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In this paper we extend the previous study of flow profiles in cylindrical Couette flow of a

Lennard-Jones fluid so as to include the effects of normal stresses neglected in the previous work.

The flow is subject to a temperature gradient and thermoviscous effects are taken into consideration.

We apply the generalized hydrodynamic equations which are provided by the modified moment

method for the Boltzmann equation reported previously. The results of calculation are in good

agreement with the Monte Carlo direct simulation results of K. Nanbu [Phys. Fluids 27, 2632

(1984i] and experimental data for all Knudsen numbers. The inclusion of normal stresses also

brings about a new aspect to the flow properties which has not been seen before, since the flow

profiles exhibit a phase-transition-like behavior as the Knudsen number increases beyond a critical

value. There also appear slips in velocity at the inner cylinder wall in the supercritical regime of
Knudsen number. At the critical Knudsen number the entropy production for the flow process also

exhibits a singular behavior which is reminiscent of a second-order phase transition in thermo-

dynamic systems.

I. INTRODUCTION

We have previously reported on the effects of nonlinear
viscosity and heat conductivity on flow profiles of a
Lennard-Jones fluid in plane' and cylindrical'- Couette-
flow geometry. The calculations of flow profiles were per-
formed by using the generalized hydrodynamic equations
which were derived from the Boltzmann equation by the
modified moment method. ' The generalized hydro-
dynamic equations fully conform to the requirements of
the thermodynamic laws, and the fluid dynamics studies
carried out were, in fact, applications of a theory-' of ex-
tended irreversible thermodynamics developed by one of
us. Since the principal aim of the calculations was ex-
ploratory and to show that the theory can yield some use-
ful and practical results, the generalized hydrodynamic
equations were limited to forms as simple as permitted by
the problems in hand. Since the normal stresses are gen-
erally of second order in shear rate and thus appeared to
be unimportant in their effect, they were neglected. Nev-
ertheless, the density profiles thus calculated were found
to be in good agreement, for most of the Knudsen nurn-
bers studied, with the results by the Monte Carlo direct
simulation method' and the classical Navier-Stokes equa-
tions with slip boundary conditions, but agreement with
experiment was only fair when the Knudsen number got
large, as is also the case with the Monte Carlo direct
simulation results. Therefore the results were encourag-
ing, but indicated that the normal stresses neglected in
the calculations might be important after all.

In this paper we report on a further study that takes
normal stresses into consideration in the calculations of
flow profiles in cylindrical Couette flow of a Lennard-
Jones fluid. Inclusion of normal stresses not only im-
proves the density profiles qualitatively in comparison
with experiment, but also introduces new elements not

encountered in gas dynamics before: they give rise to a
phase-transition-like fluid behavior as the Knudsen num-
ber crosses a critical value, since the fluid behaves quali-
tatively differently beyond the critical point. For exam-
ple, the gas that formerly did not exhibit a slip in velocity
starts showing a noticeable slip as soon as the critical
Knudsen number is exceeded. In fact, there is a qualita-
tive change in all other fluid properties on transition of
the fluid from the subcritical to the supercritical regime
of Knudsen number. We believe that this aspect is new
to fluid dynamics. It is also significant for the following
reason. In gas dynamics slips in velocity and tempera-
ture are often observed. Although they may be regarded
as an approximation of boundary layers, they are com-
monly accounted for in terms of accommodation
coefficients which appear in the slip boundary conditions
necessary for solving the Navier-Stokes and Fourier
equations. In the Navier-Stokes —Fourier theory the
viscosity and heat conductivity of the gas do not depend
on density and therefore do not vanish with the density as
they should. This defect gives rise to the inability of the
Navier-Stokes flow profiles to exhibit a slip, or a thin
boundary layer, which appears in the low-density regime,
but the defect is repaired with modification of the bound-
ary conditions, which is achieved by invoking diffuse and
specular scattering off the wall by the molecules. In the
present theory a velocity slip is brought about by non-
linear transport coefficients or shear and normal stresses
which diminish in magnitude as the gas density de-
creases. In this regard we note that the boundary condi-
tions used in this work are stick (no slip) boundary condi-
tions as were used in the previous work. Therefore the
origin of the velocity slip in the present work is purely
hydrodynarnical, but not in the surface —gas molecule in-
teraction. The mathematical mechanism for the slip and
the phase-transition-like behavior will be discussed at an
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appropriate stage. This phase-transition-like behavior
appears more credible when we calculate the accompany-
ing entropy production which is continuous but singular
with respect to the Knudsen number in a manner similar
to the behavior characteristic of a second-order phase
transition. We find it rather intriguing, but its potential
significance for fluid dynamics is not as yet fully under-
stood.

In Sec. II the generalized hydrodynamic equations are
presented. Since they appear in the previous papers'
mentioned, only the essential equations will be presented
in order to define the symbols and equations necessary for
presenting the theory. In the same section the boundary
conditions will be discussed for both subcritical and su-

percritical regions of Knudsen number. In Sec. III we

present various numerical results which include flow

profiles and shear stress, normal stresses and heat fluxes
at the inner wall as a function of Knudsen number. They
all exhibit a singular behavior. We also discuss the entro-

py production for the process which shows a singular be-
havior with respect to the Knudsen number. Section IV
is for discussion and conclusion.

