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Linear viscoelastic behavior of dense hard-sphere dispersions

J. C. van der Werff and C. G. de Kruif
Van 't Hoff Laboratory, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

C. Blom and J. Mellema
Rheology Group, Department ofApplied Physics, Ttvente University of Technology, 7500AE Enschede, The Netherlands

(Received 6 July 1988)

The complex shear viscosity of sterically stabilized colloidal dispersions of different-sized silica
particles (radius a =28—76 nm) was measured with torsion resonators and a nickel-tube resonator
between 80 Hz and 200 kHz. The volume fraction of the samples was varied from 0.10 to 0.60. In
the intermediate-frequency region, the real and the imaginary parts of the complex shear viscosity
decay as co

' to their limiting values. The viscoelastic behavior can be described in terms of one
relaxation strength G& and a series of relaxation times with ~~ = v

& p . The complex shear viscosity
scales with the dimensionless relaxation strength a G&/Dog„ the dimensionless relaxation time

Do~i/a, and the dimensionless angular frequency a co/Do. The dimensionless groups a G& /Dog,
and

Dphil/a

are a function of the volume fraction only. At higher volume fractions the high-
frequency limiting values of the real part of the complex shear viscosity, g', corroborate values cal-
culated by Beenakker [Physica 128A, 48 (1984)].

I. INTRODUCTION

The macroscopic rheological properties of dispersions
can be ascribed to the interplay of colloidal and fluid-
mechanical interactions. On a microscopic scale, these
interactions determine the structure of the dispersion,
i.e., the local degree of particle (dis)order.

Stable colloidal dispersions often display clear viscoe-
lastic behavior. In particular, dispersions of particles
with strong electrostatic repulsions have been the subject
of many studies. ' In these dispersions, the viscoelastici-
ty originates from the interparticle forces. In equilibri-
um, the structure is such that the free energy of the parti-
cle interaction is at a minimum. When the dispersion is
strained, the electrostatic energy increases. When the
strain stops, this higher free-energy state drives the sys-
tem through relaxation towards the equilibrium
configuration.

Weakly flocculated dispersions are another type of
dispersions which display viscoelasticity. ' The shear
deforms the floe and the free energy increases since the
particles that build up the floe are displaced out of their
equilibrium positions. In these types of dispersions, it is
the direct interaction between the particles that mediates
the free-energy storage.

Of course, a change in the relative positions of strongly
interacting particles is not the only cause of viscoelastici-
ty. In microemulsions, the particles themselves can be
deformed by the strain. ' The surface area of the parti-
cles becomes larger during the deformation. The result-
ing increase in surface free energy of the particles leads to
a storage of free energy and explains the viscoelasticity.

As we will show in this paper, there is still another
cause of viscoelasticity. We demonstrate this by present-
ing measurements on hard-sphere dispersions. In equilib-
rium, the supramolecular fluid attains a liquidlike order.

Perturbations from the equilibrium structure will be
driven back to equilibrium. It is simply the change in
configurational free energy that is responsible for the
viscoelasticity. In equilibrium, the particle distribution is
determined by Brownian motion. If the dispersion is
weakly strained in a slow oscillatory motion, the equilib-
rium distribution is disturbed and as a result the entropy
decreases (the free energy increases). The Brownian
motion rerandomizes the dispersion. During the
diffusion of the individual particles, free energy is dissi-
pated. At intermediate and high frequencies there is no
time for the equilibrium to be restored during the oscilla-
tions; free energy is stored in the medium by virtue of the
distorted configuration of the particles and viscoelastic
behavior is observed. Under a high-frequency strain, the
distribution does not relax and no free energy is dissipat-
ed via relaxation. The dispersion therefore behaves in a
"Newtonian" way and the high-frequency limit of the
complex shear viscosity is determined purely by hydro-
dynamics.

In previous studies ' it was shown that the equilibrium
properties of dispersions of sterically stabilized silica
spheres dispersed in cyclohexane closely resemble those
of the hard-sphere system. Light and neutron scattering
studies showed that the compressibility, which is propor-
tional to the inverse of the structure factor S(K) at zero
wave vector [S '(K =0)] and the structure factor S(K)
itself agree with the Percus-Yevick solution of the radial
distribution function g (r) for hard spheres.

The steady-shear viscosity of these dispersions was
measured as a function of particle size, shear rate, and
volume fraction. ' It was found that the properties of
these dispersions were in agreement with the theoretical
results developed by Einstein" and Batchelor' ' for
(dilute) hard-sphere dispersion. The fundamental scaling
properties as predicted by exact theory (and more intui-
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tively by Krieger' were present. The study was not lim-
ited to dilute dispersions, but we were able to determine
the relevant rheological parameters up to the volume
fraction /=0. 60.

In this study we analyze measurements of the linear
viscoelastic behavior of the hard-sphere silica systems.
The complex shear viscosity is measured as a function of
particle size, volume fraction, and frequency. It is an ex-
tension of the experiments that were reported in Ref. 16.

The main advantage of our hard-sphere dispersion is
the fact that with it is experimentally possible to vary
particle size and volume fraction without influencing the
interaction potential. In previous studies, we showed the
scaling parameters in the steady-shear viscosity; we are
now able to determine the scaling properties of the com-
plex shear viscosity.

In Sec. II we will show that basic scaling behavior can
be deduced from a theory worked out by Batchelor. '

The experiments will be discussed in this context. Fur-
ther, we wi11 relate our experimental results to the theory
of Russel and Gast' which is an extension of Batchelor's
concept. The high-frequency limit of the real part of the
complex shear viscosity g' will be compared with calcu-
lations by Beenakker' and by Russel and Gast.

