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Theory of laser-induced excitation transfer and atomic association. II. Resonances
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We have extended our previous analysis of diatom laser-induced excitation transfer, illustrated by
several examples, to include modifications due to laser-induced resonances. Compact and rigorous
final results have been obtained through the use of a projection-operator scheme in combination
with the "symmetric-top" basis set and a full quantal treatment of the radiation field. The principal
limitations on our analysis are a neglect of fine-structure coupling and a simplifying assumption that
the ground electronic manifold supports no bound nuclear states. Simple order-of-magnitude esti-
mates of the predicted resonant cross sections also are provided.

I. INTRODUCTION

The theory presented here is an extension and revision
of our recent analysis' of laser-induced excitation transfer
(LIET), hereafter referred to as I. Of primary concern in
this paper are several prototypical processes in which the
laser induces resonances as part of the excitation process.
A schematic representation of the reactions considered
here is given by the equations

A (I)+B(1)~[A(1) . B(1)]
f7CO A (2)+B(2)

A (1)+8( I )+%co,

A (I)+8(1)~[A (1) B(1)]

~[A(2) 8(2)]~[A(3) . 8(3)]
~A (3)+B(3) . (1.2)

The numbers 1, 2, and 3 denote composite electronic
states of the atoms. The intermediate states
[A (j) 8(j)] will be specified more fully in what fol-
lows. It is assumed that the laser frequency co is not reso-
nant with any electronic transition of the atoms, 3 or B,
and that the laser intensity is low enough ( ( 10' W/cm )

so that dressed-state effects are unimportant. The pres-
ence of photons is therefore important only during the
brief interval during which the atoms interact.

Our study differs from previous, related work both
in the details of the processes being considered and in the
way we shall treat the (surprisingly important) effects of
spontaneous radiation. Any theory of reactions such as
(1.1) and (1.2) must incorporate the coupling between the
collision dynamics and the radiation-matter interaction.
In addition, a systematic treatment including the effects
of spontaneous emission must treat the radiation field as
a quantal object. Related studies include those of Juli-
enne and Mies and Regenorter and Feaurier, who have
studied the Auorescence produced by the products of col-
lision systems. Lam and George have published a theory
of the collision-induced fluorescence events

A (2)+B(2)~[A (2) . 8(2)]
~[A (1) . B(1)]talc~ tr~

~ A (1)+8(1)+Pic ~tr~, (1.3)

where "2" denotes an excited electronic manifold and"1"the ground-state manifold. This reaction is not too
different from the ones we are considering and Lam and
George's treatment incorporates a quantal treatment of
the radiation field. There are, however, two drawbacks
to their approach. First, the collision dynamics are re-
garded as semiclassical; indeed, no real prescription for
computing the collision trajectories is given. Second, the
treatment of the radiation field is very complicated and
results in final formulas that cannot readily be interpret-
ed.

Hutchinson and George also have investigated the re-
action

A (1)+B(1)~[A(1) . . B(1)]
I

~[A (2) B(2)]~A (1)+8(1), (1.4)

in which two quasibound states in the excited electronic
manifold are coupled by an infrared laser with the fre-
quency co'. Although this process again bears a great
similarity to (1.1) and (1.2), effects due to spontaneous ra-
diation were not considered. The presence of spontane-
ous emission certainly complicates the mathematical
analysis, but its practical implications are significant and
deserve systematic treatment. Our aim then is to provide
a fully quantal theory of (1.1) and (1.2) that yields simple
and readily interpretable final results. Our previous treat-
ment' of reactions (1.1) and (1.2) produced more comph-
cated and less rigorous results than those reported here.
Furthermore, the role of resonances described below, in
Secs. II and III, was not properly accounted for in the
earlier paper.

The simplest of the examples to be considered in this
paper is depicted by Fig. 1(a). Although this first exam-
ple may not be of great intrinsic interest, it is needed here
as a reference point for the two other examples that fol-
low. Furthermore, a consideration of this "convention-
al" case allows us to present computations and results in
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(a)

(b)

V~(R)

"4(R)

FICx. 1. (a) Neither electronic state (x=1,2) supports bound
nuclear states. (b) Excited state can support at least one bound
state with energy c.2. (Channel 2 may or may not be open. ) (c) A
two-photon process. State 2 supports bound states but 1 and 3
do not.

their simplest forms, unobscured by decorations due to
resonances. In our example two adiabatic electronic
states are involved, neither of which supports bound elec-
tronic states. A collision begins with the reactant atoms
approaching one another subject to the potential energy
V& (R ). In the midst of collision the system is transferred
from the initial electronic state [A(1) 8(1)] to the
final electronic state [A (2) . 8 (2)] by a laser photon.
The event draws to an end with the atoms separating
from one another on the potential energy surface V2(R),
characteristic of the excited electronic state.

The theory establishes that the photoabsorptive event
is only likely to occur near the internuclear separation(s)
R * satisfying the "resonance condition"

ative kinetic energies of the two atoms. When
E, + V, ( oo )+ fico ( Vz( ~ ), the channels associated with
the excited electronic state are closed and reaction cannot
occur. In this subthreshold regime all that can happen is
elastic scattering in manifold 1 and this will be affected
imperceptibly by the laser.

In the case just discussed the duration of the encounter
is far too small (e.g. , —10 ' sec for thermal atoms) for
spontaneous emission to accompany the collision and it is
extremely unlikely that stimulated emission will occur
subsequent to photoexcitation. However, this is not so
for the situation illustrated by Fig. 1(b). In this second
example the potential V, is the same as before, but the
excited-state potential V2 is now capable of supporting
bound nuclear states. [The symbol ei appearing in Fig.
1(b) denotes the energy of one such state. ] It is these
bound states that can give rise to resonances.

There will be no significant differences between this
and the previous example provided that the channels
of manifold 2 are open, i.e., provided that E,
+ V&( ~ )+fico) Vz( ~ ). The differences are most pro-
found in the subthreshold regime with manifold 2 closed
and the scattering restricted to manifold 1. Thus, even
though there is insuScient energy to form unbound excit-
ed products, the radiation field will couple the two mani-
folds and this coupling can result in an intensity-
dependent change of the manifold 1 scattering. To un-
derstand how this can come about, suppose that as the
atoms approach one another on Vi, photoexcitation
(from [A (1) 8 (1)] to [A (2) 8 (2)]) occurs at a
separation R * satisfying the resonance condition (1.5).
[Figure l(b) shows two separations R,* and R,*, at which
this condition is satisfied, but R

&&
is "classically inaccessi-

ble" under the conditions indicated in the figure. ] The
atom then will be confined to a bound state of V2 (with
energy ez) until a photoemissive transition returns the
system to V, . If the event that restores the system to
manifold 1 is a laser-stimulated emission, the atoms will

Ay apart with a kinetic energy equal to that with which
they originally collided. This constitutes a two-photon
elastic scattering event, with a phase differing from that
of the comparable field-free collision by an amount
dependent upon the intensity and polarization of the
laser. However, if the decay back to manifold 1 occurs
by spontaneous emission, the products of reaction will in-
clude a photon with a wave vector a that can vary over a
range of magnitudes and directions. In this second case
the relative kinetic energy of the atomic products (E&)
will differ from that of the reactants (E, ) by an amount
specified by the conservation equation

V (R*)—V, (R (1.5) E, +A'co=EI +Pic l~l (1.7)

If there is no value of R satisfying this condition, the
cross section for the process will be very small.