II. GENERALIZED HYDRODYNAMIC EQUATIONS

A. General forms of evolution equations

The modified moment method of solution for the
Boltzmann and generalized Boltzmann equation provides
a set of generalized hydrodynamic equations within the
framework of 13 moments:

—p(r, t)= —V pu(r, t),a
Bt

d
p u(r, t) = —V.P(r, t),

dt

d
p 6(r, t)= —V Q(r, t) —(P:Vu),

dt

(2.1)

(2.2)

(2.3)

p P(r, t)= 2p[7] "+2p[P r]'"—p[~ Plt- '

( sinh~ /tr ),
90

(2.4)

p Q(r, t)= (V.P) P+Q.y
—C P VT p[tv, Q]—dt—

TC,ppQ
( sinhlc /lr ),

XO
(2.5)

p b(r, t) = ', pP:y —', pbV. u ——p ln—(pv )

( sinhtr /tr ),( 6+ )

Qb0
(2.6)

where the flux evolution equations are in the Jaumann
derivative form. ' The symbols in (2.1)—(2.6) are defined
as follows: d/dt =(8/Bt)+u V, p is the mass density
(v =1/p, specific volume), u is the fluid velocity, 6' is the
internal energy, C is the specific-heat density at constant
pressure, P is the stress tensor, Q is the heat flux, p is the
hydrostatic pressure, i)o is the Newtonian (Chapman-

Enskog) viscosity, ko is the Fourier (Chapman-Enskog)
thermal conductivity, gbo is the bulk viscosity, m„ is the
reduced mass, n is the number density, kz is the
Boltzmann constant, U is the unit second-rank tensor,
and

y = —
—,
' [Vu+ (Vu)']+ —', U trP,

co =
—,
' [Vu —

( V u )'],
P = [ —,'(P+P ') —

—,U trP]/p,

6=(—,
' tr P —p)/p,

Q=Q/p,

[tv, A]=tv. A —1 tv,

tr=p[ (rp /2q)o) P:P+(rb /r)bo) b,

+(r /Ao) Q Q]'i

rz =[2r)o(m„k&T/2)' ]'~ /nk&Tcr,

rl, =[i)bz(m„ks T/2)' ]'~ /nkvd Tu,

rq =[Ao(m„kti T/2) ~ ] ~ /nk&T~

The first three equations (2.1)—(2.3) are mass-,
momentum-, and energy-conservation equations and the
last three equations are the evolution equations for the
traceless part pP and the excess trace pA of the stress ten-
sor P and for the heat flux Q. These evolution equations
are the constitutive equations for the substance of in-
terest. We have cast them in the Jaumann derivative
form which is required of constitutive equations corota-
tional with the frame of reference. The difference be-
tween the corotational and fixed frame constitutive equa-
tions is in the sign of the rotational terms p[tv, P] and
p[tv, Q] which take on a negative sign in the case of the
corotational formulation. This sign change has an impor-
tant significance since otherwise the constitutive equa-
tions do not behave correctly as have been pointed out
previously. The kinetic equations such as the
Boltzmann equation for dilute gases and the generalized
Boltzmann equation for dense fluids yield constitutive
equations containing higher-order moments, but the
latter are neglected in (2.4) —(2.6) since the number of mo-
ments is limited to 13 in the present theory. The
significance of the hyperbolic sine function in (2.4) —(2.6)
is discussed in the previous papers' in this series to
which the reader is referred for the details of it. It is re-
lated to the entropy production within the system and the
latter will be later calculated for the system in hand. In
the case of a fluid with no bulk viscosity we may set
b, =0. It is then necessary to consider only (2.4) and (2.5)
for the constitutive equations for the system since it is
possible to replace (2.6) with the gas equation of state
especially for steady-state problems. Since we are consid-
ering such a case the set of generalized hydrodynamic
equations consists of (2.1)—(2.5) in the present study.
Since in the present work we are interested in the steady-
state problem, we will set the time derivatives of the mac-
roscopic variables in (2.1)—(2.5) equal to zero.

The system of interest here is a Lennard-Jones fluid
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L~P
In other words, the macroscopic variables are functions
of r only. Taking the symmetry properties into account,
we find the steady-state equations for (2. 1)—(2.5) in cylin-
drical coordinates as follows:

d
dr

(rpu )=0, (2.7)

2
Ll H d (p+H„„)— (2.8a)

did H Q~Q H

P Qr +
dp r

1 d p re errI

p. dI r

(2.8b)

diaz
pu, = —— (rH„, ),

dr r dr
(2.8c)

FIG. 1. Coordinates in the cylindrical Couette-How

geometry.

contained between two infinite concentric cylinders with
radius R, and R„respectively; see Fig. 1. The tempera-
tures of the inner and outer cylinders are, respectively, T,
and T, . The inner cylinder rotates at an angular velocity
0, while the outer cylinder is at rest. In some experi-
ments the outer cylinder is also made to rotate in the op-
posite direction, but it does not basically change the
analysis. The most convenient coordinates for the
geometry of the system in hand are the cylindrical coor-
dinates.

B. Steady-evolution equations in cylindrical coordinates

The macroscopic variables are then generally functions
of r, 0, and z. We write various macroscopic variables in
components:

p=p(r, O, z),
8= A(r, O, z),
u =u, (r, O, z)5„+u e(r, O, z)5e+ u, (r, O, z)5, ,

PP:—H = H„„6„6,+ H„H6„6H+ H„,6„6„

dQH dQpu„= —— rQ„—He„—II,„"dr r dr " ' dr '" dr

H„eu e
—(p + IIee)u, .