II. THEGRY

The imaginary part is related to the free-energy storage.
Batchelor assumed a regular expansion of the pair dis-

tribution function g(r) in the Peclet number a j /Do.
For low Peclet numbers, thus for dominant Brownian
motion, and for small strains, the distribution function
which is disturbed by an oscillating flow can be written
as'4

2
P P f~ 1 aJE

2Dpp
(2)

where p is a dimensionless distance (p = r /a ), E is the
rate of strain tensor, gp is the equilibrium pair distribu-
tion function, and f is a hydrodynamic function. In an
oscillating flow field, f is complex. ' In this section we
shall calculate the relaxation time of the pair distribution
function from Batchelor's theory. In this calculation, we
implicitly assume that the expansion given by Eq. (2) is
correct. '

To calculate the relaxation time, we need to use some
results of Batchelor and Green who developed an exten-
sive theory for the evaluation of the bulk stress in a semi-
dilute suspension of hard spheres. ' Calculations in
which they neglected Brownian motion and in which a
random particle distribution was assumed [in this case

g (r) = 1] led to the following result for the relative
viscosity g„:

A. Theoretical background
i)„=i) /i), = 1+2. 5$ +5.2$ (3)

The viscoelastic behavior of a dispersion of hard
spheres in a Newtonian fluid arises from the disturbance
of the particle distribution function P ( Ir },t), which is a
function of all position coordinates of the Brownian par-
ticles and time. When the equilibrium particle distribu-
tion is disturbed by shear, it relaxes by Brownian motion.
The competition between shear and Brownian motion
can be expressed in the so-called Peclet number a y/Dp,
where a is the particle radius, j is the shear rate, and Dp
is the Stokes-Einstein diffusion coefficient, Dp =k~ T/
6vri)a (ks is the Boltzmann constant, T is the absolute
temperature, and rl is the shear viscosity). This dimen-
sionless quantity determines the rate of distortion of the
(pair) distribution function and is the important parame-
ter in many non-Newtonian phenomena encountered in
dispersion rheology. ' '

The particle distribution function plays an important
role in the calculation of the stress that is generated in a
dispersion by an external force field. Such a calculation
contains an ensemble averaging [thus an averaging over
P(Ir},t)] over the stress generated in a dispersion in
which the particles are held in fixed positions. '

When an oscillatory flow is imposed on a dispersion,
the distortion of the distribution function is as a result
partly in phase with the velocity and partly out of phase.
The disturbed pair distribution function can thus be
represented as a complex quantity. In turn, this leads to
a complex shear viscosity i)*(co),

i)„=7)/i), =1+2.5$+(5.2+0.97)p (5)

In this result, g„ is the low-shear and zero-frequency
value gp for the viscosity of a hard-sphere dispersion be-
cause in the calculation Brownian motion dominates and
the shear field is a steady one (f is real).

At infinite angular frequency, the affine distortion of
the distribution function is responsible for the free-energy
storage. For the calculation of i)'(co), we have to replace
f in Eq. (4) by the imaginary part f". The high-
frequency value of f" was implicitly given by
Batchelor, '

where i), is the solvent viscosity and p is the volume frac-
tion. This result can be regarded as the high-frequency
value of the real part of the complex shear viscosity, g'„.

If Brownian motion is taken into account, then an ex-
tra term to describe the extra stress generated in the
dispersion by the random movements of the particles has
to be added to Eq. (3). Batchelor' calculated for this ex-
tra stress term X~

X = 2'o7), P'4 J p'~(p)gof dp+P,
2

where P represents a pressure term. In equilibrium, f =0
and the Brownian motion generates only an osmotic pres-
sure. W(p) is a function governed by the hydrodynamics.
Numerical evaluation of the integral contributes 0.97$
to the relative viscosity, leading to

i)*(co)= (i)cu) i )"(cia) .—

The real part of the complex shear viscosity is in phase
with the applied rate of shear and is a dissipative term.

f"(co~ oo ) =(2DO/a ui) W(p),

and we find that

(6)
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G'„= lim cur)"= ,', (—Do/a )q, P f p ~ (p)goop

=3.9p Dog, /a

where we used go =1. If we further assume that the de-
crease of the real part of the complex shear viscosity with
increasing frequency is due to the vanishing contribution
of Brownian motion, and that the relaxation mechanism
can be described with a single relaxation time, then we
can calculate the relaxation time as follows:

r=( )io—rl'„)/6'„= ",", a /DO=0. 25a /Do . (8)

The result Eq. (8) can only be applied to semidilute
dispersions (P &0. 10) because only (hydrodynamic) pair
interactions were taken into account and the particle dis-
tribution was assumed to be random. Experiments in this
concentration range show that the viscoelastic effects are
too small to be measured and therefore no direct compar-
ison can be made with the result given in Eq. (8). Howev-
er, the predicted dependence of ~ on the ratio a /Do is
important.

Russel and Gast' extended Batchelor's theory. They
include many-particle interactions by measles of the poten-
tial of mean force V r which is related to g (r) as

V r= —k8T ing(r) . (9)

The particle interactions that determine the structure of
the pair distribution function (or radial distribution func-
tion) give rise to a potential of mean force, which Russel
and Gast treat as an effective direct interaction potential.
In the Russel-Gast theory the hydrodynamics are still
treated at the pair level. In Sec. IV it is shown that mea-
surements on hard-sphere dispersions show a measurable
frequency-dependent viscosity in the volume fraction
range 0.30&/ &0.60. We were not able to perform mea-
surements on samples with P) 0.60. For the concentrat-
ed dispersions, we calculate a relaxation time from the
Russel-Gast theory. From the Figs. 3 and 6 in Ref. 17
one can calculate the single relaxation time ~ which is
defined by Eq. (8). Between 0.35 & P & 0.55, the
coefficient of a /Do in r varies from 0.10 to 0.02. (Note
that these numbers differ by a factor of 2 from those that
we reported in Ref. 16. This is due to an error in Fig. 6
in Ref. 17; the values for 6' are a factor of 2 too large
(erratum supplied by W. B. Russel and A. P. Gast). This
implies that the particle distribution relaxes faster in
more concentrated dispersions, which is in contradiction
with the experimental results (see Sec. IV B).

