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Curvature dependence of the interfacial tension in binary nucleation
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The curvature dependence of the interfacial tension in binary nucleation was formulated by em-

ploying Tolman's [J. Chem. Phys. 16, 758 (1948)] idea for the variation of state and the thermo-

dynamics of inhomogeneous systems due to Cahn and Hilliard [J. Chem. Phys. 28, 258 (1958); 30,
1121 (1959); 31, 688 (1959)] and Hart [Phys. Rev. 113, 412 (1959)]. To investigate the numerical

significance of the curvature dependence, the inhomogeneous regular solution model due to Cahn

and Hilliard was employed. The interfacial tension was found to decrease with curvature and to be
about 20% smaller than the value of the fiat interface at a radius of 3 or 6 intermolecular distance
for T =0.5T, or 0.8656T„respectively. The reversible work to form a critical nucleus predicted by
the present theory is significantly lower than that obtained by neglecting the curvature dependence
of the interfacial tension. Thus, neglect of the curvature dependence may severely underestimate

the nucleation rate.

I. INTRODUCTION

In homogeneous nucleation in a binary system where
supersaturation is attained under constant temperature
and pressure, not only the size of the critical nucleus but
also the composition profile at the interfacial region wi11

change in accordance with supersaturation because the
compositions both in the parent phase and within the nu-

cleus depend upon supersaturation. Hence the value of
the interfacial tension is expected to depend on the super-
saturation due to those effects. This phenomenon can be
described as a curvature dependence of the interfacial
tension because the composition profile is uniquely deter-
mined for a given size of the critical nucleus, but the
effect may be more pronounced than that in a single-
component case as investigated by Tolman, ' because
the composition profile as well as the curvature will

change in a binary system. Thus the curvature depen-
dence of the interfacial tension must be clarified to
achieve a reliable theory of homogeneous nucleation in
binary systems, and the present article intends to do this.

II. THE GOVERNING EQUATION

Consider a binary Auid system where a critical nucleus,
which is assumed to be spherical, of the second phase P
exists within the parent phase a. When an infinitesimal
change occurs in the state of the system, the value of the
interfacial tension y wi11 be modified according to the
general relation

dy = —s'de. —r,d~, —r,d~, ,

~Pa
2 (2)

Following Koenig, let us rewrite the partial derivatives
in the right-hand side (RHS) of Eq. (2) in terms of the
more accessible quantities. We employ the following
equation for the bulk o. phase:

0p;d, = —s,- dT+v, dp + dx2, i =1,2
x2 Tpa

(3)

where p, , s, , and v,- denote the chemical potential, the
partial molecular entropy, and the partial molecular
volume of the ith component for the bulk a phase. It fol-
lows from Eq. (3) that

Bp; Bxp

Three intensive variables of the parent phase a can be
varied independently in the present system, and the pres-
sure p, the mole fraction xz of the second component,
and the temperature T may be chosen as independent
variables. Note that the Gibbs-phase rule governs a sys-
tem with a Oat interface, hence it is not relevant to the
present situation. Consider the case where xz is varied
under T and p kept invariant. The curvature q of the
surface of tension for the critical nucleus changes as x z is
varied. Although the curvature q itself is not an external-
ly controllable variable, let us exchange the roles of x2
and q, and consider q as an independent variable. It then
follows from Eq. (1) that

where s', I „and I z denote the superficial densities of the
entropy and the component substances; T the tempera-
ture; and p, and p2 the chemical potentials. It is impor-
tant to note that the surface of tension is chosen as the di-
viding surface in deriving Eq. (1).

Bx&

Bp; ax, ap~

Bx p Bp y p ~q

(4)
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where p~ denotes the pressure of the bulk P phase which
possesses the same temperature and the chemical poten-
tials as those of the system under consideration. Choice
of the surface of tension as the dividing surface results in
the Laplace equation

Ci

X; X,~

C,
I'= ', i =12

V U

where Q represents the following:

Q = w, (c~ —c, )+w2(c~~ —c 2 ) .