+

pH„„
q, = —

( —", yII„e+ —', PHe. ),
X/0

pH„,
q, = 2py (2—y Hee+—PHe'

90

pllHH
q,, =—', yI I,e

——', PH,„,
10

q, = —2y H„, —2PH„—2pP,
90

pHH
q, =0,

IO

pH„
q, = —', yH„e+ —', PH,„,

IO

Q„q,, = —Roy —(ko/a) (2y+re)Qe

(2.9)

(2.10a)

(2.10b)

(2. 10c)

(2.10d)

(2.10e)

(2. 10f)

+ H H, 6H6„+ H HH6H6H+ H H, 6H6,

+ H,„6,6„+H„6,6,+H„6,6, ,

Q= Q„(r, O, z)5„+Qe(r, O, z)5e+ Q, (r, O, z)5, ,

+ TCy—
2

II„„+3PQ,
r

(2. 1 la)

where 6„, 6H, and 6, are the orthogonal unit vectors in
the cylindrical coordinate system, and the tensor com-
ponents H„„,etc. are functions of r, 0, and z.

Because of the assumption of infinite cylinders, there is
a translational symmetry along the z axis. Consequently,
the Auid properties are translationally invariant in z and
the macroscopic variables would not depend on z. Since
there is also rotational symmetry with respect to the az-
imuthal angle 0, they are also independent of 0 as well.

Qeq„= —(A.o/a) TC y
2

QH
He„+ ( A.„/a )cuQ„,

—(ko/a)(Q„—2Q, )P,

2

Q, q, = —(A.o/a) TC Z — H„,r

(2.11b)

(2.11c)
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where

du

2 dr

r d
y = — (uz/r),

2 dr

co=(2r) (rug),
dr

lnT,=d
dr

(2.12)

C. Reduced hydrodynamic equations

It is useful to cast the equations in reduced form by in-
troducing suitable reduced variables. We therefore define
the following reduced variables scaled by a suitably
chosen set of reference variables. With the definitions

AT=T, —T, ,

D =R, —R;,
u=TC p,
q, =sinh~/~ .

The symbol y represents the shear rate and ~ the rota-
tion frequency. It is useful to note the following identity:

ug
CO

r

so that, for example,

ug
3 P

ug
Q)+

rpu„= const . (2.13)

Since u„=0 at the boundaries, the integration constant
must be equal to zero and we conclude

u, =0 everywhere . (2.14)

This makes all the terms containing u„ in the set
(2.7) —(2.12) vanish. This condition and the fact that
u, =0 at the boundaries can be used to show that

etc. These identities appear in the evolution equations
for II„„,etc. and Q„, etc. The reader is referred to Ref. 2
for discussion on the relation of the Jaumann derivative
to the presence of terms involving co in the stress evolu-
tion equations (2.10a)—(2.10f).

Equation (2.7) integrates trivially to give

and denoting the reference set of variables by T„p„p„,
U„, g„, and A, , for temperature, pressure, mass density,
velocity, viscosity, and heat conductivity, respectively, we
define the reduced variables

T*= T/T„,

u* =u/U„,

g=rID,
h*=TC /T„C (T„),
a*=p TCz /p, T„C ( T„),
90 90/9r

1,0 =A, D/A, „,
y*=@/( U„/D),

X'=XD

co* =co/( U„/D),
f1*=n„,/(q„U„ID),

Q*=Q„I(k.„b T/DT„),
N;* =N, /( g„U„/D ) (i = 1,2 ),
Qg =Q~/(A„b T/DT„) . .

u, =0, and du, /dr =0 everywhere . (2.15)

1l„=n„=n„,=n,„=o, Q, =0 . (2. 16)

It is also convenient to define the normal-stress
differences N, and N2 as follows:

That is, P=O everywhere. From (2.1S), (2.11c), and
(2.10e) follows the conclusion

Note that there is a factor of 2 difference between the re-
duced stress tensors in the present paper and those in
Ref. 2. We find the present mode of reduction more ap-
propriate. It, however, gives rise to a different numerical
factor in some of the terms in the reduced equations ap-
pearing below. We will specify more explicitly the refer-
ence set of variables later when we perform numerical
analysis. Since the dimensionless numbers above appear
in a product form, we will find it convenient to define the
following composite reduced numbers:

Ni = IIgg —H,„,
N, = rr,„—II„. (2.17) 5—:( 2y 0/vr )

' ~ MK„,
e =—5T/4T„EP„,

We will work in terms of normal-stress differences instead
of the normal stresses themselves. where various nondimensional parameters are
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~=U, /(y, RT )'"
(y0=C /C„, 8 =gas constant per unit mass),

R, =p„U„D/g„,
E = U„'/C 5T [C = C ( T„)],
P„=C q, T„/k„,
K„=l/D (I =mean free path)

Here M is the Mach number, R,, is the Reynolds number,
E is the Eckert number, P„ is the Prandtl number, and K„
is the Knudsen number. Note that the Reynolds number
is related to the Mach and Knudsen number as follows:

K —6K

e
(

3/2, )I/2( Te 1/4/2 e 1/2 *
)3' 0 710

)( [ 11 ~+ ' (N*~ + P*~ +N*N* )

+4&( e /ge )(Q s2+ Q
e2 )]1/2

The parameter 6 tends to zero as the fiuid density in-
creases since in that case K, tends to zero.