In Sec. IV we shall show that the timescale of the
diffusion process that is responsible for the relaxation is a
time scale between the short-time self-diffusion time scale
and the time scale of long-time self-diffusion. Collective
diffusior' is not relevant since in the dispersion there is no
macroscopic concentration gradient present to drive such
a collective diffusion process. The short-time self-
diffusion process is thought to be the diffusion of a parti-
cle within a cage of surrounding particles. The other lim-
it, the long-time self-difFusion, is the diffusion of a single
(tracer) particle over larger distances. Interpretation of
the data (see Sec. IV) suggests that the longest relaxation

time corresponds to a diffusion process which is some-
where in between these limits, e.g. , the diffusion from one
cage into another. It would therefore be interesting to re-
place the diffusion coefficient at infinite dilution (Do) in
the expression for ~ by the self-diffusion constant D, that
belongs to the time scale of the longest relaxation time.
Unfortunately, no complete data are yet available. From
both theoretjcal20, 2i and experimental ' studies it is
known that D,'"'" decreases with increasing volume frac-
tion. D,"" shows a similar behavior, but at higher
volume fractions (/=0. 45), the long-time mobility is al-
most zero whereas the short-time diffusion is only de-
creased by a factor of 3 with respect to the free diffusion.
At this volume fraction the system still relaxes fast,
which implies that the diffusion process is more closely
related to short-time self-diffusion than to long-time self-
diffusion. We therefore replace Do by D,'"'". Up to
/=0. 45, reliable numbers are available for D,'""'. At
/=0. 45, D,'"'"=0.3DO, leading to r=0. 8a /Do.

It is tempting to interpret the theory of Batchelor and
Green and Russel and Gast in such a way that a single re-
laxation time is obtained. This implies that the viscoelas-
tic behavior of a hard-sphere colloidal dispersion can be
described by a single relaxation mechanism. The theory
itself says nothing about the number of relaxation pro-
cesses. The experiments to be reported here show that
we need a series of relaxation times to describe the exper-
imental results. We expect that when interactions are de-
scribed at the pair level, the relaxation time is a function
of the interparticle separation. The theory, however,
does not allow for a straightforward interpretation that
leads to expressions for all relaxation times. With Eq. (8)
we calculated a "mean" relaxation time since we aver-
aged over all particle pair positions while the positions of
all the other particles are randomized.

B Theoretical predictions for g'

The high-frequency limit of the real part of the com-
plex shear viscosity was among others~ calculated by
Beenakker. ' Beenakker solves the Navier-Stokes equa-
tion for a dense suspension of hard spheres. The effects
of Brownian motion are neglected. Harmonically oscil-
lating forces act on the particles that are distributed ac-
cording to the Percus- Yevick equilibrium distribution.
Beenakker gives a lower- and an upper-frequency limit
for measurements that can be compared with his calcula-
tions. The upper limit is determined by the frequency at
which inertia effects become important. At frequencies
lower than the lower limit, Brownian motion cannot be
neglected. For our model system the data that can be
compared with Beenakker's calculations have to be
recorded in the frequency interval 10 —10 rad/s.

Russel and Gast ' calculate g also. They use
Batchelor's formalism that leads to the result given by
Eq. (3) but extend the applicability of the formalism by
using the equilibrium g (r) as a function of volume frac-
tion. The values of g' are lower than those obtained by
Beenakker and Mazur, which clearly illustrates the im-
portance of the many-body hydrodynamics.
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C. Viscoelastic models

Since our results clearly show that a description of the
complex shear viscosity in terms of a single relaxation
time is inadequate, we write the complex shear viscosity
as"

y =(cur, )' ' (18a)

(18b)
VT I /a —1+ 1/aG171 CO

2a sin(vr/2a)

=1 11G 7' co
' for a=2 . (18c)

where N is the number of relaxation processes involved.
The real and imaginary parts of the complex shear viscos-
ity are given by

N G
g'(co)=r)'„+ $ 1+co 7p

In this model both components of the complex shear
viscosity show the same decay if +=2. Note that when
cur& ))N (when one measures on a time scale far beyond
the shortest relaxation time), rI"(co) decays as co, so the
shear modulus G'„=lim „ror)"(co) is finite. We will

use Eqs. (15) and (16) to fit the data to G, , r, and g'„.

N Q)Gp 7
g"(co)= g 1+co 7p

(12)
III. EXPERIMENTAL

A. Synthesis of the colloidal system

7p
—71p (x=2 (13)

G =const=G, . (14)

This would imply that all relaxation times are a function
of a /Dp. Following this line, it becomes feasible to plot
the complex shear viscosity as a function of the dimen-
sionless frequency a co/Do. In view of (8) we expect G,
to be proportional to g, Dp/a . The assumptions we
made lead to the expressions

(15)

KG]712rI"(~)= g
p=1 p +CO 7]

(16)

Equations (15) and (16) have the observed intermediate
frequency behavior. It can be shown that at intermediate
frequencies, 1 « cur& «N, Eqs. (15) and (16) can be
rewritten (for r =r@ ) as

i( )
i G 1/a —1+1/a ™1 dy

9 ~ I cc 171
& 1 p 1+ 2a/(a —1)

y =(d'or, )' ' (17a)

1/a —1+1/aG 171 6)2a cos(rr/2a )
(17b)

1 1 G 71/2~ —1/2 fOr cx =2, (17c)

where g' is the real part of the complex shear viscosity
in the limit cu~ ~. G is the relaxation strength of the
relaxation process with relaxation time 7p In the
description of a relaxation process with only one relaxa-
tion time, the high-frequency tail of [g'(cu) —g' ] decays
as co and r)"(co) decays as co '. In the experimental
section (Sec. IV) it will be shown that both [rI'(co) —g' ]
and rI"(co) decay as co

Is is well known that such a frequency behavior can be
modeled by assuming that the pth relaxation time is relat-
ed to the longest relaxation time 71 as

The colloidal system consists of sterically stabilized sil-
ica particles dispersed in cyclohexane. The core of the
particles is synthesized in a condensation polymerization
reaction as described by Stober. In this reaction, tetra-
ethoxy-silane Si(OCzH~)4 is added to a solution of am-
monia in ethanol. The tetra-ethoxy-silane is hydrolyzed
and the product of this hydrolysis, tetra-hydroxy-silane,
rapidly polymerizes to form spherical silica (SiOz) parti-
cles. The result of this reaction is a charge-stabilized
dispersion of monodisperse silica particles in ethanol.
The next step is to graft a stabilizing layer of octadecyl
chains on to the particle surface. This is achieved by
gradually replacing the solvent ethanol by octadecyl al-
cohol. The obtained mixture of silica particles in octade-
cyl alcohol is heated for a few hours to complete the gra-
fting reaction. The excess octadecyl alcohol is distilled
off from the reaction mixture and the residue is dissolved
in cyclohexane. The system is further purified by repeat-
ed centrifugation and redispersion in cyclohexane. The
resulting dispersion contains sterically stabilized silica
particles dissolved in cyclohexane. The preparation
method was described in detail by Van Helden. ' Larger
particles can be prepared by "growing" smaller ones to
the desired size.