Making use of the relations

(15)

(16)

and it follows from Eq. (5) that

ay=2 p+q
Bq

Substituting Eq. (6) into Eq. (4) we get

(6)
NiX i +NpX2g p

p

N)X ) +NpXp
(17)

where v and v~ denote the mean molecular volumes of
the bulk a and P phases, Eq. (15) may be rewritten as

aq Tp

Bp=2 y+q
~q T a

w, /
—1,2 (7)

Employing the Gibbs-Duhem relation for the bulk
phases,

where we put as follows for brevity:

BX2

Bp
a P

i =1,2. (8)

s dr —
U dp +x,dI, +x,dI, ——0,

s dT U dp +x jdpi +xpdp2 =0
(18)

(19)

where s and s~ denote the mean molecular entropies of
the bulk phases, we get

0 in@

Bq
T&p

2(I,w, + I zwz)

1+2q(r, w, +r,w, )
(9)

Noting that p, , =p; and substituting Eq. (7) into Eq. (2),
we get

a
X )

gpP

Bp I—Vf'+X~
1

~ p

Bp2
+X2 =0,

p

P2
a

+X2 p
=0,

(20)

(21)

r*, w, + r,*N2=0, (10)

This equation was derived by Koenig and governs the
dependence of the interfacial tension y on the curvature q
of the surface of tension under temperature T and pres-
sure p of the parent phase kept invariant. The change in
the curvature q is induced in practice by varying the
composition x z.

Let us follow Koenig again to rewrite Eq. (9) into an
alternative form. We introduce the auxiliary dividing
surface, whose radius is denoted as R *, through the fol-
lowing conditions:

Bp;
i =1,2

BP T

and substituting those into Eqs. (20) and (21), we get

NiX ) +N2Xp =0

wiX ) +W2X2 =U

(22)

(23)

(24)

Substitution of Eqs. (23) and (24) into Eq. (17) results in

in which p~= p; are utilized. Noting that w, may be
written as

X, = (R *)'cl,'+ V — (R *)' c, +4~(R *)'r*, ,
3 " 3

Q=1,
and we finally obtain the desired alternative form:

(25)

N = (R *)'c~+ V — (R *) c +4'(R *) 1 *
C2 7T 2

(12)
where I *, and I z denote the superficial densities with
respect to the auxiliary dividing surface, N, and N2 are
the total numbers of molecules of the respective com-
ponents in the system, V is the volume of the system, and
c, and c,~ are the number densities of the molecules of the
ith component in the bulk a and P phases which possess
the same temperature and chemical potentials as those of
the system. Defining 6 as

0 in@

Bq
T&p

25(1+5q+5 q /3)
1+25q(1+5q+5 q /3)

(26)

III. LOCATION OF THE SURFACE OF TENSION
AND THE DETAILED EXPRESSION
FOR THE INTERFACIAL TENSION

Equation (26) is known as the Gibbs-Tolman-Koenig
equation.

5=R*—R (13)
A. Spherical interface

0 lny
Bq

25(1+5q+5 q /3)Q
1+25q(l+5q+5 q /3)Q

where R denotes the radius of the surface of tension, Eq
(9) may be rewritten as

To proceed further with Eq (9) or Eq. (26), the surface
of tension must be located. We extend Tolman's work, '

which is for single-component cases, to binary systems.
Tolman' devised the quasithermodynamic method to
cope with the inhomogeneous region at the interface,
while we employ here the thermodynamics of inhomo-
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geneous systems due to Cahn and Hilliard, , and Hart.
Consider, as a system, the domain ABCD containing

the interface and having a conic shape intersected by two
spheres as shown in Fig. 1. The boundaries AB and CD
are supposed to pass through the homogeneous regions of
the a and the P phases, respectively. When the size of
the critical nucleus becomes extremely small, there may
be no homogeneous region even at the center, hence the
boundary AB cannot be chosen in this case. Although
Eq. (9) or Eq. (26) remains valid even for this case,
Tolman's method is no longer applicable and we exclude
a situation such as this from the following consideration.
The boundary ABCDA enclosing the system is supposed
to be a mathematical one and does not possess any physi-
cal effect besides the role of defining the domain for con-
sideration. ' '"

Under the choice of the surface of tension as the divid-
ing surface, the following equation holds for an arbitrary
variation from the equilibrium state:

FIG. 1. System defined by the mathematical boundary and
containing a spherical interface.

given by
6F = —S6T+pi6Ni+p26N2 —p 6V

gg 2 (29)—p~6 V~'+ y6A, (27)

and that the properties of the homogeneous regions on
both sides of the interface are unaltered and the proper-
ties in the inhomogeneous region at the interface are also
unaltered except to the extent of the secondary effect due
to variation in the curvature. '" We select this particular
variation to simplify the further treatment, ' and whether
such a variation is consistent with the maintenance of
equilibrium is of no consequence to the validity of Eq.
(27) because only the initial state is supposed to be in
equilibrium. "'