Equations (2.18)—(2.21) are the generalized hydro-
dynamic equations which govern the cylindrical Couette
flow in hand. We will solve them numerically. In Ref. 2
we have neglected the terms involving the parameter 6,
that is, the following set is taken:

R,, =(~yo/2)' M/K„.
This means that the parameter 6 may be expressed as

6 = ( 2/~()R, K„

This mode of expression for 6 provides another fluid dy-
namic aspect to the parameter. That is, since 6 is a mea-
sure of importance of nonlinear transport processes, the
latter will become important to flow properties as the
value of R,, increases.

By collecting the various results above and using the
reduced variables defined, we finally obtain the reduced
generalized hydrodynamic equations:

[p
* + —,

' 6(N ~
—N*, ) ]—6N*, /(,

2p 0 dp

d.(g'11*)=0,

1 d ((Q*)+2P„Ey*II*=0,

II*q,, = —2g0 y*,
Q*q,,

= —A.o y*,
N*, =N~ =-Q() =0,

with

q,, = sinhi~/~ (I~ =6x.*),
( 3/2/ )i/2( Ts 1/4/2 e I/2 s

)To 90

(2.22a)

(2.22b)

(2.23)

(2.24)

(2.25)

{2.26)

{2.27)

(2.18a)

(2. 18b)

(2. 19)

(2.20a)

(2.20b)

(2.20c)

w2

+ =,'P„h*y* E—
X(N2 —Ni ) (2.21a)

d
(g'll* ) =0,

1 d

g dg
(jg*)+2P„Ey*ll*=0,

Il*q,,
= —2t)oy* ——'-, 6(goy*/p*)(2Ni +N~ ),

N*, q,, =46(go y*/p * )II',
N&q„, = —46(t)o y*/p*)II*,

Q*q,, = —
A.oy"

—(6/P, )(Ao /a*) (2y*+co*)Q,*)

X [II*'+4@(g*/A.* )Q *'-]'

The constitutive equations (2.24) and (2.25) are then sim-

ply the non-Newtonian stress equation and the non-
Fourier heat flux equation which we have used in the pre-
vious studies. ' ''" These equations yield flow profiles
comparable with the Monte Carlo simulation results by
Nanbu for all Knudsen numbers, but the results exhibit
discrepancy with experiment in the high-Knudsen-
number regime. In order to locate the source of the
discrepancy, we carry out numerical analysis of a more
complete set of generalized hydrodynamic equations, that
is, (2.18)—(2.21), in this paper. If q,, is put equal to unity
in (2.24) and (2.25), then the set of equations (2.22) —(2.25)
becomes the Navier-Stokes and Fourier equations in the
conventional hydrodynamics. Thus we clearly see the re-
lation of the classical hydrodynamics to the present gen-
eralized hydrodynamics.

Let us now return to the generalized hydrodynamic
equations (2.18)—(2.21). We observe that

42

Qgq, = —(6/P„)(A, o /a*) P„
N*, = —N2 (2.28)

where

q, ,
= sinkK/K,

(2.21b)
Therefore N2 can be eliminated in (2.18) and (2.21), and
the equation for N2, (2.20c), drops out of the set. Besides
the relation (2.28), there is another relation between the
remaining stress tensor components IT* and Ni. By el-
iminating q,, and q*y* from (2.20a) and (2.20b), we find

with (N*, +3p*/26) +6IT* =9p* /46 (2.29)
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which is an ellipse in (H",N*, ) space. This stress ellipse
is, in fact, the generator of a cone in the three-
dimensional space (H*,N&,p*), and the solutions of the
generalized hydrodynamic equations (2.18)—(2.21) are
confined to a sector of the surface of the cone; see Fig. 2.
It is convenient for the computational work performed in
Sec. III if we introduce a new pressure defined by

p„*=p*/5—2N', /3 .

We remark that this new variable is in fact the total nor-
mal stress divided by 6 since I I,*„=—2N*, /3. This
change of variable puts the stress ellipse in the form

This equation is singular if the discriminant vanishes,
since it is easy to show that

b, =p„* —8H* =(4N*, /3+p*/5)

The discriminant indeed vanishes at the inner boundary
for K, ~ K„' as we will see later.

As the density of gas decreases, the pressure obviously
decreases and along with it also does the shear stress.
This phenomenon also holds at the boundaries. As the
gas density diminishes or the Knudsen number increases,
the discriminant 6 rapidly decreases and eventually there
is a point reached at which

(N,*+p„*/2) +2H*= —,'p„* (2.29') 6(g, )=0 (g, =g at r =R, ) . (2.32)

The allowed sector of the surface is the part where

Ns i s
( 1 [1 (8H+2/ e2)]1/2) (0 (2.30)

See Fig. 3. In this connection we remark that it is numer-
ically found

The branch of negative sign [i.e., the case where the
square root in (2.30) is positive] leads to a solution of non-
physical behavior for N*, . Therefore the solutions of the
generalized hydrodynamic equations are confined to the
+ half of the cone surface in Fig. 2. Since the normal-
stress difference N~ must be real, the discriminant 6 in
(2.30) must be positive semidefinite everywhere in g:

Q{g)—p42 8H42) 0 (2.31)

p
*= —5(6II* +N* ) /3N*,

we may cast (2.18a) into the form

dN*, /dg= —[ N*, (R,p*u * +N*, )

+16H' /3]/g(4N*, /3+p*/6) .

