment and change of symbols, is

N =SDs' Dx (8)

where N is the number of vectors, S is the diameter of the
attractor, s is the mean distance between loops of the at-
tractor, D is the dimension of the attractor, and x is the
mean distance between successive vectors. The deriva-
tion requires that vectors be very closely spaced in time
so that the length of the trajectory is Nx. The equation is
also said to relate data set size to sample rate, but sample
period is proportional to vector distance x only if vectors
are closely spaced in time. It is asserted that "optimum
sampling" results from s =x, and N is then the minimum
number of vectors required to meet this condition,

N;„=(Sl )x (9)

We have devised a method for calculation of the quan-
tities of Eqs. (8) and (9) from experimental data, and have
applied it to a Mackey-Glass time series with delay of
100, normalized to zero mean and standard deviation of
512. Mean distance x between successive vectors is ca1-
culated by summing the Euclidean distances between N
successive vectors in n dimensions and dividing by N —1.
Mean distance between trajectory loops s is calculated by
counting the intersections between the attractor and a
hyperplane through the origin and perpendicular to the
nth coordinate axis. The plane of n —1 dimensions is
partitioned into annular segments to allow determination
of the diameter of the smallest hypersphere containing all
of the intersections. Because the attractor is not in gen-
eral spherically symmetrical, the diameter is not in gen-
eral the difference between extreme values of the time
series. The mean volume per intersection is the volume
of the sphere divided by the number of intersections con-
tained in it. The mean distance between loops of the at-
tractor is taken to be the diameter of a sphere of n —1 di-
mensions whose volume is equal to the mean volume per
intersection.

The quantities calculated from Eqs. (8) and (9) are first
compared with those calculated from the Mackey-Glass
time series when the data set is formed in accordance
with the assumption of Eq. (8). Using a large data set of
N =32000 with lag bT =8, and using aT = 1 so that vec-
tors are closely spaced in time and therefore not indepen-
dent, it is found at embedding dimension n =24 that
x =243, s =2956, and S =7962. These values and Eq. (8)
result in set size N =21000. This is of the same order as
the correct value N =32 000, but x is much smaller than s

so the conditions for "optimum sampling" are not met.
Since Eq. (8) requires short intervals between vectors, x
cannot be increased by increasing these intervals, and s
must be decreased by increasing N if the requirement of
optimum sampling is to be met. Setting s equal to the
calculated values of x, Eq. (9) results in a minimum data
set size in excess of 10' vectors. This unreasonable result
is not due to differences in the way quantities are defined
in the derivation and the way they are calculated from
experimental data. The number of intersections with the
hyperplane is 945, for example, compared to 977 calculat-
ed as in the derivation from Nx /S.

To show that the assumption of closely spaced vectors
is essential to Eq. (8), aT =16 is chosen so that vectors
are independent. The results at n =24 are x =2463,
s =2973, and S =8934, from which Eq. (8) yields a set
size N =4600. Agreement with N =32000 is less satis-
factory, indicating that the assumption of very short time
intervals between vectors is essential to Eq. (8).

Similar results are found for other data set sizes. We
conclude that the ideas behind these equations of Mayer-
Kress provide valuable insight into the problem of
minimum data set size, but the equations assume vectors
very closely spaced in time, which conflicts with the need
for independent vectors, and also conflicts with the ques-
tionable assumption regarding optimum sampling so that
estimates of minimum data set size are unreasonably
large by many orders of magnitude. The arguments of
Mayer-Kress against small sets do not appear to over-
come our results supporting their use.

Results from the preceding sections indicate three
consequences of decreasing data set size: Standard devia-
tion increases, underestimation of dimension increases,
and the length of the saturation region decreases. The
number of sets available for analysis, the stationarity of
the system, the characteristics of the particular attractor,
and the use to be made of the results will determine
which of these is the limiting factor in determining op-
timum set size.

DIMENSION AS A FUNCTION
OF TIME FOR NONSTATIONARY SYSTEMS

A time series constructed of a repeated sequence of
equal length segments of Gaussian white noise, of
Mackey-Glass equation with delay of 100, and of
Mackey-Glass equation with delay of 30, is used to
demonstrate the ability of smail sets to follow dimension
changes in a nonstationary dynamical system. The infor-
mation dimensions of these systems are infinite, 7.5, and
3.0, respectively. Each segment is taken from a station-
ary time series so that transitions are artificially abrupt.
Figure 6 shows this time series, and, as functions of time,
its power spectra, effective information dimension, and
information dimension. Dimension calcu1ations use 200
vectors for each sequential set, and the Mackey-Glass de-
lay of 100 arbitrarily equals 97 msec, and delay of 30
equals 58 msec. The analysis window for spectra and di-
mension is 3.14 sec, and the window advances 0.5 sec be-
tween analysis epochs. Effective information dimension
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FIG. 6. (a) Nonstationary time series consisting of a repeated sequence of 15 sec each of Gaussian white noise, Mackey-Glass
equation with delay of 100, and Mackey-Glass equation with delay of 30. (b) Power spectra with decibel reference equal to mean
power spectral density for all spectra. (c) Effective information dimension DI(n) calculated with Eq. (7) and Euclidean norm with
N =200, M =200, aT = 14.6 msec, bT =7.3 msec, W =2. (d) Information dimension from saturation curves of (c).

curves are inverted, with increasing dimension down-
ward, so that curves with good saturation are unlikely to
be masked by those without saturation. The slope of
each saturation curve is the slope of the segment span-
ning an embedding dimension range of eight whose slope
is nearest zero, and the mean effective information di-
mension over this segment is taken as an estimate of in-
formation dimension, provided, in this case, that the ab-
solute value of the slope is not greater than 0.05.

Figure 6 shows that dimension of a nonstationary sys-
tem can be calculated from small overlapping sets with
reasonable accuracy, when the dimension is not greater
than at least 10, and abrupt changes of dimension pro-
duce corresponding changes in calculated estimates of di-
mension with a delay and rise time of about half the time
duration of each set.

CONCLUSIONS

This study indicates that significant sources of error in
estimation of dimension can be avoided by (1) careful
choice of intervals between vectors and between reference
vectors and neighbor vectors so that vectors are ade-
quately independent, (2) by use of optimum lag, (3) by use
of (ln[r(j, n)]) as the averaged dependent variable and
g( j) as the Poisson corrected form of the independent
variable, and (4) by use of Euclidean norm. Mean dimen-
sion is then found to be independent of set size when the
same range of j/X is used for slope calculation, and sets
of as few as 50 vectors, for a 7.5-dimensional attractor,
may be useful. The largest source of variability of dimen-
sion from small sets sampled from short time series seg-
ments is not the small number of vectors, but the short
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time interval spanned by these vectors. While dimension
calculated from large data sets of well-chosen vectors is
more accurate for stationary dynamical systems, results
from small data sets may be acceptable when only small
data sets are available, and such sets may be preferred for
dynamical systems which are not stationary. For such
systems, small sets can follow changes in dimension with
reasonable accuracy.
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