To simplify the mathematical treatment, we set the ori-
gin of the radial coordinate at the surface of tension and
denote the distance from the origin as g. Denoting as 0
the solid angle subtended by the interface around the
center of curvature, the area A of the surface of tension is

where F and S denote the Helmholtz free energy and the
entropy of the system; V and VP, the volumes enclosed
by the boundaries ABYXA and CDXYC, respectively;
and A, the area of the surface of tension. Note that the
term due to a variation in the curvature q of the dividing
surface is eliminated in Eq. (27) through employment of
the surface of tension as the dividing surface. Let us con-
sider a specific variation for the system in which arbitrary
variations 6 A and 6q are taken under the conditions that

6T =6V =6V~=O,

and the area 3 (g) of any concentric surface located at g
may be expressed as

A (g)=0(R +g) = A (1+q() (30)

(33)

5V~=5V~+5A f (1+qg)'d(
Q

+2A 6q 1+q d =0 .
Q

(34)

The variations 6N, in the number of molecules are

Then, taking g= —a and b close to but sufficiently far
from the origin so that the homogeneous a and f3 phases
exist at g ~ b and g ~ —a, the volumes V and V~ are
given by

VA Vo'+ A 1 + 2d (31)

VI'= VI'+ A
'

1+q 'd (32)—Q

where Vb and V~ denote the volumes at (~ b and (~ —a,
respectively. It follows for the presently specified varia-
tion that

5V =5VP+5A f (1+qg') dg'+23 5q f g(1+qg)dg
0 0

5N, =c, 5Vb +53 f c, (1+qg) dg+2A 5q f c;g(1+qg)dg+cP5V~+5A f c, (1+qg) dg
0 0 Q

+23 5q f c;g(1+qg)dg', i =1,2—Q

(35)

where c, denotes the number densities of molecules in the interfacial region. Since the properties of matter are sup-
posed to be unaltered in taking the variation, the number densities c,-, c;, and c; represent the values at the equilibrium
state before the variation. Multiplying Eq. (33) by c," and Eq. (34) by c, and subtracting the results from Eq. (35), we

get



39 CURVATURE DEPENDENCE OF THE INTERFACIAL TENSION. . . 775

5N; =5A f (c, —c,. )(1+qg) d(+2A 5q f (c, —c, )g(1+qg)dg+5A f (c;—cP)(1+qg) dg
0 0 a

+2A 5q f (c;—cP)g'(I+qg)dg, i =1,2 .
a

(36)

f =f (xz)+~(Vxz) (37)

To consider the variation 5F of the Helmholtz free en-
ergy accompanied with the specified variation, we employ
the thermodynamics of inhomogeneous systems,
which provides, for incompressible and isotropic systems,
the Helmholtz free-energy density f in the following
form:

where f (x2) denotes the value for the hypothetical
homogeneous system defined by the values of T and x2 at
g, and ir, the coefficient of the gradient energy term, is in
general a function of Vx2 as well as T and x2 at g. Note
that another variable, for example, the number density,
c

&
+c2, is no longer independent under the assumption of

incompressibility. Following the procedure similar to
that used to derive Eq. (36), we get

5F=5A I [f +s(Vx2) —f ](I+qg) dg+2A 5q f [f +ir(Vx2) —f ]g(1+qg)dg

+5A f [f +x(Vx2) —f~](1+qg) d(+2A 5q I [f +~(Vx2) f~]g(l+—qg)dg, (38}—a Q

where f" and f~ denote the values for the homogeneous a and 13 regions in the system, respectively. It follows from
Eqs. (36) and (38) that

5F=@,5N, +p~5N2+5A j [f +x(Vx2)' f g+—g ](—I+qg) d(

+2A 5q I [f +ir(Vx2} f g+—g ]g—(1+qg)dg+5A f [f +a(Vx2) f~ g+g~]—(1+—qg) dg
0 a

+2A 5q J [f +i~(Vx~) f~ g+—g~]g(—1+qg}dg',—a

where g, g, and g~ represent the following:

g p]Ci +p2C2 7 g pic i +p2C2 &
g' pic i +p2C2

(39)