This inequality has an important significance in the
present theory for the following reason.

We first indicate the significance of the recasting of the
stress ellipse in the form of (2.29'). Since we find from
(2.29)

This is easily seen from the fact that p is lowest and H* is
highest at g=g, . The vanishing of the discriminant can
be also understood in the following manner. The reduced
generalized hydrodynamic equations (2.18)—(2.21) irdi-
cate that the normal stress will be comparatively negligi-
ble at low Knudsen numbers for which 6 will be also
small. As K, or 6 increases, N

&
begins to be increasingly

important in comparison with the shear stress and its
magnitude increases since it is approximately proportion-
al to 5 at small 6; note that N& is negative. However, II'
decreases along with p„* as K„ increases. Since we obtain

N1 ——2H*—2/p„*+0 (H*'/p„*'), an increasing N1—
means that the rates of decrease in II* and p„* are not the
same, the latter being a little faster than the former.
Thus there arises a point in K, where 6 vanishes. The
basic reason for a vanishing 5 is then seen to stem from
the increasing magnitude of N*, as 5 increases from zero,
and —N

&
eventually reaches a maximum value allowed

by (2.29'). Once this point is reached, the normal-stress
difference or the normal stress itself cannot follow the
same evolutionary path within the framework of the gen-
eralized hydrodynamic equations (2.18)—(2.21) with a
given set of boundary conditions, but with another set

FICx. 2. Stress-pressure cone in (II*,N l,p*) space. The dot-
ted curve shows a schematic trajectory followed by the solutions
of the generalized hydrodynamic, 'note that the curve has a
kink. FIG. 3. Discriminant 6 vs lnK„.
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D. Boundary conditions

The generalized hydrodynamic equations (2.18)—(2.21)
require five boundary conditions. The specification of the
velocity and temperature at the inner and outer cylinders
takes care of four boundary conditions. The choice of
the fifth condition is not obvious for the experimental
condition of the present problem since neither the pres-
sure nor the density of the fluid is measured at either one
of the boundaries (i.e., cylinders). As in the previous
work, for the remaining boundary condition we take ad-
vantage of the fact that the mass of the fluid between the
two cylinders is conserved in time. Therefore the initial
(uniform) experimental density must be equal to the aver-
age steady-state density:

R

po= (p(r) ) —= [2ir(R, —R; )] '2n f dr rp(r),
I

(2.33)

where po is the initial uniform mass density and p(r) is
the steady-state mass density. Once the initial density pp
is given, the density profile can be determined subject to
(2.33) in a way consistent with all other boundary condi-
tions. Equation (2.33) constitutes the desired fifth condi-
tion which makes the problem well posed. This will be
cast in a reduced form later.

modified by 6=0 as will be seen shortly.
Let us denote by K,' the Knudsen number at which 5

vanishes for the first time as K„ is increased from zero.
We will call it the critical Knudsen number. Condition
(2.32) must hold for all K„~K„', or there are no physical
solutions for the generalized hydrodynamic equations
subject to the boundary conditions imposed, because the
solutions will turn out to be complex. Thus it is neces-
sary to demand that b, (g; ) =0 for all K„~K„'. Since this
condition fixes the value of p„' at the inner boundary in
terms of 11*(g;), the system of equations (2.18)—(2.21) is
presented with an additional boundary condition that
arises since we require that the solutions be real for
K„~K,'. This appearance of a boundary condition for
p„* (or pressure indirectly) frees a boundary condition on
velocity or temperature. We choose the boundary condi-
tion on the tangential velocity at the inner wall as the one
to be eliminated in favor of the pressure boundary condi-
tion newly created by A(g;)=0. There are reasons to in-
dicate that it is the logical one to eliminate. We will re-
turn to this question when we discuss the boundary con-
ditions. This phenomenon of a vanishing discriminant
has important consequences for flow profiles as we will
show later. We remark that Lin and Street" in the
theory applying the Navier-Stokes equation took the
boundary condition on pressure to be the mean pressure
in order to calculate flow profiles within the framework
of the Burnett equations, ' but there is no physical and
experimental reason to support their choice. In the
present theory with inclusion of normal stresses the pres-
sure boundary condition appears as a condition for the
solutions of generalized hydrodynamic equations to be
real, and that condition is not the mean pressure of the
gas.

Q =1
(2.34a)

and

Q =0
T*=T.ZT,

"~ o (2.34b)

(p*(P &=I, (2.34c)

which we have put in reduced forms. These and those
given below [i.e., (2.35a) and (2.35b)] are the stick bound-
ary conditions which are traditionally considered applic-
able to gases at or above the normal density for which the
Knudsen number is sufficiently small. It is a common
practice in gas dynamics to take slip boundary conditions
as the gas density diminishes. The proposition we make
in this series of work is that the transport processes in
low-density gases are basically nonlinear and slip phe-
nomena observed in the laboratory are a manifestation
and consequence of nonlinear transport processes; it is
sufhcient to use the stick boundary conditions, provided the
transport processes are appropriateIy nonlinear. As in a
previous work this proposition withstands comparison
with independent results by Nanbu and with experiment.
The present model includes normal stresses neglected in
the previous work and thus is in further support of the
proposition.