Conservation of energy leads to the second, more
rigorous condition

E, + V, ( ~ )+iris') =E~+ V~( ~ ),
with E, and E2 denoting the pre- and postcollisional rel-

(manifold 2 closed). Since the total radiation field is al-
tered by events of this second type, the scattering they
produce will be coherent neither with field-free elastic
scattering nor with that associated with the previously
described absorption-plus-stimulated emission two-
photon events.

Finally, since the excited bound state is coupled very
weakly to the elastic scattering system, the energy of the
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initial scattering system must be nearly coincident with c2
for there to be a significant probability of photoexcita-
tion, i.e.,

E, + V, ( ~ ) + fico =E2 '. (1.8)

Thus the mechanisms described here combine to produce
a cross section that is strongly dependent on the laser fre-
quency (for fixed Ei). Indeed, the laser-intensity-
dependent portion of the cross section will be important
only when this equation is satisfied; the cross section will
exhibit a series of resonances at laser frequencies given by
(1.8). This is in accordance with Feshbach's general
analysis of bound-continuum coupling. The theory
presented here closely resembles his, the main difference

stemming from our need to handle spontaneous radiation
and its effects on the shapes and strengths of resonances.

The third and last example we consider involves three
distinct electronic states, such as those depicted in Fig.
1(c). In this case our main interest is a two-photon pro-
cess consisting of photoexcitation from manifold 1 to
manifold 2 followed by photoexcitation from 2 to 3. As
before, conservation of energy fixes the value of E3 (the
relative kinetic energy of the atomic products) in terms of
the initial kinetic energy of the reactants, the electronic
energies of the initial and final states, and the laser fre-
quency,

E3+(N —2)fico+ V, ( ~ ) =Ei+Nfico+ V, ( oo ) . (1.9)

Also, by analogy with the previous examples, it is clear
that there are two "resonance conditions, "

fico= Vz(R *)—V, (R *),
fico= V3(R *')—V2(R *'), (1.10)

that must be satisfied (for at least one R * and one R *') if
the cross section for the two-photon process is to be of
significant magnitude. However, this cross section nor-
mally is found to be very small even when the conditions
(1.10) are satisfied. This comes as no surprise, for if the
single-photon events of the earlier examples are rare
events, then the two-photon processes should be even
more so. The one exception to this is the case where
manifold 2 supports bound states and the laser frequency
satisfies the additional resonance condition (1.8). In these
circumstances absorption of the first photon populates
the metastable bound state [A (2) B(2)]. If the life-
time of this state is sufficiently great, then absorption of
the first photon almost certainly will be followed by ab-
sorption of a second. Consequently, under optimal cir-
cumstances the cross section for the two-photon process
(1.2) will be comparable to that of a one-photon process
such as (1.1). This "resonance enhancement" is familiar
from experiments involving the multiphoton ionization of
atoms and molecules. Here spontaneous radiation again
plays a role since it limits the lifetime of the metastable
state [A (2) . . B(2)] and thus the effectiveness of the
resonance enhancement ~ The theory for this process is
outlined in Sec. IV, along with a discussion of the depen-
dence of its cross section of the parameters of the system.

II. GENERALITIES, DEFINITIONS, AND NOTATION

We consider two crossed atomic beams, one of species
3 and one of B. Focused on the collision region is a
single-mode laser. The (center-of-mass) Hamiltonian of
the system is taken to be

H= T„+H,]+H„+H;„, . (2.1)

Here T, is the relative kinetic energy of the two atomic
nuclei. The operator H, &

is the sum of the electronic ki-

netic energies and of the Coulombic interactions among
the nuclei and electrons. H„=g iiico a a is the energy of
the free radiation field, with a and a denoting creation
and annihilation operators for photons with angular fre-

quency co, momentum Ax, and linear polarization a .

Finally, H;„, is the energy of interaction between the
charged particles and the laser. In the applications con-
sidered here this operator is taken to be the electric di-

pole interaction between the laser and the electrons.
Furthermore, it is assumed that the intensity and fre-

quency of the laser are such that it does not interact with
the atoms unless they are in the midst of collision. In
practice, this requires that the laser frequency co be de-
tuned from all atomic transitions and that its intensity be
"low, " i.e., I S 10' W/cm . Thus the part (H;„,) of the
Hamiltonian responsible for LIET is a short-ranged
operator, suitable for analysis by conventional scattering
theory.

Spin-orbit interactions deliberately have been neglected
throughout this paper, in order to reduce complexity and
to expose any identifiable characteristics of the photocol-
lisional processes. However, we recognize that fine struc-
ture must be reintroduced in subsequent, more detailed
studies in order to provide an adequate representation of
the quasimolecular states.

Our considerations will be confined to a limited num-
ber of electronic subspaces, to each of which is assigned a
single value S of electron spin, a single value of ~A~A (the
magnitude of the component of total electronic orbital
angular momentum along the internuclear axis) and the
single, corresponding potential energy surface. It is
thereby assumed that the dynamics of interest are
represented adequately by kets having projections on
only a few electronic states. These may be adiabatic
(ABO) or diabatic (DBO) Born-Oppenheimer states as ap-
propriate. The electronic kets associated with these
states are denoted by symbols

~
la R), ~2b R ), and (in Sec.

IV) ~3cR). The labels 1, 2, and 3 identify the potential
energy curves connected with the states and
R=X~ —Xz is the vector extending from nucleus B to
nucleus A. The identification of the electronic states is
completed (and all residual degeneracies resolved) by the
composite labels a, b, and c. These sets of quantum num-
bers include (1) the projection of total electronic spin (in
units of fi) Q„(02b, 03, ) along the lab z axis, and (2) the
projection of total electronic orbital angular momentum
(in units of fi) A„(Az&, A3, ) along R. The incoming
channel for scattering is designated as subspace 1, a:—0:
the corresponding electronic ket is

~
10R ) .

In much of what follows it is convenient to treat all
electronic kets at once, regardless of the potential curves
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to which they are related. Accordingly, electronic kets
will be denoted by generic symbols

I
xl R ), with

x =1,2, . . . , and I =a (for x =1), b (for x=2), and c
(for x =3). In this generic notation and the extensions of
it that follow, it must be remembered that the meanings
of quantum numbers such as l depend on the labels x
with which they are associated.

With this rejoinder in mind, let us proceed to other
definitions and notation. The potential energy function

proximation, thereby limiting attention to the space
spanned by a selected set of kets xlRn )). It therefore is
implicit in what follows that each operator 0 is replaced
with 101, where

1= g P„.
x (finite)

Thus, for example, the Schrodinger equation
(H —Ez ) If)) =0 becomes

V (R) = V„i(R)—= (xlRIH, i IxlR)
= J d g'P*, (plR z)H„Q, (plR z) (2.2)

(H;; —E )lq; » = —yH;, lq, &), =1,2, . . . , I
J

with

(2.9)

is the expectation value of the electronic Hamiltonian
operator common to all states lxlR) with a specified
value of x. The last of these formulas expresses the ener-

gy of the BO state in terms of its coordinate wave func-
tion,

(rlxlR) =P„,(rlR)=P 1(glRz) . (2.3)

Here r and R are electronic and nuclear coordinates re-
ferred to a laboratory frame of reference, the polar axis of
which points in the direction of z. The symbol g denotes
the "molecular frame" coordinates, specifying the posi-
tions of the electrons relative to a frame that has its polar
axis directed along the internuclear axis.