(40)

(42)

The chemical potentials p, and pz in Eq (40) may of course be identified with p, and pz for the bulk a phase at
(T,p, x~ ). Comparing Eq. (39) with Eq. (27) and noting Eq. (28), we obtain the detailed expressions for y and the
equation of locating the surface of tension as follows:

y= I [f +tc(Vx2) f~ g+g~]—(1+qg) d—g+ I [f +ir(Vx2) f —g+g ](I+—qg) dg, (41)
a 0

f [f +a(Vxz) f~ g+g~]g(1+q—()dg—+ f [f +x(Vx2) f g+g ]—g(1+—q()dg=0 .—a 0

C =E TS p&N& ppN2 (43)

The radius r0 is supposed to be so large that the bound-
ary passes through the homogeneous region of the a
phase. Employing Eq. (37), 4 may be rewritten as

B. Equilibrium composition profile

To proceed further with those equations, the equilibri-
um composition profile must be known for a given state
which is defined by (T,p, x2 ). Taking as the system a
spherical domain defined by the boundary of the radius r0
and whose center coincides with that of the spherical nu-
cleus of the P phase, the equilibrium profile may be deter-
mined by an extremum condition of the thermodynamic
potential N defined as follows against an arbitrary
infinitesimal variation of the profile under the condition
of the constant values for T,p, , p2, and r0:

ro G
X2 +K

0 dl'

—(c&+cz)[p&(l —x2)+pzx2] 4vrr dr .

(44)

We neglect the variation of the number density c, +c2 in
accordance with the assumption of incompressibility.
Further, anticipating the application of the present for-
malism to the regular solution model, we assume that the
density c, +c2 is independent of the composition and
that K is a constant. Then, an application of the calculus
of variation results in the following Euler equation:

d x2 1 dx2 Qfo
2K +4K— —(c, +ca)(pi pF)=0 .

d " d ax2 T

(45)

Noting that the Helmholtz free-energy density for the
bulk a phase is given by
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f =(c, +c~)[p",(1 —x~ )+p2X, ] p— (46) (47) in Eq. (45) results in

and taking T, x2, and p as the independent variables to
determine the value off, it follows that

dx2 l dx2
2K +4K

dy r dr
af"
BX2

=0.

a . T, -
J7

= —(c&+ca)(pi pz)

(3p ]+(c, +cz) (1 —xz )

The equilibrium composition profile is determined by Eq.
(48) under the boundary condition that

X2 —X2 as

(.9
(AX 2

2 Tp"

(47)

and

dx2 =0 at r=0.
dr

(49)

Since the second term in Eq. (47) vanishes identically'
and the dependence of f on p may be neglected under
the assumption of incompressibility, employment of Eq.

Recalling that the radius of the surface of tension is
represented by R, Eq. (42), to locate the surface of ten-
sion, may be rewritten as

Pb

R (p —p~)+3R '(p~r, —p r&) —2 f f +Ir
a

2

g rdr

2
~b

O
dX2

+2(p r~ p~r, }+6—f f +a.
dr

—g r dr=0, (50)

where r, and rI, may be arbitrarily chosen within the homogeneous regions in the 13-phase nucleus and in the a parent
phase, respectively, and the relations

g"—f =p, g' f'=p'— (51)

have been utilized. Noting that the composition profile obeys Eq. (48), the integrals in Eq. (50) may be transformed
into the following more easily integrable forms:

f ' f'+~
2

—g r dr = (f r& f'-r—, )
———af'

2 2 a
(xpr xpl )+ ufo rb r~

x2r dr —f gr dr,
BX2

(52)

f f +Ir
2

—g r dr =(f ri, f~r,')——af"
BX2

lb

(x2rz x~zr, )
—2 — f r dr

a ' f'b f'b

+3 f x2r dr —f gr dr,
()X 2

(53)

[x 2 (R +b)(1+qb) x~~(R —a)(1 —qa—)] .

in which the critical nucleus is assumed to be so large that the homogeneous properties of the bulk P phase are attained
at r, . The composition x2 in the parent phase may usually be approximated by its initial value. Equation (41) for y
may also be rewritten as follows by making use of Eqs. (42) and (48):

b 0 b
y=ap~(1 —

—,'qa)+bp (1+ ,'qb) —f g(1+—qg')dg+ f X2(1+qg)dg
Q

2 . TX Q

+ —,'[f (R +b)(1+qb) f~(R —a)(1 —qa—)]——of'
(54)