B. Particle characterization

The radius of the particles was determined with vari-
ous light-scattering techniques. In the static-light-
scattering (SLS) experiment the (optical) radius of gyra-
tion, which is related to the particle radius as R =—', a
for a spherical optically homogeneous particle, is mea-
sured. In a dynamic-light-scattering (DLS) experiment,
the diffusion coeKcient, which is related to the particle
radius via the Stokes-Einstein relation Dp=kg T/6~g, a,
is measured.

The specific volume of the particles was determined
with viscometric measurements. The relative viscosity of
dilute suspensions with known weight concentration of
particles was measured in an Ubbelohde capillary
viscometer. These hard-sphere dispersions follow
Einstein s equation for the viscosity, i.e.,
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q„=q/q, =1+—,'P, (19) TABLE I. Characteristic values of the model systems.

where P is the volume fraction of the particles. The
viscosity of the solvent cyclohexane is g, =0.898 X 10
Pa s at T =298. 1 K. The volume fraction of the particles
is related to the weight concentration c via the specific
volume q, P=qc. If we plot —,'(g„—1) versus c, the slope
corresponds to the specific volume. In Fig. 1 this plot is
shown for system SSF1. This method is discussed in
more detail in Ref. 9 (see Table I).

C. Sample preparation

The concentration of a semidilute dispersion was deter-
mined by drying 5.00 ml of the stock in a dry nitrogen at-
mosphere. The dried silica is weighed on an analytical
balance and the mass concentration is calculated. The
density of the dispersion is determined also. Then a
weighed amount of this characterized diluted dispersion
is put into a flask of known weight. The flask is placed in
a water bath. The temperature of the bath is kept at
65'C. A weak dust-free nitrogen stream is blown over
the mouth of the flask. Cyclohexane is evaporated from
the sample until the desired total weight is reached. The
volume fraction is then easily calculated by multiplying
the concentration by the specific volume. In this way we
are able to prepare very concentrated dispersions with
well-defined volume fractions.

D. Description of the torsion resonators

1. Torsion pendulums

The sirnplified geometry of the instrument is shown in
Fig. 2(a). Drive and detection occur through a per-
manent magnet inside the pendulum. The bob itself is at-
tached to the rigid base-plate via the torsion rod. The
bob is excited via two excitation coils. When a current is
passed through these coils the magnet orients in the
(periodic) magnetic field. In a typical experiment with a
700 Hz resonator, the angular displacement is as small as
1.5 X 10 rad.

The current frequency is chosen near the resonance
frequency of the resonator —surrounding-fluid system, i.e.,

System

SP23
SSF1
SJ18

a (nm) (SLS)

28+3
48+2
77+2

a (nm) (DLS)

28+2
46+2
76+2

q (cm'/g)

0.71+0.02
0.69+0.02
0.63+0.02

the pendulum resonance frequency. A scan is made
through the resonance-frequency peak. From the
broadening and the frequency shift of the resonance fre-
quency with respect to a measurement in air, one can cal-
culate the characteristic shear impedance of the resona-
tor which is caused by the surrounding sample. From
this impedance Z*(co)=R (~)+iX(co), the complex
shear modulus can be calculated,

G*(co)=G'(co)+iG "(co)=Z* (co)/p, (20)

where co is the angular resonance frequency. Since only
the fundamenta1 resonance frequency is used, each reso-
nator gives one data point. In this study we used four
pendulums with resonance frequencies of 79, 276, 709,
and 2470 Hz, respectively. System SJ18 was measured at
all these frequencies. All other samples were measured
only at 79 and at 709 Hz.

The glass cell surrounding the resonater is double
walled so that the sample and resonator can be kept at a
steady temperature, namely, at 298.1+0.1 K. A detailed
description of the design and the operating principle can
be found in Ref. 33.

2. ¹ickeI-fube resonator

The nickel-tube resonator is used to measure the com-
plex viscosity in the frequency range 3.7—200 kHz. It

where p is the density of the sample. From the com-
ponents of G *(co) the components of the complex shear
viscosity can easily be calculated,

(21)

.10
1.5

0.5-

/o

Qi'

9'

/0

O

I I

0.5 1.0 1.5 2.0.10
concentration (g crn~)

FICs. 1. Intrinsic viscosity of system SSF1.

FIG. 2. Torsion resonators. (a) Torsion pendulum for mea-

surements in the frequency range 80—2400 Hz. A, base plate; B,
torsion rod; C, sample holder; D, bob with magnet inside; E, ex-
citation and measuring coils. (b) Nickel-tube resonator for mea-

surements in the frequency range 3.7—200 kHz. F, suspension

wire; Ci, measuring coil; H, excitation coil; I, nickel tube; J,
sample holder.
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consists of a 40-cm long, circumferentially magnetized,
nickel tube. This nickel tube [see Fig. 2(b)] is placed in a
glass tube filled with sample. The operating and detec-
tion principle is analogous to that of the torsion pendu-
lums. The nickel tube operates at its natural (standing
torsional wave) frequency and its overtones. We mea-
sured the viscosity at ten frequencies. Again the angular
displacement is very small; even at the highest frequen-
cies the shear rate y,„ is as low as 100 s '. The Peclet
number, P=a y /Do, which expresses the competition
between the disturbing effect of the shear waves and the
restoring effect of the Brownian motion on the equilibri-
um microstructure, is small: P,„=0.05 for particles
with a radius a = 50 nm. Even at the highest frequencies,
the equilibrium structure of the dispersion is perturbed
slightly. The glass tube containing the resonator is
placed in a thermostat bath. The temperature is constant
at 298.150 within 0.002'C. A constant temperature is re-
quired in order to prevent any change in the elasticity
modulus of the nickel tube with temperature. Construc-
tion and operating details of this apparatus are described
in Ref. 34. Both types of resonators require a sample
volume of 18 cm .