2. Boundary conditions in the supercritica1 regime

In the supercritical regime of K„K,' the discriminant
b, (g, ) vanishes and this ensures real solutions. However,
since it adds another boundary condition, the problem
becomes overdetermined. This problem is easily over-
come if one of the boundary conditions in (2.34a) —(2.34c)
is eliminated. We choose the following boundary condi-
tions:

p„*= &811*/5
Te —T yT

(2.3Sa)

0*=0
at g=g„, (2.35b)

(p*(g) ) =1 . (2.35c)

We have replaced one of the velocity boundary condi-
tions with the boundary condition on p„* at the inner wall

on the basis of the following reasoning. The density con-
dition cannot be replaced since it not only does not
change the situation in which acceptable real solutions
would not otherwise arise, but also it would be unlikely to
be satisfied by the density profile even if the solutions
were possible. The temperature boundary conditions do
not seem to be sensible candidates because gas molecules
should acquire the temperatures of the walls especially in

l. Boundary conditions in the subcritical regime

In the case of K„(K,' the gas behaves normally since
the density is in the normal range and the boundary con-
ditions are the usual stick boundary conditions in addi-
tion to (2.33). Therefore, for the velocities and tempera-
tures at the boundaries, we impose the boundary condi-
tions
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view of the fact that gas molecules interact with the par-
ticles forming the walls. After all, the gas molecules can
even get adsorbed on the walls. Finally, it is quite sensi-
ble on the physical ground that nothing extraordinary is
expected to occur at the outer wall and consequently the
velocity of the gas should be equal to zero at the station-
ary outer wall. Thus the choice we have made for the
boundary conditions above.

The p„* boundary condition, on substitution into (2.30),
yields N*, at the boundary in the form

which implies p
*=4&2H*6/3 at the inner boundary.

E. Linear transport coefticients g0 and A.0

There are two transport coefficients appearing in this
theory that must be supplied before solutions are at-
tempted. They are the zero shear rate shear viscosity and
the zero temperature gradient heat conductivity. They
can be calculated by means of the first-order Chapman-
Enskog theory. ' In this work we use the formulas pro-
posed by Ashurst and Hoover' " for a Lennard-Jones
fluid. They were used in our previous work. ' A similar
formula for viscosity was derived by one' " ' of the
present authors from the kinetic theory based on the gen-
eralized Boltzmann equation. They are

g0=[0. 171+0.0152[1—0.5(e/ka T)' +2e/k~T](expt 7.02[1—0.2(e/kz T)' ]x I
—1)](me)' o (k~ T/F)

AD= I0.642+0. 36[exp(3.76x) —1]Io (e/m)' (k&T/e) ~ k&T,

where

x =no'3(F. /k~ T)"4,
e is the well depth of the interaction potential, m is the
mass of the fluid molecules, and o. is the Lennard-Jones
potential size parameter. At the normal density or
below, the exponential factors are practically equal to
unity and we have

F0=0. 171(m e)' o (ks T/e)

X0=0.642cr (F/m)' (k& T/e) ks T .

III. SOLUTION OF THE GENERALIZED
HYDRODYNAMIC EQUATIONS AND FLOW PROFILES

Since Alofs and Springer reported on density profiles
of argon in cylindrical Couette flow, we make comparison
of our results with theirs. We take the initial density ob-
tained from t;he reported chamber pressure and tempera-
ture in their experiment. The reference temperature is
taken to correspond to the mean value of the wall tem-
peratures. Other reference values are taken to corre-
spond to the experimental condition. With these refer-
ence quantities, we determine various dimensionless pa-
rameters such as M, K, , P„, E, the aspect ratio, and
the reference transport coeScients [g„=g0( T„,n„),
A,„=A,0( T„,n „)].

The solution procedure for (2.18)—(2.21) is basically the
same as the one we have used in Ref. 2. We first integrate
(2.18a) and (2.18b) to obtain

H*=C, g

Q*=2P„E(Cqg' ' —C, u*g ),
where C, and Cz are the integration constants. These re-
sults are substituted into the rest of the equations which
are afterward solved subject to the boundary conditions
(2.34a) —(2.34c) in the subcritical regime of Knudsen
number and the boundary conditions (2.35a) —(2.35c) in
the supercritical regime. As in the previous work, we use

I

a combination of the shooting method and the sixth-
order Runge-Kutta method for integration of the equa-
tions.

The values of C, and Cz are first guessed together with
a value of the pressure (or density) at one of the cylinder
walls and the governing equations are solved in an at-
tempt to satisfy the four boundary conditions and reach
an average reduced density equal to unity. This pro-
cedure is repeated until an imposed tolerance is satisfied.
Since this technique is rather tedious, we have devised a
modified Newton-Raphson iterative scheme that would
automatically determine the appropriate values of the
two constants and pressure (or density) at the boundary.

In order to compare our results with those obtained ex-
perimentally we have to use the same values for the di-
mensionless parameters involved. There is, however,
some ambiguity in the way some of the parameters were
defined and in the choice of some reference quantities
taken in the experiment ~ The wall temperatures were ini-
tially identical, but the wall temperatures at steady state,
however, were found to be different by 8 C. We there-
fore defined our Mach number on the basis of the mean
value of the two steady-state wall temperatures. The
mean value is then our reference temperature. The Mach
number thus calculated turns out to be comparable to
that used by Alofs and Springer, i.e., 0.9908 for ours
compared to 0.9917 for theirs. This is the value for M we
use throughout this work. The aspect ratio 3, and the
Eckert and Prandtl numbers are set equal to the experi-
mental conditions, i.e., 3 = —', , E =25. 115, and

P„=O.666. Note that the specification of the Eckert
number fixes that of the temperature ratio T, /T, . The
Chapman-Enskog transport coefticients are those for a
Lennard-Jones gas, while the ones used in the experi-
ment are based on the Maxwellian model for the inter-
molecular force. For this reason the K, values in the
present investigation are slightly higher than the values
quoted in the paper by Alofs and Springer and by Nan-
bu although they are both based on the same value of
the initial density.