2 a

C. Flat interface

Although the formalism derived above is in principle
applicable to the cases where the radii of the surface of
tension are extremely large, it is desirable for numerical
evaluation to derive the separate formalism for Aat inter-
faces. Since the value of the interfacial tension is, in the

case of a Aat interface, independent of the location for the
dividing surface, we may choose the location such that

V~I i+V2I 2=0 {55)

is satisfied. When the dividing surface is so chosen, the
interfacial tension y, where the subscript indicates the
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flat interface, is given by the superficial density of the
Helmholtz free energy.

Under the approximation that the density c
&
+c2 is in-

dependent of the composition, it is possible to locate the
dividing surface such that I,=I 2=0, as shown below,
and this location is the one to be determined by Eq. (55)
in this case. Take the z-axis to be perpendicular to the in-
terface and direct if from the P phase toward the a phase
with the origin at an arbitrarily chosen point within the
homogeneous P phase. Suppose that the dividing surface
is at z =L, then the superficial densities I

&
and I 2 are

given by

0r, = f (c, +c )(1—x )dz —(c~+c~)(1—x~)L

—(c, +c2 )(1—x 2 )(zo L), —

(56)
Zpr, = f (c, +c, )x,dz —(cI'+cj')xP.

0

—(c, +c2 )xz(zo L), —

where z =zp is located at an arbitrarily chosen point
within the homogeneous a phase. Employing the ap-
proximation that

Consideration similar to that leading to Eq. (48) from Eq.
(45) results in

0—(c, +c, )(p, —
p, 2) =

BX2

gf 0

BX20
(62)

where the condition that p~&=p& and p~2=pz is utilized.
The boundary condition for Eq. (61) is given by

x2 —x2 as z ~, x2=x2 as z (63)

IV. NUMERICAL EXAMPLE FOR THE REGULAR
SOLUTION MODEL

A. Formulation

To study the numerical significance of the curvature
dependence of the interfacial tension in binary systems,
let us apply the present formalism to the regular-solution
model. Cahn and Hilliard ' developed the regular-
solution model for the inhomogeneous system and ob-
tained the coeScient K of the gradient energy term in Eq.
(37) as

c, +c2=c, +c2 =c~[+c~2,

both of the conditions I,=0 and I 2=0 result in

0
X2dz X 2Z0

n

(x~2 —x~ )

Thus the interfacial tension y is given by
2

(57)

(58)

K —cok /2 U

where

4mco= r prvrdr,
r prvrdr

g2 0

3 r prvrdr

(64)

(65)

(66)

0 0 X2
X2 +K dz and

—[f (zo L)+f~L] . — (59)

—(c)+c2)[p7(1—x2)+pqxq] dz . (60)

The corresponding Euler equation becomes

G X2
2K

dZ

0 —(c, +c2)()MP pz ) =0 .
BX2

(61)

The equilibrium composition profile for a fiat interface
is determined by an extremum condition of the following
thermodynamic potential under the given values for T,

a ap], p2, and Zp'.

2

X2 +K
0 dz

v(r) =u &2(r) —[u &&(r)+uz2(r)]/2.

m is related to the critical temperature T, by

co —2k T~

(67)

(68)

where k denotes Boltzmann's constant. In Eqs. (65) and
(66), p(r) represents the reduced radial distribution func-
tion which is assumed to be independent of the composi-
tion, u, z(r) in Eq. (67) represents the interaction potential
between the erst- and the second-component molecules at
the distance r, and u«(r) and uz2(r) represent similar
quantities. The parameter X represents the rms effective
"interaction distance" for the energy.