We associate with each electronic state lxlR) a prod-
uct state

H„=P,HP, , (2.10)

H „=PHP„=—g P„i„HP,i„=g H(i(xn ),
I I

with P &„=f d RlxlRn )) ((xlRnl and where

(2.1 1)

Hg(xn) =P i„T~+ (K fi A I )+ V (R)—1

2pR

Because the issues that concern us here are not sensi-
tively dependent upon Born-Oppenheimer couplings,
these will be disregarded. Consequently, each diagonal
element of the Hamiltonian matrix can be written in the
form

lxIR))—:IxlR& IR) . (2.4)
+(nlH„ ln& P.,„. (2.12)

P„—= g g J dRlxlRn )) ((xtRn I,
1 n

P„P., =5,,P'. ,

(2.5)

(2.6)

Here IR) denotes an eigenket of the nuclear coordinate
operator R, so normalized that (RIR') =6(R—R').
The scattering theory is then formulated in terms of the
electron-photon subspaces spanned by orthogonal projec-
tion operators

Here Tz =——
(vari /2p)R Bz(R Bz) is the radial kinetic

energy operator and K is the total orbital angular
momentum operator, equal to the sum of the electronic
orbital angular momentum and that associated with the
relative motion of the two nuclei. Accordingly, we intro-
duce a ket Ix/KMqn )) that satisfies the single-channel
wave equation

(H „—ET ) IxlKMqn )) = ( g H&I (xn ) ET ) Ix1KMqn—))
1

which, in turn, are defined in terms of the product states =0 (2.13)

IxlRn » = Ixl R » I
n & . (2.7)

The object In ) appearing in (2.7) is an eigenket of the
free radiation field Hamiltonian operator H„. The set of
photon states associated with a projection operator P
depends upon the value of x,

x =1, n =N and (N —l, ap);

and additionally is an eigenket of K and of the corn-
ponent of K along the lab z axis; K and M are the corre-
sponding quantum numbers.

We write the coordinate wave function of this ket in
the form

(( r, R
I
x IKMqn »

x=2, n=N —1; (2.8)
=F,K(q, R)NKD~ M(R)p &(glRz)ln ) . (2.14)

x —3, n=N —2.
In the first line of (2.8) n =N denotes a photon state hav-
ing X photons in the original linearly polarized laser
mode, while (N —I,Kp) denotes N —1 photons in the
laser mode plus one with differing momentum Az and
(linear) polarization p, . The states (N —1,Kp) are includ-
ed to account for spontaneous radiation, the effects of
which are important in Secs. III and IV.

As mentioned previously, we use the few-channel ap-

Here R=($, 0) is a unit vector in the direction of the in-
ternuclear axis and the functions D& ~(R):D~ ~(P, —
8,0) are representation coefficients of the rotation group
03+ which satisfy the orthonormality conditions

J' dR[NKDA M(R)]*[NKD. M (R)]=&KK fiMM'

with NK = [( 2K + I ) /4' ]' ~2.

It follows from (2.11)—(2.14) that the radial amplitude
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F I~ is a solution of the one-dimensional Schrodinger
equation

T„+ [K(K+1)—A i]
2pR

+ V„(R)—E (Kq) F„«(q,R)=0 . (2. 16)

When channel xl is closed this is an eigenvalue equation
with E (Kq)=Er (nl—H„ln ) discrete, q a vibrational
quantum number, and F «(q, R ) a real, square-integrable
function satisfying the orthonormality condition

dR R Fz&& Q& R F&/& p &
R 6qq

0
(2. 17)

F„«(q,R) — (2/~i)' 'R 'sin(qR +ri ic ) .
g ~ oc

(2.18)

Consequently, the kets xlKMqn )) satisfy the conditions

((xl'K'M'q'n 'lxlKMqn )) =5i.&51c x 5M M5„,„5(q',q),
(2. 19)

with 5(q', q) indicating the Kronecker or Dirac 5, de-
pending on which is appropriate.

With the neglect of Born-Oppenheimer couplings, the
only remaining contributor to the oA-diagonal elements
of the Hamiltonian matrix is the laser-electron interac-
tion operator 0;„„

H,„,=P„HP„,=P,H;„,P ~ (for x'&x) . (2.20)

The matrix elements of these operators can be written in
the form

((x'l'R'n 'lH;„, lxlRn )) =5(R' —R) V„.i „ i„(R,co),

(2.21)

with

V .i., „i„(R,co)

=ip' ( cno'ln) cc(R)(x'l'Rla„. dlxlR)

and

co, (R)=(fico) '[V„,(R)—V (R)] .

(2.22)

(2.23)

Here, d is the electronic dipole moment and a„ the linear
polarization axis of the emitted or absorbed photon. In
the event of absorption or stimulated emission, a„=a is
the polarization axis of the laser and

p(co;N —1 lN) =p(co;NlN —1)=2ir(I/cco ) . ' (2.24)

When xl is open, E (Kq) =fi q /2p is the relative kinetic
energy of the separated atoms and F «(q, R) is a continu-
um wave function which we choose to be regular at the
origin, 6-function normalized in the manner

I dR R F «(q, R)F,«(q', R)=5(q —q'), (2.17')
0

and subject to the asymptotic boundary condition

If the photon is emitted spontaneously [n = (N—l, icp, )], there will be two polarizations a„(@=1,2),
each of which is perpendicular to the photon wave vector
x. The corresponding value of p is

p( co; N —1, inc l
N —1 ) = 2rrfi/Qc

l
ic (2.25)

m =0, +1
( —1) Y, (a)D~A (R)

X [x'1'R ld~~ lxlR j,
(2.26)

with b.A=A„.,
—A

&
(values 0, 1) and where 0, and

0 I denote the electron spin projection quantum numbers
of the two states. The symbol [ l d, l I indicates
the body-frame matrix element of a spherical component
(v=0, +1) of the electronic dipole moment operator and
Y, (a)= Y& ($,8 ) is a spherical harmonic referred to
the lab frame.

III. PROCESSES INVOLVING TWO
ELECTRONIC STATES

In this section we treat the first and second of the three
processes described in the introduction.

A. Neither electronic state supports bound nuclear states

This is the situation depicted by Fig. 1(a). The ap-
propriate Schrodinger equation is (H Er)l ti' ikt~o&—&=0.
The state vector

l
11+,0&~ )) appearing here is specific to the

initial electronic state
l
10R), to an initial heavy-particle

relative momentum Ak, and to a radiation field of X laser
photons. The plus superscript refers to the conventional
"radiative" or "expanding-wave" boundary condition of
scattering theory and E~ is the total energy of the system
in the center-of-mass frame. When it is not likely to
cause confusion, we shall replace the symbol le, ~„~))
with l1lj».