Although the present calculations cover all flow prop-
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erties, only the density profiles can be compared with the
experimental results since others are experimentally una-
vailable. In the experiment by Alofs and Springer the
initial chamber pressures varied from 0.050 to 0.0020 mm
Hg (i.e., 1.58X10 and 0.06X10 in the units of e'/cr )

with corresponding Knudsen number ranging from
0.0426 to 1.065. When compared to the present choice of
reference variables, the Knudsen numbers range from
0.0544 to 1.3962.

The density profiles for different initial chamber pres-
sures are shown in Figs. 4 and 5, where the + symbols
represent the experimental data, the squares the simula-
tion results by Nanbu, and the solid curve the solutions
by the present theory. They are of particular interest
since density measurements were mainly the object of at-
tention in the experiment. In the figures we have left
out the results computed by the Navier-Stokes theory
with slip boundary conditions since they were compared
with others in a previous work. The critical Knudsen
number is found to be K,' =0.2257. In the case of
K„=0.0544 and 0.1046 the results by the present theory
agree with both the Monte Carlo simulation results and
experiment, although for both the present and Monte
Carlo results there are discernible discrepancies with ex-
periment near the walls. These discrepancies get more

noticeable in the case of K, =0. 1388 although the
differences are within a few percent. In the subcritical
range the density profiles calculated with and without
normal stresses are virtually identical.

As K„passes the critical value, the density profiles by
the present theory flatten more and approach the experi-
mental data a little better than those calculated without
normal stresses in the previous work, but in the vicinity
of the inner wall they also exhibit a pronounced bound-
ary layer in the opposite sense to the profiles by the
Monte Carlo direct simulation method and in the previ-
ous work. In the absence of more detailed experimental
data in the vicinity of the walls which are very difficult to
measure precisely owing to the interference by the walls,
it is difficult at present to establish the true picture of the
density profiles near the walls. However, it seems
worthwhile to examine and compare profiles by the
Monte Carlo method and the present theory.

As K„ increases, the Monte Carlo density profiles be-
gin to show a minimum near the inner wall ~ In fact,
Nanbu's calculation shows that the pressure is larger
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FIG. 4. Reduced density vs reduced distance. Curve a,
K„=0.0544 and po=0. 05 mrn Hg (1.58X10 5/o; this unit
will be referred to as the LJ unit henceforth). p *=p/p;d„„,
When converted into m o. p:—pmidstream o. /m =0.62
X10 '. The same notation is used in the subsequent figures.
+, experimental value of Alofs and Springer;, Monte Carlo
direct simulation value by Nanbu;, the present theory.
Curve b, E„=0.1046 and po=0. 026 mm Hg (0.82X10 ' LJ
units). p* =0.32 X 10 '. Curve c, K„=O.1388 and
pG=0. 001 96 mm Hg (0.62X 10 LJ units).
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FIG. 5. Reduced density vs reduced distance. Curve a,
K„=0.3201 and po=0. 0085 mm Hg (0.27X10 ' LJ units). +,
experiment; U, simulation; the present theory.
p,

* =0.11X10 . Curve b, K„=0.5184 and p0=0. 00525 mm

Hg (0. 17X10 ' LJ units). p* =0.066X10 '. Curve c,
K„=1.362 and po =0.009 mm Hg (0.06 X 10 ' LJ units).
p,„=0.015 X 10
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than its midstream values when the Knudsen number
gets much larger, see Fig. 4 in Nanbu's paper. Such a
minimum in density profiles appeared in our previous
work in which the normal stresses were neglected. Con-
trary to these results, the density profiles by the present
theory do not show a minimum, but instead a boundary
layer which gets increasingly thinner as K„gets larger. A
similar behavior is exhibited by the pressure (Fig. 9
below). In contrast to the pressure or the density, for K„
much larger than K„' the total normal force p„* (i.e., the
total pressure) becomes larger near the inner wall than in
the midstream value as is shown in Fig. 10 below. In
fact, the behavior of p„* looks rather like that displayed
by the pressure profiles in Nanbu's paper, and we
wonder if his pressure was not indeed the same as the to-
tal normal force p„* calculated here. Incidentally, this
enhanced value of p„' near the inner wall seems to be in
accord with the phenomenon observed by Reiner, ' "'
who observed that a rotating disk above a gas can be
suspended by the gas it is shearing. Normal stresses were
believed to be the cause for the phenomenon although
full confirmation of it is not available as yet. The result
of the present calculation seems to support this
viewpoint. Normal stresses are also important for flow
properties of highly viscous liquids such as polymers and
polymer solutions which display Weissenberg's
effects. ' ' ' We then begin to wonder about the reason.
For this we must recognize that the normal stresses be-
come comparatively significant in both gases and liquids
for basically the same reason that the parameter 5 be-
comes large whether the fluid is a gas or a liquid. In the
case of rarefied gas the parameter 6 becomes large since
K„ increases for the reason that the density decreases,
while in the case of a liquid the "Knudsen number, "
which may be defined in terms of an effective range of
momentum transfer in the liquid, becomes large because
the momenta get transferred to a longer distance owing
to a long-range correlation of particles and therefore the
viscosity becomes large. (Note that the thermal conduc-
tivity increases with the viscosity. ) Either way, the pa-
rameter 5 becomes large and the normal stresses become
as important as the shear stresses and the pressure.
Therefore we might be able to say that rarefied gases and
highly viscous liquids are similar as far as the importance
of normal stresses is concerned.