Helmholtz free-energy density f (x2) for the homo-
geneous system is given by

f (x2)=(1—x~)f, +x2f& (+1/v)Icox2(1 —x2)+kT[xz lnx2+(1 —x2) ln(1 —x2)]I,
where f, and f 2 denote the Helmholtz free-energy densities for the respective single-component systems at T Chemi-.
cal potentials p, and p~ for the state defined by ( T,p, x 2 ) are

p, =Uf, +co(xz ) +kT ln(1 —x2 )+p U, (70)
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pz = uf z + ru( 1 —x z ) + k T lnx, +p u . (71)

Hence, g (xz ) in Eq. (40) is given by

g(xz)=(1 —xz)f &
+xzfz+(1/u)Iru(1 —xz)(xz ) +cuxz(1 —xz ) +kT[(1—xz) ln(1 —xz )+xz lnxz ]I+p . (72)

The pressure p~ and the composition x~z for the bulk /3

phase can be obtained by equating the chemical poten-
tials for the a and the P phases as

co(xz )'+kT ln(1 —xz )+p u

c(ux~)'+kT ln(1 —x~z)+p~u,

I

Employing Eq. (68), Eq. (73) may be rewritten as

x~~(1 —xz )
4( x z

—x ~~ ) + ( T /T, ) ln =0,
xz (1 —

x~z)

kT,.
2[(xz )' —(x~~) ]+(T/T, ) ln

(74)

co( 1 —x, ) + k T lnx z +p u

(73)

=co(1 —x~z) +kTlnx~z+p~u .

(75)

From Eqs. (69) and (72) together with Eq. (68), f g-
in Eqs. (41), (42), (44), and (60) is given by

kT, 1 X2 X
2[xz(1 —xz) —(1 —xz)(xz )

—xz(1 —xz ) ]+(T/T, ) (1—xz) ln +xz ln
V

(76)

Since the last term —p in Eq. (76) does not aA'ect the ex-
tremum property of either &9 or 4 in Eq. (44) or Eq. (60),
the equilibrium composition profile is not influenced by
p . Substituting Eq. (76) into Eqs. (41) and (42), and con-
sidering Eqs. (51) and (75), we see that neither the loca-
tion of the surface of tension nor the value of the surface
tension depends on p . For a flat interface, p~ becomes
identical to p due to Eq. (5) and Eq. (73) determines the
equilibrium compositions for the a and the P phases, thus

2(2x, —1)+( T/T, ) ln
1 —x2 =0.

X2
(78)

o
Xg X2 dZ

1 —2x,
(79)

Due to Eq. (77), the location L of the dividing surface in
Eq. (58) becomes

x~2=1 —x,
and x 2 is to be determined by solving

(77)
Substituting Eq. (79) into Eq. (59) and manipulating the
results, we obtain

o kT X2
y = 2x, 1 —x2 + T/T, x21nx2+ 1 —x2 ln 1 —x2 +k

0 U dZ

2

—2xz(l —xz )

—(T/T, )[xz lnxz+(1 —xz ) ln(1 —xz )] dz . {80)

We see from Eq. (80) that the value of y is invariant
against a shift of the interface along its normal direction.
Note also that 4 in Eq. (60) is invariant against a shift of
the composition profile along the z axis because f —g is
equal to —p in both the homogeneous a and the homo-
geneous (3 phases for a flat interface.

B. Numerical results

suits wider generality, we normalize the distance and the
temperature by r, and T„respectively, and use the di-
mensionless quantities for the numerical work. Since p
does not affect the results under the present model as al-
ready discussed, we assign zero to p for convenience.
The phase diagram for the regular solution is shown in
Fig. 2, which was calculated from Eqs. (77) and (78).

To obtain the equilibrium profiles, we employ the
Rayleigh-Ritz method by assuming the following func-
tional form for the solution:

Since f &
and fz in Eq. (69) do not influence the proper-

ties of our present interest, the system is characterized by
the values of k, r, , and T„ in which r, denotes the aver-
age intermolecular distance. Following Cahn and Hil-
liard, we assign the value &11/7r, to A, , which was ob-
tained for the Lennard-Jones potential. To give the re-

1

(r —o. )r+ 1

1

(ro —o. )7.
+X 2

(e '+ 1)(e ' + 1)x (r)=(x —x")
(r —cr )~0 —ar

{81)
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1.0

0.5

variation of 0. in this case and the value of ~ is deter-
mined so as to make 4 the minimum. The equilibrium
composition profiles are shown in Figs. 4 and 5 for the
two temperatures, T/T, =0.5 and 0.8656.