It is assumed that there are no significant dynamic con-
tributions from electronic states other than the two with
energy expectation values V, (R ) and Vi(R ). Further-
more, because the collision times are so brief we disre-
gard the possibility of spontaneous emission and thereby
limit our attention to the two laser states n, =N and
n 2

=N —1. Subject to these restrictions, the "relevant"
components of the state vector are governed by the two
coupled equations

(Hl 1 ET)lg » =i—Hi, lg, »

(Hi. Er)lg, »= —Hi, l—1(, » .

(3.1)

(3.2)

The electronic matrix element appearing in the formu-
la (2.22) can be written more explicitly as

(x'l'Rlcz. dlxlR) =(47r/3)ic25(II, /, , II i )

The symbol I =ficoc (N/fl ) denotes the flux of laser ener-

gy and A is the photon-field quantization volume.
The desired solutions of these equations may be ex-

pressed formally as follows:
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lg, » = I+, )&+G,+H„lg, &), (3.3)

(3.4)

P, o(/~R z) ~N )exp(i k.R) and outward-bound spherical
waves. This ket can be written as a linear combination

where G,+ and G2+ are the Green operators
~@,+okv)) = g C (k)~10KMkN)) (3.7)

G„+= lim [ET H,—+i@]
@~0+

(3.5)

and l&, )&—:Idio„„» is a solution of the homogeneous
equation

of the kets ~xlKMqn )) defined in Sec. II, cf. (2.13)—
(2.19). The requisite asymptotic behavior is then ob-
tained by selecting the coefficients CxM(k) according to
the prescription

[Hoo( IN) ET ] l @10kN )) (3.6) CxM(k)=(8n )' k '[NxD„M( —k)]*e (3.8)

with a coordinate representative that is equal asymptoti-
cally to the sum of the plane-wave state

To lowest order in the laser intensity, the solutions
(3.3) and (3.4) becomes

~ it, )) =
~ 4, )) and

l
2bK'M'q, N —1))((2bK'M'q, N —I lH;. , l +i »

ltt2 G2 H21 +1 11111 g dq
K' M' b ET E2(q)—+.i e

respectively, with

E2(q)=A q /2p, + V2(~ )+(N —1)irido .

(3.9)

(3.10)

It then is straightforward' but tedious to show that the asymptotic (R ~ oo ) form of the wave function
((2bRN —1$2)) equals the product of R exp(iqoR ) with the inelastic scattering amplitude

f2+„(R,a)= —(2')' g [N&DA~ M(R)]e '~((2bQMqo, N —1~H;„,~N, )) .
OQM

~ ~2b
(3.1 1)

The wave number qo appearing in these formulas is the solution of the energy-conservation condition ET =Ez(qo) or,
equivalently, fi qo/2p=fi k /2@+ V, ( ~ ) —V2( ~ )+irido.

By inserting the formula (3.7) for ~N, )) into this last expression one can relate the inelastic scattering amplitude to
the matrix elements of H,„, given by (2.22). The simplest form of the resulting expression is obtained by selecting the
lab z axis to coincide with the direction of the initial relative momentum Ak. Thus it follows that
D~ M( k)~D~ M—( z)=DA—~(vr+Q, vr 0,0)=( ——1) 6(M, —A) and

f2', (R,a)= — g I[(2K+1)(2Q+1)]' (
—1) exp[i(il, ~+ring)]I

~ 90k QKM

XD~ M(R)((2bQMq, ,N —I ~H, „,~10K, —Aio, k, N )) . (3.12)

CcO

From this, (2.22), and (2.26) it easily is established that
' ]/2

f2i, (R,a) =5(A~i„Q,O)
A' qOk

1/2 1

X [Dw, M(R) I'i, —M —A (~)] (2Q +1)
K, Q, M

Q 1 K
M M+A)0 A (3.13)

wherein

g&x(co, k, b) =(2K+1)(—1)

and

F (x'l'K'k'ixlKk)

—&2b &2S —&io &&0

XF( 2bQqo ~
10Kk )

= I dR R F„ i ~,(k', R)F i~(k, R)
0

X~„„(R)[xl RId, , —A lxlR] .

(3.14)

(3.15)

The function f2i, (R,a) is the scattering amplitude of an
event which (1) begins with two atoms in the electronic
state

~
10R ), colliding with a relative kinetic energy

iri k /2p; (2) involves the absorption of a laser photon of
frequency co and linear polarization u=($, 0 ); and (3)
ends in the excited electronic state

~
2b R) with the atoms

receding from one another along the direction of
R=($,0). Because several vectors are involved, a
geometric depiction of the situation is provided by Fig. 2.
Finally, it should be pointed out that the Franck-Condon
condition [cf. (1.5)], V (R*)—V (R*)=fico, is a direct
consequence of evaluating the integral F( xl' K'

k~ lxKk)
by the stationary phase approximation. '
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LASER

FIG. 2. Vectors and coordinates involved in f2b and o»b.

It is possible, given the relatively simple structure of
(3.13), to predict some things about the functional depen-
dence of f z& on experimental parameters such as I and a.
The well-known fact that f && is proportional to I'~ is

manifest in (3.13). The question of how f 2b depends on
the laser polarization a is in general more subtle, but
some conclusions nonetheless can be made. Thus let us
examine inelastic scattering into a product state with
A2b =0 (X term). In particular, let us focus upon the a
dependence of that scattering in the threshold regime.
Under these conditions, only Q =0 contributes to the
value of f 2b and the scattering amplitude is independent
of R. From (3.13) we see that if Atp=0, f z& will decrease
from a maximum at 0 =0 to a minimum of zero at
0 =w/2. If A10=+1, just the opposite will be observed.
Finally, when the magnitude of A, 0 is greater than 1, the
scattering amplitude vanishes identically in the threshold
region, a reflection of a single photon's inability to
transfer two units of angular momentum to the matter
system.

The integral cross section associated with the inelastic
scattering amplitude f2b is given by the formula

3222
A' q0k' ceo

1 1 J
g (

—1)J(2J+1) 0 0 0 PJ(cos8 )

g+p 1 K Q K' K J
X y(2Q+1)( —1) g K' 1 J A —A 0 &«&~&'

Q K, K' 10 10
(3.16)

32vr p I
~2b ~( +1P» +2b )

A4q0k ceo

X[Ap+ A2Pz(cosO )], (3.17)

Ap+ A P2( 2sc9o~)= icos l9~ (3.20)

for A10=0, and

mentioned in the previous paragram (A2b =0), we obtain
the very simple results

wherein Ap+ A2P2(cos9 )=—,'sin 8 (3.21)

v'3
—g (2Q+1)( —1)

1 K Q
K 1 0

K K 0

A10 —A]o 0

x lx« I', (3.18)

K 2
—A 010

&XgKXgK' (3.19)

g (2Q + 1)( —1)~'30
Q

1 K Q K'
K' 1 2 Aip

in the case that A]0:1~ Thus the angular distribution
serves as a signature of the A selection rule of the
electric-dipole transition, at least when A2b =0. These re-
sults may be of use in providing an experimental tool for
determining the magnitude of A10, something of consider-
able value when several initial molecular states are possi-
ble contributors to the reaction.