E. Data collection protocol and data processing

Before each measurement on a silica dispersion, we
measured the resonance frequency and bandwidth in air
and in cyclohexane. For both the torsion pendulum and
the nickel-tube resonator, the air measurement is neces-
sary for calibration. The nickel-tube resonator also needs
to be calibrated with a measurement on cyclohexane.
Then the measuring cells were flushed with nitrogen sa-
turated with cyclohexane. During the measurement on
the sample, the nitrogen-cyclohexane atmosphere was
maintained to prevent evaporation from the sample. The
dispersion was measured twice. Immediately after the
sample had been removed, the cell was rinsed several
times with cyclohexane. Care was taken to ensure that
no silica dried on the resonator surface. This is very im-
portant since a thin layer of silica on the resonator sur-
face immediately leads to a displacement of the resonance
peak and makes it impossible to reproduce the measure-
ments. Then a cyclohexane measurement was made. If
the peak positions and band widths did not correspond to
the values we obtained before the sample was measured,
the cell was rinsed again until the "starting" values were
reproduced. Finally, the resonators were dried in a nitro-
gen stream.

The data (resonance peak positions and bandwidths)
were stored in a microcomputer. From the displacement
of the peak positions and the broadening of the peak, one
can calculate the damping due to the sample. As an extra
check, we calculated the complex shear viscosities from
the nickel-tube-resonator data using two sets of refer-
ences. We used the air and cyclohexane files which were
measured before the silica dispersion was measured and
compared the obtained complex shear viscosities with the
values that were calculated using calibration files mea-
sured after the sample measurement. In all measure-
ments the results agreed to within 1%.

G. Data analysis

The data were analyzed with a microcomputer. The
best results were obtained when we fitted tl'(co) and q"(co)
simultaneously to Eqs. (15) and (16). In the fitting pro-
cedure, the value of ~& was iterated and we fitted the data
to obtain G, and g' . The number of relaxation times
was set to 100. Setting the number of relaxation times to
1000 led to slightly different values for G, and 7& ~ Even
more important is the fact that the quality of the fit did
not improve any further when more then a hundred re-
laxation times were used to describe the relaxation pro-
cess (the y parameter did not change any more). Typi-
cally, we needed only six iterations. When we fitted the
data for tl'(~) and g"(co) separately, the obtained values
for G, (and r, ) were found to be of the same order of
magnitude but could differ considerably.

In order to analyze the measurements on very concen-
trated samples (volume fraction P) 0. 50) we had to add
two data points, namely, the zero-frequency low-shear
value of g'(co) (measured with a Deer rheometer, Deer
Ltd. , England) and the zero-frequency low-shear value of
g"(co) ( which of course is zero).

IV. RESULTS AND DISCUSSION

A. Intermediate-frequency behavior

The data shown in Fig. 3 support the use of the model
represented by Eqs. (17c) and (18c). All systems show the
same behavior in the same dimensionless frequency re-
gion and for all volume fractions. Between a m/Do =1.5
and 350, both g'(co) and rl"(co) decay as co

' and can be
described as

+ 3'(a co!Do) (22)

g„"(co)= 3 "(a cu/Do) (23)

q'„(co), rl„"(co), and g'„„are relative viscosities (divided by
the viscosity of the solvent, g, =0.898 X 10 Pa s at
T =298. 1 K) and 3 ' and A " are dimensionless con-
stants. The value of the constants A' and 2" are shown
in Table II for all samples together with the slopes which

F. Linearity checks

We checked the linearity of the measured viscoelastici-
ty for almost every sample by doubling and halving the
input voltage on the excitation coils. This operation
changes the amplitude of the oscillation and thus the
shear rate. The measured complex shear viscosities were
found to be independent of the maximum shear rate over
the full frequency range. One sample, SSF1 /=0. 44, was
measured with the 709-Hz resonator over almost two de-
cades of maximum shear rate; between j'=4. 57 and 142
s '

( l. 8 X 10 (P (5.7 X 10 ). The complex shear
viscosity was constant to within 1%.

More important is that we could not detect any sys-
tematic vari. ation with increasing shear rate. The stan-
dard experiments in the torsion pendulums were per-
formed with y =20 s
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System

SP23 0.30
0.46
0.58
0.60

1.2+0.1

8.2+0.2
47+1
75+1

A"

0.3+0.1

6.4+0.2
45+1
84+1

8.4
60

125

TABLE II. Dimensionless slopes A' and A" as a function of
volume fraction for three different colloidal systems in compar-
ison with the calculated slope

A =(~/2&2)(6vra /g, k~ T)' G, ~']

were calculated from G, and r, (see Sec. IV B). Note that
the values of A ' and A" do not depend on the colloidal
system used. But the values of A' and A" are not equal
although from the model with +=2 one expects them to
be equal. The measured and calculated slopes are not ex-
actly the same. A" in particular deviates systematically
from the calculated value. These inconsistencies will be
discussed in more detail in Sec. IV C.

B. G
&

and ~& as a function of particle size
and volume fraction

SSF1 0.42
0.44
0.48
0.52
0.54
0.57

7.9+0.7
7.9+0.4

12.8+0.7
20.3+0.6

32+ 1

53+1

1.1+0.2
3.6+0.2
5.7+0.3

13.6+0.3
22.7+0.5
45.7+0.3

4.7
7.7

12.1
18 ~ 5

30.6
44.7

In Fig. 4 the data are shown together with the calculat-
ed curves based on the results of the simultaneous fit to
equations (15) and (16). Over the full frequency domain
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FIG. 4. Real and imaginary part of the (relative) complex
shear viscosity over the full frequency range. , result of
the fit to Eqs. (15) and (16). +, SP23; 0, SSF1; A, SJ18.
Volume fractions as indicated in the figures. The lower parts of
the figures [r)'„'(re)] correspond to the upper halves [g'„(&e)].
The highest curve of g'„'(~) corresponds to the highest volume
fraction. The horizontal axis is the same for all figures. The re-
sult of the measurement on the most concentrated sample,
SP23, /=0. 60, is not shown.
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FIG. 3. Frequency dependence of the complex shear viscosi-

ty at intermediate frequencies. +, SP23; 0, SSF1; A, SJ18.
Volume fractions as indicated. For reasons of clarity, the imagi-

nary part of the relative complex shear viscosity g'„'(m) is not
shown for the samples SSF1, &t =0.42 and SJ18, /=0. 46.
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and for all volume fractions the result of the fit is rather
satisfactory. The numerical results for G& '7] and g' are
presented in Table III.