Once the composition profiles are determined, the radii
of the surface of tension for the critical nuclei can be ob-
tained by solving Eq. (50), and the results are shown also
in Figs. 4 and 5. To obtain 6 in the Gibbs-Tolman-
Koenig equation, (26), the radius R * of the auxiliary di-
viding surface must be calculated for the present regular
solution model. Due to the assumption that the molecu-
lar volume is independent of the composition, we have

+ PQ 0 (82)

It follows for the regular solution that

I

0.5 1.0
x2

sUrface of tensicm

FIG. 2. Phase diagram for the regular solution.
0. Si

T/T = 0.5

It is assumed in Eq. (81) that the composition at r =0 is
equal to the equilibrium value for the bulk f3 phase, x~&,

obtained from Eq. (74) and the composition at r =ro is

xz for the bulk cx phase. The value for ro is taken to be
sufficiently large. Equation (81) cannot be applied for an
extremely small nucleus in which the bulk composition
x2 is not attained even at the center. The parameters 0.

and ~ adjust, respectively, the size of the nucleus and the
composition profile at the interfacial region. The value of
those parameters are determined such that iI& in Eq. (44)
takes an extremum value. An example of the numerical
results is given in Fig. 3, where A4 represents the
difference N(xz) —N(xz ). Equation (81) is applied also
to the flat interface, but 4 in Eq. (60) is invariant for the

1 0

0 Si

6-

LU. 0 20. 0 30. 0

surface of ternion

40. 0 SO. 0

T/T = 0.5

x2= 0.025

0. 2-
x2= 0.030

T/T O.e656
LO. 0 20. 0 30. 0

r/r.1
40. 0 50. 0

L. 0. surfaae of tens|an

0. 8

0 =a
O. 4

0. 2
x2= 0.050

k

LO. 0 20. 0
I

30. 0
J

40. 0 50. 0

FIG. 3. Thermodynamic potential 6@ to determine the equi-
librium composition profile.

FIG. 4. Equilibrium composition profiles and the locations of
the surface of tension at T/T, , =0.5.
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ax2
m, m2 4kT,

p

T/T,1+
4x& (x2 —1)

(83)
3.0

Since the RHS of Eq. (83) is nonzero in the range
x2 &x2 &xz, where xz and x2 denote the equilibrium and
the spinodal compositions, Eqs. (10) and (82) result in

(84)

Thus it follows from Eq. (12) that
1.0'

rl 1/3
3 f (x2 —xz )r'dr /(x~z —x2 )

0
(85)

where r, may be taken arbitrarily within the homogene-
ous o. phase. Since R and R * are known, 6 can be calcu-
lated and the results are shown in Fig. 6.

0.1 0.2 0.3 0.4

FIG. 6. Curvature dependence of 6 at T/T, =0.5 and 0.8656.

1. 0

0 s

T/T =- 0.86&6
C

surfaoe of tensicn

Although the present formulas are applicable also to
the flat interface as a limit, separate consideration for the
flat interface is desirable to improve the numerical accu-
racy. In the limit of the Aat interface, Eq. (42) becomes

2

X
0

dx
+p —g++ gd(=0,

Q

0. 2

l. 0"

L

&p. 0 20. Q 30. 0

x2= 0.2125

40. 0
k

so. o

T/T = 0.8656
C

and the location of the surface of tension is determined as
the origin of the g-axis which satisfies this equation. Sup-
pose that the surface of tension is located at the position
where x2=0.5. We assume the composition profile to be
in the form of Eq. (81), but we change the coordinate
from r to g=r —R and assign R to o. Assigning, further,
large values to R and ro —R to conform to the flat inter-
face, we finally obtain

p. 8

p. 6-

p. 4-

CL~ of ~nsion

x2= 0.2250

1 —2x2
x2(g) =x

2 +
e &+1

in which Eq. (77) is utilized. x2(g) in Eq. (87) possesses
the property

0. 2 x2( —g)=1 —x2(g), (88)

tQ. 0 20. 0 30 0 40. 0 Sp. 0

1.0,

I. 0'

0. I

T/T = 0.8656

.~oe of M~ion
0.9 .

0.8 ~

0. 1
x2= 0.2375

0.7

l p. 0 CO. 0 30. 0 40. 0 SQ. 0
5.0 10.0 15.0 20.0 25.0

FIG. 5. Equilibrium composition profiles and the locations of
the surface of tension at T/T, =0.8656.