Finally, the magnitude of o.
2b can be gauged by using

sensible estimates for the objects appearing in Eqs.
(3.16)—(3.19). In particular, we can decompose the ma-
trix element y« into tHe product of a factor [(eap)co/k],
containing the Bohr radius a0, with a dimensionless
quantity g&K, the magnitude of which is expected to be of
the order of unity. The cross section of (3.16) is then con-
nected by the formula

These formulas show that the inelastic integral cross sec-
tion can be represented as a single unbounded sum over
total angular momentum quantum numbers and that its
polarization dependence has the simple functional form
[a +b cos 0 ]. Indeed, under the threshold conditions

32m pCr2„—5(Q~b, Sl, p)
A q0k ceo

to a dimensionless object

(ea ) cg

k
~2b (3.22)
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1 1 J
o2b= g g (2Q+1)(2K+1) PJ(cos8 )

J, Q K, K'

Q+AlO+K +K'
A, 0 —A,

1 K
J XQKX QK' (3.23)

the value of which should be on the order of unity. As an
example, let us consider Na . Na collisions with
k =qo=10 cm ', in which case the only significant
contributions to the cross section are from K and K' with
values of 20 or less. Then, with co =2 X 10' sec
p=4X 10 g, and o.

2b = 1 we find that
(cm )=10 I (W/cm ). Thus cr2b is small, but not unob-
servably so, being about 10 "I (W/cm ) times the
geometric cross section. The smallness of this number
verifies that a perturbative treatment is adequate for this
process.

To complete the picture we turn now to the elastic
scattering. Thus, from (2.18), (3.7), (3.8), and the identity

5(R—k)= g N»D„M(R)D„M(k)*, (3.24)
K, M

standard one. In the general case we proceed by intro-
ducing an auxiliary function f ~~ (R) which is obtained
from Eq. (3.26) by replacing g, », the phase shift associat-
ed with the radial wave function F&o»(k, R) [cf. Eqs.
(3.14), (2.16), (2.17'), and (2.18)], with 2)&», the phase shift
obtained when Eq. (2.16) is solved with the electronic en-
ergy V, (R ) set equal to its asymptotic value V& ( ~ ). The
solution of this modified form of (2.16) can be written
as F&o»(k, R) =k (kR) '~ Jz(kR), with A. =—[(K + —,

'
)

—A, o]' and where Jz(y) denotes the Bessel function
which satisfies the equation"

y'Q" (y)+yQ'(y)+(y' —&')Q(y) =0, (3.27)

is bounded at the origin, and has the asymptotic form (cf.
p. 526 of Ref. 11)

Jz(y) — (2/~y) ' cos(y —Xm. /2 —vr/4) .
y —+ oo

(3.28)

Consequently, F,o»(k, R) has the requisite asymptotic
form,

F&o»(k, R ) — (2!m )' R 'sin(kR + rj» ), (3.29)
R ~ oo

with

g]K =77/4 —
A, 77/2

it follows that

((g', R~4&ok&)) — [e'"' +(e'" /R)f &0(R)]R~co

xy„(glRz)IN ), (3.25)

= —mK/2+(K + —,
'

) 1 — 1—
2 1/2

10

K+ —,
'

(3.30)

with

»+0(R) = . X N»D~„, M(R)[D~„,M(
—k)*e

K, M

D~ „,M (k )*]—. (3.26)

While the object f&o(R) is formally a scattering ampli-
tude, it does not have an immediate interpretation in
terms of a physically observable cross section. However,
the appropriate elastic scattering amplitude can be
identified without great difficulty. Let us recall that the
basis scattering states used here are specific to a fixed
value of A, o. Although this is convenient and sensible for
modest values of the total angular momentum quantum
number K, in an actual collision the electronic orbitals of
the atoms will not maintain fixed values of A, o for large
values of K. Since scattering through any significant an-
gle is associated with those values of K for which A, o is
"locked" to its initial value, this discrepancy should have
no effect upon the physical predictions of the theory.

We shall see that because A, o is fixed for all values of
K, the scattering state obtained when V,o(R) is set equal
to its asymptotic value V,o( ~ ) is not, in general, quite a
plane wave. To identify the portion of the scattering as-
sociated with V&o(R ) we must subtract from the full elas-
tic scattering wave function that which would result if
V&o(R ) were everywhere equal to VIO( IxI ). In the specific
case of A, O=O the latter is a simple plane wave and the
procedure for extracting the scattering amplitude is the

f i+o(R)=f,+o (R)+5f i+o(R),

with f &z (R)&0 and where

(3.31)

K, M

X (
~IK IIK

) (3.32)

When z is chosen equal to k this becomes

5f ~+o(R)=k ' g (2K+1)[dA '
~ (8)e " ]

K

2((7IIK+n»/2) iSIKX e e '"sin5, »

(3.33)

5I» —=gI» —g, ». The object d A A(9)
=D„~(0,0,0) appearing here is the regular solution of
an ordinary second-order differential equation, cf. p. 65
of Ref. 8.

The term f,+o (R) is a contribution from the asymptot-
ic part of the continuum wave function that arises from
the dynamic constraint that the component of orbital an-
gular momentum along the internuclear axis have a fixed
value A, oA. Associated with this constraint is the long-

When A, O=O, F,O»(k, R) is proportional to the spheri-
cal Bessel function j»(k, R), 2)&» equals vrK/2, and-
f &z (R) vanishes identically. When A&0&0, we rewrite
(3.22) in the form
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even if the channel potential V, (R) is equal to its asymp-
totic value V~( ~ ) at all internuclear separations.

The function 5f io(R) =f,o(R) f io
—(R) can be

identified with the elastic scattering amplitude charac-
teristic of the potential V, (R). The corresponding in-

tegral cross section is

o", = dR6, R

N2 IDK ( k)I Ie K e IKI

K, M

g (2K + 1)sin b, x. .
k

(3.34)

This result (3.34) is formally identical to the usual
partial-wave expression for the elastic cross section. '

Furthermore, it converges in the same sense as does the
usual series, because 5,~ rapidly approaches zero as K
rises to values so large [e.g. , K(K +1))R, k ] that the
associated wave function does not penetrate into the re-
gion where V, (R )& V, ( ~ ).

B. Excited electronic state supports one or more
bound nuclear states

The electronic energy Vi(R) of this second example is
the same as that of the first. However, Vi(R) has been
changed; it now can support one or more bound nuclear
states, although only one is indicated in Fig. 1(b). Let us
first assume that the total center-of-mass energy of the
system is greater than the threshold energy of the excited
electronic state, i.e. , that Er ) Vz( oo )+(N —1)fico.
Then, provided that the atomic collision is accompanied
by absorption of a laser photon, the electronically excited
products of reaction will separate from one another with
a relative kinetic energy E2 =E, + Vi( ~ )
—V2( ~ )+fico) 0, dictated by the conservation of ener-

gy. (Of course, it is possible in principle for the spontane-
ous or stimulated emission of a photon to return the col-
lision complex to its initial electronic state, but the oc-

ranged contribution —A A, o/2pR to the effective poten-
tial which governs the radial wave function F,OK(k, R).
Consequently, the asymptotic form of the wave function
((g, RI+,~k,v )) difFers from the plane-wave state

exp(ik R)g, o(gIRz)IN)

(H ' —E ) I q » = —H, I @,» . (3.35)

Here, H22 =Hz2+Hz, G, H, z is a non-Hermitian opera--+ +

tor descriptive of transitory bound nuclear motion on the
energy surface V2(R), coupled by the operator H,„, to the
open channel 1. The right-hand side of (3.35) represents
the photoabsorptive excitation of the colliding atoms that
initially populates the decaying state

I 1(j~ &&.