The longest relaxation time ~& becomes longer with in-
creasing volume fraction and depends on the particle size.
However, the dimensionless quantity Do~, /a is surpris-
ingly constant for the different systems at the same
volume fraction. See Fig. 5. At high volume fractions, ~&

increases strongly with increasing volume fraction. This
illustrates the dramatic slowdown of the diffusion process
that is responsible for the relaxation mechanism. At
/=0. 45 we can compare the value of the relaxation time
with experimental data on the self-diffusion coefficients of
these silica particles. ' Around $=0.45, the dimen-
sionless relaxation time Do~, /a =0.40—0.60. In Sec. II,
we calculated a relaxation time in a semidilute dispersion.
The result was Dos~ la =0.25. Thus, at /=0. 45, the re-
laxation is only a factor of 2 slower than in a semidilute
dispersion. In such a concentrated dispersion, the aver-
age distance between the particles is very small, so short-
time self-diffusion must take place over distances that are
small compared to the particle radius. At /=0. 45, the
average distance between the particles is of the order of
0.6a. As a characteristic time for the short-time self-
diftusion, we take t, „h„=(0.6a) /D, '"""' Using .data ob-
tained by Van Veluwen et al. ' we get t,h, „,=a /Do.
The long-time self-diffusion takes place over distances
much larger than the particle radius, for instance, over
the radii of 5 particles. For this diffusion process we cal-
culate a characteristic time as t„„s=(5a) !D,"" . In Ref.
24 we read D,""(/=0. 45) =0.04Do; this leads to
t~,„=625a /Do. From these characteristic times, we see
that the relaxation mechanism is closely connected to
short-time self-diffusion. It would be interesting to nor-
malize the volume fraction dependence of the relaxation
times by scaling with the short-time self-diffusion
coefticient instead of scaling with Do. Unfortunately, no
data are available for high volume fractions. As an ap-
proximation, we try to account for the slowdown of the

PJ
CO

)

+
I

0
/

l

!
I

/

/
1- o~o

a -j
o-o

0
0.4

I

0.5 0.6
volume fr cictjop

FIG. 5. Dimensionless relaxation time as a function of the
volume fraction. +, SP23; 0, SSF1; A, SJ18. A line is drawn
to guide the eye. The value of Dos, la at /=0. 60 (12.6) is not
included in the figure.

diffusion by replacing the solvent viscosity in Do by the
real part of the complex shear viscosity at co~, =1. From
the data it is found that for all volume fractions the fol-
lowing relation seems to hold:

g, s.= g'( cur, = I ) —= =', ( go
—g' ) +g' (24)

In Table III we show the value of the dimensionless quan-
tity k~ T~, /6~g, za for all measured samples.

(i) This value is remarkably constant. From Table III
it can be seen that G, varies slightly over the covered
volume fraction range. It was already noted that at high
volume fractions, ~, increases strongly with increasing
volume fraction. From these observations one can con-
clude that it is the slow down of the diffusion that is re-
sponsible for the strong increase in the viscosity near the
maximum packing fraction and not the increase of G, .
In Fig. 6 we plotted the dimensionless ratio a G, /Dog,
as a function of volume fraction. This dimensionless ra-

TABLE III. Results of the simultaneous fit of g' and g" to Eqs. (15) and (16).

System a (nm) G, (Pa)
a'G

Dpg, .

a'G,
kB TP'

7l

10 s

Do

a
lreff k~ T~,

6~a 'g, ll-

(gp —g„)

SP23

SSF1

SJ18

28

46

76

0.46

0.58

0.60

0.42

0.44
0.48

0.52

0.54

0.57

0.46
0.47

0.51

115

270

315

16.7
24.5
40.0
41.2
61

47

3.7
4.3
9.7

1 1.6

27.2
31.8

7.5
10.9
17.9
18.4
28

21

7.4
8.6

19.5

2.9
4.3
4.7

2.2
3.0
4. 1

3.6
5.0
3.4

1.9
2. 1

4.0

0.038
0.36

1.14

0.127

0.161

0.149

0.334
0.365

1.48

1.2
1.4

1.2

0.42

3.97

12.6

0.32

0.40
0.37

0.83

0.91

3.69

0.64

0.76
0.68

5.13

10.0
16.8

4.27

4.99
6.36
7.47

9.9
1 1.5

5.77

6.78

7.45

10.3
113

335

7.6
9.9

14.4
25.8
39.3
98.4

11.2
13.9
21.1

0.041

0.035
0.037

0.042

0.040
0.026
0.032
0.023
0.037

0.059
0.056
0.031

3.6
4. 1

3.7

3.7
3.8
3.7
3.9
3.8
3.9

3.5
3.5
3.8
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FIG. 6. Dimensionless relaxation strength as a function of
the volume fraction. +, SP23; o, SSF1; A, SJ18. A line is
drawn to guide the eye.

tio is independent of the particle size, as was expected
from the interpretation of Batchelor's theory. Although
it seems as if a 6, /Dog, is a linear function of the
volume fraction, this cannot be true. 6& must be nonzero
for P) 0.

(ii) According to the model we used for the data
analysis the difference (go g'„)= G,—r, gp =(~ /
6)G, r, =1.656, ~, [see Eq. (15)]. From the data we read
( qo

—tl' ) /6, r, = l.7+0.1.
(iii) We further noted that the ratio (rjo —g'„)/rl, ffp

appears to be independent of volume fraction and particle
size (see Table III).

If the three statements (i), (ii), and (iii) do hold, then
the ratio a 6, /k~ TP should be constant. The value of
this ratio is shown in Table III for all samples. As can be
seen, a 6& /k&TQ is not completely constant but varies
over a factor of 2. This probably implies that the state-
ment (i) does not hold: the dimensionless ratio
k~T7, /6~g, ~ is not completely independent of the
volume fraction.

related to 6, and ~, ,
In order to check whether the description can be made

more consistent, we analyzed one data set (SSF1,
/=0. 52) with various values of a. The experimental
slopes were determined by plotting tl'(co) and g"(cu)
versus (co) '+' . We further determined the values of
6& and ~, as described in Sec. III G using various values
for o:. Using the values of 6, and 7, we calculated the
slopes with Eqs. (17b) and (18b). The results are shown in
Table IV. It is seen that the measured slopes depend
strongly on the value of cz. The calculated values of A'
are independent of the value of n, whereas A" increases
with increasing a. It is even more important to note that
the best description is achieved using +=2.