FICx. 7. Curvature dependence of the interfacial tension at
T/T, =0.5 and 0.8656.
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(89)

Equations (88) and (89) indicate that f + — i

even function, hence F . (86)
'

eq. is satisfied b the

surface of t
at is, for the "Aat interface, the

ension is located at the
x =0.5. If f 11z

= . . o ows from Eqs. (77), (88 and
the position where

similar to Eq. (82) that
, and the relation

and (dx2/dg) is shown to be an even
E . (78)q. , we can show that

o e an even function. Noting

f'(x, )+p —g(x )=f'(l-—xz)+p —g(l —xz) .
20.0-

15.0 .

T/T =0.8656

r, =r, =o.
Equations (84) and (90) result in

(90)

(9l)

10.0-

for the Aat interface under the resenr e present model. This result

The Gibbs-Tbs-Tolman-Koenig equation (26' w
ed numericall b k

a ion ', was integrat-
y y making use of 5 in Fi . 6 an

a interface, y„, was calculated from Eq. (80) and th
e ermine t e integration constant of

e values of are
and 0.118kT,r, /U at T T =/ P

y. e interfacial tension cann y can also be calculated
q. , and the values thus ob

with those i

obtained are consistent
ose m Fig. 7. Since the RHS of E . 54

rewritten as R (p~ —p )/2 b a mp y a mathematical manipula-
, y can e calculated also from th L 1e ap ace equation,

5.0 .
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e
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as it should be.
To predict the reversible work of forming a critical nu-

cleus under a given state (T,p, x2 ) of the parent phase,
we first evaluate p ~ from the conditions p~ =p, , i = 1,2,
then calculate R from the Laplace equation (5) by em-

ploying the knowledge we have on y. When the curva-
ture dependence of y is properly taken into considera-
tion, we of course get the values indicated in Figs. 4 and
5. If the curvature dependence of y is neglected and y
is used throughout the size range, the radius of a critical
nucleus thus predicted, which is denoted as R, will be
incorrect. As seen in Figs. 8 and 9, the discrepancy be-
comes significant as the degree of supersaturation is in-
creased. The reversible work 8'"" to form a critical nu-
cleus is given by

300.0-

2CO. C

T/T =0.8656
C

8'""=4~R y/3, (92) 1CO. O—

and, in Figs. 10 and 11, the values predicted by the
present theory, which are denoted as (a), are compared
with those obtained by neglecting the curvature depen-
dence of y, which are denoted as (b). Dashed parts of the
curves are extrapolations to the size range of the nuclei in
which no homogeneous state exists, even at the center.
The present formalism must be extended to deal with this
size range.

V. DISCUSSION

The Rayleigh-Ritz method was employed in the
present work to obtain the equilibrium composition
profiles due to the difficulty in solving the nonlinear
differential equations (48) and (61). Although the as-
sumed functional form (81) seems to be reasonable, it is
difficult to estimate the error involved.

The most striking feature of the numerical results is
the large discrepancy in the reversible work to form a
critical nucleus between the values predicted by the
present theory and those obtained by using y
throughout. Solid curves in Figs. 10 and 11 signify the
results for the sufficiently large nuclei in which the homo-
geneous state is regarded to be retained at least in the
central region. As for the largest discrepancy in this size
range of the nucleus, the value of exp( —W"'/kT) pre-
dicted by the present theory is about 10 times larger
than that of the curve (b) for T/T, =0.5 and about 10'
times larger for T/T, =0.8656. Thus neglect of the cur-
vature dependence of the interfacial tension may severely
underestimate the nucleation rate because it is propor-
tional to exp( —W""/kT). Moreover, the present theory

e 8
2

J,
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34

x2

FIG, 11. Reversible work to form a critical nucleus vs super-
saturation at T/T, =0.8656. Curve (a), present theory. Curve
(b), obtained from W""=4~8-' y /3.

seems to predict, when extrapolated as indicated by the
dashed curves, the vanishingly small reversible work as
the spinodal composition is approached. This feature is
consistent with that found by Cahn and Hilliard.

The present theory is concerned with the situation
where supersaturation is attained by changing the com-
position of the parent phase under a given temperature
and a pressure. Whereas, supersaturation is achieved
more often by lowering the temperature under a given
composition and a pressure, and the critical degree of un-
dercooling is the quantity of interest. To cope with this
situation, the Gibbs-Tolman-Koening equation (26) must
be reformulated. However, the formulas in Secs. III and
IV are all valid for a general state of the parent phase,
thus the critical degree of undercooling can be investigat-
ed by using those formulas. This project, including the
reformulation of the Gibbs-Tolman-Koenig equation, is
left for a future work.
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