To compute the Green operator associated with Hzz
we use the first-order perturbative estimates

l2bgMq, N —1;+))= 12bgMq N 1))+ ' ' ' (3.36)

and

currence of such an event is extremely unlikely. ) Al-
though the Green operator G2+ of (3.9) now includes
bound-state as well as continuum contributions, the
former are not contributors to the asymptotic form of
Il(2)). Therefore the inelastic scattering amplitude will
be given by the same formula as before. Its numerical
value will, of course, be altered somewhat by the change
of Vz(R ). Similar remarks apply to elastic scattering.

Indeed, it is only in the subthreshold regime
Er & Vz( ~ )+(N —1)A'co that the situation becomes truly
interesting. In this case the products of the collision can-
not separate from one another in the excited electronic
state even though this state may be fleetingly occupied.
Only two postcollisional, final states of the radiation field
are accessible. Thus the collision may terminate in the
photon state n i

=N, either because the atomic collision is
a field-free elastic process or because it is a collision-
induced two-photon event involving the absorption and
subsequent stimulated emission of laser photons. Howev-
er, it also is possible for the final state to be
n ', =(N —l, ap), consisting of N —1 laser photons togeth-
er with a single spontaneously emitted photon of momen-
tum iris and polarization a„(a„.ic=0, @=1,2).

The dynamics of these subthreshold scattering events
are governed by the same two coupled equations, (3.1)
and (3.2), as before. However, the solution of the second
of these no longer is given by the open-channel,
expanding-wave formula (3.4). To obtain the equation
which determines

I g2 )) we substitute
I 1( i )) =

I @,))
+G&+Hi2Igi)) from (3.3) into (3.2). The result of this is
the linear inhomogeneous equation

E i( bgMq ) = [Ei ( Qb ) + ( N —1 )fico ]+ (( 2b QMq, N —1
I Hi, G,+H, ~ I 2bgMq, N —1 )) + (3.37

to the eigenkets and eigenvalues of the equations

[Hi& —Ei(bQMq)]I2bgMq, N —1;+ )) =0;
[H zz

—e~ ( bgMq) ] I 2bgMq, N —1; —&&
=0,

H~q —H22+H2(G] H]

(3.38)

(3.39)

The kets I2bQMq, N —1; + )) and their adjoints
I2bgMq, N —1; —)) are "bi-orthogonal" in the sense

(( 2bQMq, N —1; + I 2bQ 'M 'q ', N —1; —))

&gg'fiMM'&(q

(3.40)

The quantity Ez(gb) & Vz( oo ) appearing in (3.37) is
the "internal energy" of the undressed quasibound state,
the numerical value of which can be obtained from the
energy-conservation condition Ei(gb)+ (N —1)fico
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=E, + V, ( ~ ) +NRcu .The first-order perturbative ap-
proximation to the energy of the corresponding reso-
nance is

E2(gb)+ Re((2bQMq, N 1~H—
z& G,+H&z 2bQMq, N —1 ));

quently, they are disregarded. Then, by using the pertur-
bative estimates of (3.36) and (3.37), we can express the
solution of (3.35) in the form

q, )) = g W ' (bgMq)
~
2bgMq, N —1 ))

this can be identified with Ez of Fig. 1(b).
At the subthreshold energies considered here the un-

bound, continuum states should not be important coritri-
butors to the Green operator (ET —H22+ie) '. Conse- with

b, Q, M, q

X ((2bQMq, N —1~H2, ~4, )), (3.41)

W2(bQMq)=ET E2(gq) (N 1)Ace ((2bQMq N 1IH2&Gi+H&z 2bgMq N 1))

=E&+ V&( ~ )+fico [E (2gq—)+b, ]+i I— (3.42)

In the second line of (3.42) the symbols 6 and —i (n/2)1 have been substituted for the real and imaginary parts of the
matrix element

((2bQMq, N —1~H2&G&+H&2~2bgMq, N —1)) .

Finally, from (3.3) we see that the entrance-channel component of the state vector can be related to ~Pz)) of (3.41) by
the formula

i
la 'K'M'k 'n )) (( 10 'K'M'k 'n

i

E-o+ z, I, „ET E( lk') ——( n ~H„n ) +i e
(3.43)

Here, the sum over states of the radiation field includes n
&

=N and n ', = (N —l, vp), with the latter implying a sum over
the polarizations a„and an integral over the wave vector ~ of the spontaneously emitted photon;
E(lk')—=A' k' /2'+ V, ( ~ ).

From the first term on the right-hand side of (3.43) we obtain the potential scattering amplitude f &z
=f &z +of,+o of

(3.31). The scattering amplitude associated with the remainder of (3.43) is

f&z„(R)=—(2m)', g NKDz M (R)e ' ((10K'M'k„'(k), n ~H;„, Pz)),
A' k„'(k, a) x', M'

(3.44)

with k„'(k, v) the solution of ET=E(lk )+(n~ H~n ). To obtain a more explicit expression for this portion of the elas-
tic scattering amplitude we substitute for

~ $2)) from (3.41), with
~
&0, )) given by (3.7). Finally, the axis of laser polariza-

tion is selected to be coincident with the laboratory z axis, i.e., a =z. The result of these manipulations is the formula

f~()„(R)= —327r (p/h' k) g N~Nx D~ M(
—k)*D~ I (R)LM~ (QKK')

K, K', m, M'
b Q, q

X W2 '(bgMq)e ' '
[6(n~n& )P(n& )+5(n~nI )V(n'& )], (3.45)

with

,'7(N) =k '(2vrI/ceo )F*(2bgq, 10K'k)F (2bQq, 10Kk)6M~.

7(N —l, ap) =k'(k, ir) '(2a$/flc~)(27rI/ceo )'r F"(2bQq, laK'k'(k, a) )F(2bgq, 10Kk)[(47rl3) &*, M M(cr„)]

(3.46)

(3.47)

and where K —K~ in (3.47) denotes the wave number of the spontaneously emitted photon. Finally, k'(k, a. ) is given by
the solution Qf A k' /2p+Rc&=R k /2p+Aco and

Q 1 K' Q 1 K'
LMM (QKK') —= (2Q+ 1)Nx Nx A A A A —M M —M' M'

2 2 10 10

Q 1 K
—M M —M' M' (3.48)

The term f&z„(R) interferes with 6f,+~ of (3.32), whereas f,+, does not. Therefore the integral cross section associ-
ated with

~ g, )) of (3.43) is the sum of two parts,
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2i 0
o", "= g 2qrik 'N D (

—k)*(e ' —e '"
)

10'
K', M'

—[32qr (p/A k )(27rI/crt )]g e ' '" Nz[D~ ~( —k)]*
K

g L~~ (QKK') Wz '(bgMq)F*(2bQq, 10K'k)F(2bgq, 10Kk)
b, g, q

(3.49)

which accounts for field-free elastic and two-laser-photon events [absorption follows by stimulated (st) emission], and

o &~&=(2~) I g f dxak'(k. , v)k ' g g Wz '(bgMq)P(K, K', M'+3M, M', bgq;a)
K', M' AM=0, +1 K, g, b,

with

(3.50)