Therefore the remaining inconsistencies are ascribed to
experimental uncertainties. Close examination of the
data shows that rl"(co) does not decrease to zero at the
highest frequencies but decays to a (very low) back-
ground. This, of course, affects the slope A ". A further
decay of rl"(co) would increase A" leading to a better
consistency.

It should be noted that we used a simple model to ana-
lyze our data. Alternatively, the inconsistencies can be
due to an inappropriate description since the model used
is an ad hoc one.

The choice of model was based on the observed behav-
ior at intermediate frequencies. We proposed a descrip-
tion in which the pth relaxation strength 6 =6, and in
which ~ =w&p . At intermediate frequencies, this mod-
el leads to the expressions Eqs. (17c) and (18c). These
equations suggest that if we plot [t)'(cu) —tl' ]/6 ~r,
versus (cow&) ', and g"(co)/6&r, versus (cow&) ', both
plots are linear at intermediate frequencies and the slopes
correspond to the value m/(2&2). In Figs. 7(a) and 7(b)
we show these plots for the three different particle sizes
and volume fractions ranging from 0.45 to 0.57. The
lines correspond to a slope of vr/(2&2) = 1.11. The result
is very satisfactory and supports the proposed description
of the intermediate frequency behavior.

C. Consistency of the data analysis

In Sec. IVA we discussed the intermediate frequency
behavior and concluded that the value obtained for the
slopes A ' and A " did not rnatch the predicted values of
m'/(2&2)G&rI completely although they were qualita-
tively correct. See Table II.

Of course, if the relaxation times are not spaced exact-
ly as 7p T]p but as 7p vg, with e close to 2, then
the slopes A' and A" are not equal and will be differently

D. High-frequency limit g'„

In Fig. 8 we plotted the experimental data for g' to-
gether with some theoretical results. As expected, the
data do not show any effect of particle size. The solid
line is the result obtained by Beenakker. As discussed in
Sec. II B, Beenakker's result for the high-frequency limit
of the real part of the complex shear viscosity can be
strictly tested with the results presented in this paper.
Beenakker did not extend his calculations beyond

TABLE IV. The influence that the choice of parameter e exerts on the model parameters. Sample:
SSFl, /=0. 52. The value of a=2 gives the best consistent set of parameters.

Gl (Pa) A' (meas. ) A' (calc.) A" (meas. ) A " (calc.)

1.67
1.82
2.00
2.22
2.40

23.2
31.5
41.2
52.3
64.8

0.56
0.40
0.33
0.29
0.25

8. 1

12.7
20.2
32.4
52.2

18.6
18.6
18.6
18.6
18.6

5.4
8.5

13.5
21.6
34.9

13.5
15.9
18.6
21.4
24.3
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E. Reduced viscosity data

From Eq. (15) it can be seen that the dN'erence between
the low- and high-shear limit of the real part of the com-
plex shear viscosity, rlo r)'—„, is G, r, gp = l. 65G, ~, .
Thus the ratio [q'(co) —r)'„]/(go —rI'„) will depend only
on the dimensionless parameter co~„
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Fj+. 7. Dimensionless ratio (a) [r)'(co) —r)'„]/6~r~ and (b)

(~ ) /6 ] Tl as a function of ( car] )
' . The drawn line corre-

sponds to a slope of ~/(2&2)=1. 11. +, SP23, /=0. 45; o,
SSF1, /=0. 57; A, SJ18, /=0. 51. cow(

g"(~)/(r)0 —g'„)=0.608 g
p=t p +(cur, )

(26)

The imaginary term, g"(co), can be reduced in the same
manner,

/=0. 45 because of accumulating inaccuracies. We think
that the results shown in Fig. 8 are a corroboration of
Beenakker's theory, and they also sustain our claim that
the particles can be regarded as hard spheres. The bro-
ken line represents the result of Russel and Gast for the
high shear limit of the real part of the complex shear
viscosity. Their result incorporates only two-body hydro-
dynamic interactions since it is an extension of the theory
of Batchelor and Green. The difference between their re-
sult and the result of Batchelor and Green is that Russel
and Gast use a better approximation for the pair distribu-
tion function at higher volume fractions. From the data
it can be seen that this two-body result describes the data
only up to / =0.10 and in this volume-fraction region the
Russel and Gast result essentially matches exactly the re-
sult of Batchelor and Green. The difference between the
theory of Beenakker and that of Russel and Gast reflects
the importance of many-body hydrodynamic interactions
at higher volume fractions.
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In Fig. 9 we plot the normalized viscosities as a function
of ~~, . All data are brought on to the same curve. Note
that the top value of 7)"(co) is about 0.3(go —rl'„), for all

volume fractions, while one expects 0.5(go —q'„) for one
relaxation time.
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FIG. 8. High-frequency limit of the real part of the complex

shear viscosity g'„as a function of the volume fraction. +,
SP23; 0, SSF1; A, SJ18. --- —,Beenakker (Ref. 18); ———,
Russel and Gast (Ref. 17); —.—.—-, Batchelor and Green (Ref.
13).

FIG. 9. Normalized complex shear viscosity as a function of
co7.1. All data points are included. (a) Real part of the complex

shear viscosity. The drawn line corresponds to
0.608+„'~,p /[p +(cur, ) ]. (b) The imaginary part of the com-

plex shear viscosity. The drawn line corresponds to
0.608+p=",cur(/[p +(cur, ) ].
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F. Comparison of results of steady-shear
measurements and of dynamical measurements

In a recent paper we described steady-shear measure-
ments on the colloidal systems SP23, SSF1, SJ18, and
SJ14. Only measurements on the latter are not included
in the present study. It was found that the high- and
low-shear limiting viscosities, g„(j'=0) and g„(y = ~ ),
did not depend on particle size. The low-shear limiting
viscosity g„(y=O) is equivalent to the real part of the
complex shear viscosity at m=0. The high-frequency
limit g', however, cannot be compared to the high-shear
limiting viscosity g( j = ~ ) since the latter is measured in
a nonlinear experiment. In a high-shear experiment, the
equilibrium microstructure of the dispersion is complete-
ly destroyed and ordering phenomena are observed.
The resulting structure is probably fully determined by
hydrodynamic effects. '

Bedeaux proposed the following formula for a sensi-
tive representation of the relative viscosity data:

—1

, =$[1+S(P)], (27)

where S(p) is an unknown function of the volume frac-
tion. This proposed formula is similar (in form) to the
Clausius-Mossotti formula for the dielectric constant. In
Fig. 10 we plotted the function S(P) on the basis of the
results of linear (dynamic) measurements of the (complex)
viscosity g'„„and the limiting viscosities measured on
system SJ18 in nonlinear (steady-shear) experiments. In
this very sensitive representation of the viscosity data, the
difference between the various limiting values can be seen
clearly. The function S(P) seems to be a very simple
function of the volume fraction. We fitted the functions
S (P) of all dispersions to a parabola and obtained the fol-
lowing functions: low-shear limit (Ref. 9),

S($)=(2.21+0.29)$ —(1.47+0. 13)P

high-shear limit (Ref. 9),

S(P)=(1.42+0.46)P —(0.55+0.35)P

high-frequency limit,

1.0

~ ~ g ~

0.5-
X

X

X X
X X

0
O~ 0

a

0.2 04 06
vol um e f r action

FIG. 10. Representation of various viscosity data as suggest-

ed by Bedeaux (Ref. 37). ~, SJ18 low-shear limit (Refs. 10 and

11); X, SJ18 high-shear limit (Refs. 9 and 10); 0, high-

frequency limit of the real part of the complex shear viscosity

(this work, Fig. 8). , Beenakker (Ref. 18); ———,Russel

and Gast (Ref. 17); —.—- —., Batchelor and Green (Ref. 13).

the shear-thinning curve, i.e., g„as a function of the
shear rate j', scaled with the dimensionless group
a j'/Do, the so-called Peclet number. Following Krieger
and Dougherty' we characterized the shear-thinning
curve by a characteristic Peclet number P„ i.e., the Pec-
let number at which

q„(P, )= —,'[q„(P~ oo )+g„(P=O)] . (28)

The characteristic Peclet number is an indication of the
rate of deformation at which the shear thinning occurs.
Both this characteristic Peclet number and ~, shift to
lower values with increasing volume fraction. This im-
plies that at higher volume fraction the particles need
more time to rearrange in order to restore the shear-
distorted particle distribution.

We can of course characterize the frequency depen-
dence of g' by a characteristic frequency: from Fig. 9(a)
can be seen that this characteristic (dimensionless) fre-
quency co, is related to ~, as

S ( $ ) = ( 1.41+0.14)P —( 1.19+0.34 )Q
co, =1.92a /Do~, . (29)

In Fig. 10 we further compared the predictions by
Beenakker, ' by Batchelor and Green, ' and by Russel
and Gast' with the high-frequency data. In this very
sensitive representation it is seen that Beenakker's theory
matches the high-frequency data rather well, in particu-
lar, at higher volume fractions. It should, however, be
noted that the initial slope S(P) according to Beenakker
is too high [S($ ) = (2.31+0.14)P—(3.24+0. 33 )P ]. At
higher volume fractions, the theory by Russel-Gast
theory predicts values that are too low. Up to /=0. 10,
the high-frequency result of Batchelor and Green de-
scribes the data adequately. This is reAected in the value
of the O(P) coefficient of S(P) of Russel and Gast
[S($)=(0.87+0.21)P—(1.15+0.38)P ] which is close
to the experimental value.

In the steady-shear study, ' it was further found that

TABLE V. A comparison of characteristic Peclet numbers
(Ref. 9) and characteristic dimensionless frequencies (see Fig. 5
and Table III).

0.40
0.45
0.50
0.55

0.9
0.6
0.4
0.14

8
4
3
1.3

In Table V we compare the characteristic dimensionless
frequencies and the characteristic Peclet numbers as a
function of the volume fraction. Independent of the
volume fraction, these characteristic times scales roughly
differ by a factor of 10. The fact that the characteristic
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Peclet number is smaller than the characteristic dimen-
sionless frequency reflects the nonlinearity of the steady-
shear experiment. In a steady-shear experiment (at
higher Peclet numbers) the micro structure is brought far
out of equilibrium and particles have to diffuse over
longer distances in order to restore the equilibrium distri-
bution. In a linear experiment, short-time self-diffusion
restores equilibrium. In the nonlinear case another type
of diffusion takes care of the restoration of the particle
distribution. Short-time self-diffusion is faster than all
other diffusion processes. ' We think it is for this
reason that the shear thinning in a nonlinear experiment
becomes noticeable at a longer time scale, thus at a lower
Peclet number.

V. CONCLUSIONS

We measured the linear viscoelastic behavior of hard-
sphere colloidal dispersions as a function of frequency,
particle size, and volume fraction. Guided by the ob-
served behavior of the complex shear viscosity at inter-
mediate frequencies, we chose a simple model to describe
the data. The three important model parameters (the re-
laxation strength 6, , the longest relaxation time ~, , and
the high-frequency limit of the real part of the comp1ex
viscosity g' ) were determined.

It was shown that irrespective of the particle size the
complex shear viscosity can be described with the dimen-
sionless parameters a 6& /DOE)' and Do~&/a . This scal-
ing behavior was already predicted by the theory of
Batchelor and Green. The longest relaxation time ~, in-
creases with increasing volume fraction. This implies
that the diffusion which is responsible for the relaxation
mechanism slows down with increasing volume fraction.
This observation, and values of 'T& strongly support the
point of view that the diffusion process of interest is

closely connected with the short-time self-diffusion.
From the Russel —Gast theory we calculated a mean re-

laxation time as a function of volume fraction. The ex-
periments show that this mean relaxation time increases
with increasing volume fraction, whereas Russel and
Gast predict a decrease of the mean relaxation time.

We tried to normalize w, by replacing the solvent
viscosity in Do by an effective viscosity. In this way we
tried to account for the slowdown of the diffusion. The
obtained values for the normalized ~, were found to be al-
most independent of volume fraction. The dimensionless
relaxation strength, i.e., a G, /Dog„was also found to be
independent of particle size.

At higher volume fractions, the high-frequency limit
matches the calculations of Beenakker which are

based on many-body hydrodynamic interactions. Russel
and Gast treat the hydrodynamics at the pair level. This
results in too low a value for g'„. Up to /=0. 10, the
high-frequency data can be described with the high-
frequency result of Batchelor and Green.

With the obtained values for ~, and g'„, we normalized
the complex shear viscosity. Data for all volume frac-
tions can be brought onto the same curve.
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