P(K, K', M, M', bgq;a) =4 p
A' kk'(k, i~)

1/2
[~I~+»~ j

1VK e
C CO 3

X D +~ ~( —k)*L~~ (QKK')F (2bgq, 10Kk)F*[2bgq, 1aK'k'(k, K)], (3.51)

which accounts for absorption followed by spontaneous (sp) emission.
The reason that these cross sections depend on the direction (k=k/k) of the initial relative momentum of the two

atoms is that the lab z axis has been chosen to coincide with the direction a of laser polarization, cf. Fig. 3.
The final step in the development is the presentation of an explicit expression for the matrix element

i (( 2bQMq, N —1
i H; „, i

1a 'K 'M'k 'n )) j

'
((2bQMq, N —1 iHz, G &+H|z i2bQMq, N —1))= lim g f dk'

~-o+, , z, ~,„ETE lk' ——n H„n +i e

= b.',~+Id" i (I'~—+I—I", ) (3.52)

that contributes to Wz(bgMq), cf. (3.42). The quantities b', ~2 and Ih", z appearing here are level shifts associated with
the processes of spontaneous (sp) and stimulated (st) photoemission. I'Pz and II'&'2 are the corresponding level widths
given by the formulas

pSP—
12

2p 16
2m' (2Q+1) g (2K+1)5(Q2q, fl„)

1 K

2b 2b 10 10

Q 1 K
—M 0 M (3.53)

F 2b q1+Kk k
(2qr)3 k'(k, x. )

and

(2Q+1) g (2K+1)5(Q2„,Q„)st 2p 1 K
c 2 2b 10 10

2
1 1

2

M'
—M M —M' M' —

i F (2bgq, 10Kk) i

k
(3.54)

respectively.
The equations presented above provide explicit formu-

las for the integral cross section, specific to the case when
the excited electronic channel is closed. To aid in the in-
terpretation of these results we shall express
o. ,o

=o",0 "+o', po in a more compact and traditional "res-
onance" cross section form. Thus by combining a few of
the preceding formulas we can write the integral cross
section appropriate to subthreshold conditions in the
form

ohio= &
K', M'

+If dl~ x[k'(k, ~)/k]
0

CK'M'
bKQq

b K g q Uggq+IVbgq

2

g K'M'

3 z'M +I
b K g Ubgq +IVbgq

(3.55)
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Z
LASH R

I =3X10 +3X10 ' I (W/cm )

and an integral cross section (in cm ) of
210-'r

o)o 1+ 5E —i I
2

2X10 "
+ [(2.2X 10 )I] 5E —iI

(3.58)

(3.59)

FIG. 3. Vectors and coordinates involved in o.&0" and o.&o.

(3.56)

ignoring all but one resonant state, and assuming that
~=co/c, it is found that

1 IA (1/k)
o &0- k 3

~E .~ %co Ect) + I
c 3 c

+r—"~
c c

2

A (co /k)(iri/c co )'i

~E ~ Ado Ect) + I
c 3 c

(3.57)

Here, A =(p/fi k )(eao) and, as in the preceding sec-
tion, ao denotes the Bohr radius. The symbol Acu indi-
cates a characteristic range of spontaneous photon fre-
quencies which generally will depend in a complex way
upon the shapes of the relevant potential energy curves.
One would expect the value of Ace to be less than that of
or but possibly not by more than one order of magnitude.
Finally, by discarding the level shifts (which are not
essential to the present, qualitative arguments) we can
identify AE with ET —E2(Qq) (N —1)fico—

Despite its obvious inadequacies the simple formula
(3.57) is a useful tool for generating crude numerical esti-
mates. Thus, with k = 10 cm ', co =2 X 10' sec
Aco=10' sec ', and p=4X10 g, it predicts a reso-
nance width (in eV) of

where 3, B, C, U, and Vare functions of k; 3, B, and C
are functions of k =k/k as well (Fig. 3 is relevant in this
context); and U= U' iU"—and V= V' iV",—with U"
and V" proportional to I', 2 and I",2, respectively.
U'+ V' is equal to the difference between the total energy
of the system and the sum of the level-shifted bound state
plus (N —1 )irido.

To extract the essence from this result it is useful once
again to introduce estimates for the quantities it involves
and then to suppress numerical factors of the order of
unity. Thus, by introducing the order-of-magnitude esti-
mates

(eao)co/k unbound excited state

F(2bQq, laKk)- '( )~/k'~ bound excited state,

It can be seen from this example that, although the res-
onances are very narrow, they are capable of producing
contributions to the inelastic cross section that are com-
parable to and possibly even greater than typical elastic
cross sections. It also is noteworthy that estimates of the
resonance width which fail to take account of spontane-
ous emission could be very much in error. More ela-
borate calculations than these are, of course, required to
determine with precision the magnitudes of the effects
predicted here. However, two points about the present
results deserve mention. First, our estimate of the reso-
nance width corresponds to a very reasonable lifetime of
about 10 sec. Secondly, the maximum values of the
resonant portions of o. ,o are nearly independent of our
crude estimates (3.56) for F(2bQq, laKk) because, at res-
onance, there is a cancellation of the numerator and
denominator factors of A.

IV. PROCESSES INVOLVING THREE
ELECTRONIC STATES

(H„—E, )il(, )) = —H„ll(, )),
(H22 ET)~42)) ~21~01)) H23 ~03))

(4.1)

(4.2)

(4.3)

Just as in the second of the examples treated in Sec. III
one proceeds differently depending upon the value of the
energy. If ET & Vz( ~ )+(N —1)Rco, then as before
single-photon collision-induced transitions cannot pro-
duce separated products in state 2. Similarly, when
ET & V3( oo )+(N —2)fico, it is energetically impossible to
populate state 3, even if two photons were to be absorbed.
There are two situations of interest. In the first of these
ET & V2( ~ )+(N —1 )fico and ET & V3( ~ )+(N —2)fzco,
so that channel 2 is open to single-photon excitation and
absorption of two photons can produce products in chan-
nel 3. The second situation differs from the first in that
channel 2 is closed, that is, ET & Vz( ~ )+(N —1 )fico.
The products of collision than either will separate from

The processes considered here differ from those treated
previously in that they directly involve a third quasi-
molecular electronic state. To be specific we assume that
the adiabatic (diabatic) energy curves associated with the
two lower-lying states are identical with those of Sec.
III B; compare Figs. 1(b) and 1(c). The additional state,
labeled 3, is purely repulsive. The symmetries of these
states are taken to be such that the transitions 1~2 and
2~3 are dipole allowed. Therefore, direct single-photon
transitions from 1 to 3 cannot occur. The coupled equa-
tions (2.9) appropriate to this case are
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one another in state 3 (after the absorption of two laser
photons) or in the ground state 1. We now proceed to the
analysis of these two cases.

A. Channel 2 is accessible by single-photon absorption

=' G 3+ H32 G ~+ H»1@, )) . With this approximation the
scattering amplitude and cross section for channel 2 are
the same as those given in Sec. III ~ The scattering ampli-
tude associated with channel 3 is (with the choice a =z of
Fig. 3)

In this situation V&(~ )+A'p3) V3( ~ ), cf. Fig. 1(c),
and it is furthermore assumed that V, ( ce ) + 2fip3) V3(oo ). The boundary conditions appropriate to this
case are incorporated into the coupled equations
(4.1)—(4.3) by rewriting them in the forms

f3, (R)= Sp I
~A kso ca~

X g D~ M(R)D~ M( —k)*NKK M, (4.7)
K', K, M

lq, » =I+, »+G, H„lq, »,
lent, &) =G,+H»lq, &)+G2+ »lq3)&,

103» =G3 H3$1&2» .

(4.4)

(4.5)

(4.6)

with

NKK M
—g CgKK'M( I ~ p /A qp )F*(2bQqp

1

3&K'&p )

b, g

X F (2bQqp 1
10Kk) (4.8)

To lowest order in the radiative couplings these be-
come 11(~ && =l@~ && 111'2&& =Gz+H3~1@~ &&, and and where

CgKK M =( —1) ' '"e ' ' 5(Q3„II3b)5(II3b,Q, p)(2Q + 1)(2K + 1)(2K'+ 1)

Q 1 K Q 1 K'
X —M 0 M —M 0 M

Q 1 K

+2b ~2b +3c +3c
Q 1 K'

+2b +3c ~2b ~3c
(4.9)

The wave numbers qp and sp aPPearing in these formulas are solutions of ET=A qp/2P+ V3( oo )+(N —1)firP and
ET=A sp/2@+ V3( ~ )+(N —2)fico, respectively.

No contributions from spontaneous emission appear in (4.7) and (4.8), for the collisional event is far too brief to per-
mit the quasimolecule to radiate spontaneously. Beyond this, two features off3, deserve mention. First, this scattering
amplitude is proportional to the laser intensity I and so the corresponding cross section will be proportional to I .

Secondly, f 3+, will be very small for the laser intensities (I & 10' W cm ) to which our theory is applicable. This is ex-

pected, for it already was found in Sec. III that single-photon free-free transitions are rare events. One therefore ex-
pects the comparable double transitions to be correspondingly more unlikely.

The integral cross section for this collision-induced, two-photon 1~3 transition is given by the formulas

o3, = f dR f3, 1

2

2

CQ)

2

2

K', K",M
D~ M( —k)*D~ M(

—k) g(2K+1) 'NKK. MNKK„M

C Cc)
g (2J + 1)BJPJ(cosg),
J

(4.10)

with

A io+ MBJ= g ( —1) '"
K', K",M 10

K" J
10 0

(H,+, —E, ) lq, » = —H„le, »,

as (3.31). However, the non-Hermitian operator

(4.12)

K' K" J
X M —M 0 H22 —H22+H21 G 1+H12+H23G3 H32 (4.13)

X X (2K + 1) NKK'MNKK"M
K

and where e=cos '(k.a), cf. Fig. 3.

(4.11)

B. Channel 2 is closed

By substituting (4.4) and (4.6) into (4.2) we obtain for

1/2 )) an equation of the same form

appropriate to the present situation not only contains ra-
diative couplings between states 2 and 1 but between 2
and 3 as well.

The solution of (4.12) is constructed following the pro-
cedure of Sec. III ~ This solution then can be used to corn-
pute 1/3)) =G3+H331$3)) and the associated scattering
amplitude [compare with (4.7)]
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with [compare with (4.8)]

N~x.M(I) = g CgKK'M [ W2(bgMq)]
bQq

XF*(2bgq~ 3cE'so )F (2bgq ~
10Ek)

(4.15)

and [compare with (3.42) and (3.52)]

Wz ( bQMq) =ET —E~( gq) —(N —1)A'co — b,
' i —r'—

=E, + V, ( ~ )+fico

—[E2(Qq) +Ap~+I( b, ",2+ b 2'3) ]

(4.16)

The level shift Az'3 and width I 2'3 are defined analogously
to 5&'2 and I",2, respectively.

The integral cross section appropriate to this case is
given by (4.10) but with the factor BJ replaced with an
analogous factor BJ(I). This, in turn, is related to the
intensity-dependent quantities NK~~(I) by a formula
identical to the connection (4.11) between BJ and Nlr~ M.

An analysis similar to that appearing at the end of Sec.
III (and using the same numbers that were employed in
the example presented there) produces the estimate (in
cm )

10
—26

o.3, = [I(W/cm )] (4.17)

for the "nonresonant" two-photon cross section of (4.10).
Here it has been assumed that sp =qp =k. Similarly, the
maximum value of the resonant two-photon cross section
of Sec. IV B is given approximately by the formula

10
0 reson [I(W/cm2)]23c (4.18)

This dramatic increase is precisely analogous to the
"resonance enhancement" observed in bound-state spec-
troscopy. Indeed, given a sufficiently powerful laser, this
example indicates that the magnitude of the resonant
two-photon cross section will not be far different from
that of the corresponding nonresonant one-photon pro-
cess. As it was with the previous examples, the accuracy
of these estimates must be tested by performing more
careful (and difficult) calculations. What these prelimi-

f 3+, (R)=
7@6 ksp ceo

D„M(R)D~ ~( k—)*N~I...~(I),
K', K, M

(4.14)

nary estimates indicate is that the cross sections probably
are large enough and interesting enough to warrant a
more detailed numerical examination.

V. CONCLUDING REMARKS

In closing, we identify the most important features of
this investigation as well as the methods used to carry it
out. One of our objectives has been to demonstrate that
resonant cross sections for laser-induced excitation
transfer processes can be handled with relative ease and
rigor by using a projection-operator scheme. The princi-
pal limitations of our analysis are (1) a neglect of fine-
structure effects and (2) the assumption that the ground
electronic state is incapable of supporting bound nuclear
states. While the first of these limitations almost certain-
ly is of little concern, the second imposes severe restric-
tions upon the systems to which our analysis is applic-
able. The elimination of this restriction if a goal of our
current research. Once this has been done we shall be
able to extend the present theory to include the cross sec-
tions for formation of bound ground state A-B molecules
by a laser-assisted collision process similar to that of Sec.
III. Also of interest is the analysis of "two-color" experi-
ments in which a "power" laser is used to excite the col-
lision complex and a second "spectroscopic" laser probes
the complex much as ordinary lasers are used to probe
bound molecular species. We believe that the theory of
these events can be treated though extensions of the for-
malism developed here.

Two features of our mathematical approach deserve
additional consideration, since in their absence the rigor
of the present work would be lost. A systematic and
quantitative treatment of spontaneous radiation and its
effects requires that the radiation field be treated as a
quantal rather than a classical object. We have seen, par-
ticularly with regard to resonance lifetimes, that spon-
taneous radiation plays a critical role. This provides a
posteriori justification for our decision to treat the radia-
tion field quantally. Secondly, the difficulties normally
attendant to such an approach have been overcome in
part by the projection-operator scheme and in part by
our use of the symmetry top basis set. It is the latter of
these that has made the formal manipulations involving
the various resonance widths both tractable and rigorous.
It also has produced an overall simplification of the
scattering formalism, in a fashion analogous to that
which it has to the theory of associative ionization. '

The use of this basis is commonplace in bound-state prob-
lems and so it should not be surprising that it is useful in
collision problems as well. By combining these various
elements we have shown that laser-induced resonant tran-
sitions and the effects of spontaneous radiation upon
these processes can be systematically treated in systems
composed of colliding atoms.
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