In rarefied gas dynamics there is also a prevalent
misconception regarding the relation between the Knud-
sen number and what is called free molecular flow. We
consider it with the cylindrical Couette flow in hand.
The Knudsen number in this case is defined in terms of,
the gap width D between the two cylinders while the
length of the cylinder is assumed infinite or, at least, very
long. Now, if the gas density is such that K„so defined is
larger than or near unity, we are told to imagine that
molecules do not have much chance to collide with each
other on their flights between the walls. This would be
certainly true if all the molecules shuttled between the
two walls in the perpendicular direction to the walls, but
the probabilities of such collisions with the walls are rath-
er small. More predominant kinds of collisions with the
walls would be small-angle, slanted scatterings off the
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FIG. 6. Reduced velocity profiles for various values of K„:
Curve 1, 0.0544; curve 2, 0.1046; curve 3, 0.1388; curve 4,
0.3201; curve 5, 0.5184; curve 6, 1.362.

walls. Particles undergoing small-angle, slanted collisions
with a wall would never lack a chance or more to collide
with other particles on their flight to the other side of the
cylinder wall, since the cylinders are infinitely long by as-
sumption and the mean free path is finite if the density is
low but finite. Therefore the gas behaves as a continuum
in the axial, or near-axial, direction even if K„1.This
consideration shows that the gas should be diluted much
more than it is required for K„=1 before it exhibits a free
molecular flow behavior in all directions. In rarefied gas
dynamics a kinetic equation without a collision term is
often taken along with a suitable boundary condition on
the distribution function on the basis of the free molecu-
lar flow argument mentioned above. It looks plausible at
first glance, but as we have indicated above, there is a
physical flaw in it and such an approximation should not
be satisfactory for Knudsen numbers not so large.

From the generalized hydrodynamic equations present-
ed, we see that the normal-stress effects and probably oth-
er nonlinear effects take over and significantly influence
the flow behavior before a free molecular flow sets in. It
appears that the boundary layers exhibited by the density
profiles obtained by the present theory are a manifesta-
tion of such normal-stress and nonlinear effects. We
have, in fact, found through monitoring numerical solu-
tions and their position dependence that the normal
stresses help the centrifugal (inertia) force push the fiuid
toward the outer wall, and this partly accounts for the
density profiles calculated in this work.

From the consideration made above we are also able to
infer that in the Monte Carlo direct simulation method
the normal stresses may have been somehow neglected by
the design of the algorithm or the approximation made to
the kinetic equation, e.g. , the decoupling approxima-
tion. '

In Fig. 6 are presented velocity profiles for various
Knudsen numbers. The profiles 1, 2, and 3 are, respec-
tively, for K„=0.0544, 0.1046, and 0.1388 which are sub-
critical, i.e., less than K„'=0.2257, while the profiles 4, 5,
and 6 are for supercritical values of K„: 0.3201, 0.5184,
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and 1.362, respectively. This manner of numbering
profiles will be used in Figs. 8 —13. The subcritical
profiles are almost identical and linear, the slight curv-
ings being due to the centrifugal effect. The supercritical
profiles show a slip which increases with increasing K„.
The origin of the slips seen here is completely hydro-
dynamical, since they have nothing to do with
surface —gas molecule interaction to which slips are com-
monly attributed in rarefied gas dynamics. The slips are
intimately tied up with the vanishing discriminant at
K„~K„',which not only compels us to switch over from
the subcritical to the supercritical boundary conditions,
but also thereby makes all the fluid variables behave
differently in the regions of K„)K,', and K„(K„', see
Figs. 14—18 below. Since it is interesting to see the K,
dependence of velocity slip, in Fig. 7 we have plotted
Au = 1 —u * versus lnK„, where u * is the velocity at the
inner wall. The slip starts at the critical Knudsen num-
ber and rises steeply, reaching unity eventually in the
high-Knudsen-number regime. The behavior is reminis-
cent of a phase transition since a qualitatively different
solution emerges as K„crosses the critical value. In fact,
the figure reminds us of the magnetization versus magnet-
ic field curve in a Heisenberg magnet system undergoing
a second-order phase transition. In Fig. 7 the crosses
represent the values obtained from (2.18)—(2.21), and the
squares are those obtained with q, put equal to unity. In
the latter case we have linear dissipation terms in the evo-
lution equations in the set (2.18)—(2.21), which now
correspond, except for the nonlinear terms in
(2.20a) —(2.21b), to the corotational Maxwell equation'
for the stress tensor and the Cattaneo-Vernotte equa-
tion' for the heat flux. The slip values show that the
nonlinear dissipative terms have minor effects on velocity
slips near the critical Knudsen number. This comparison
indicates that slips are principally due to the normal
stresses and would be a universal feature in all fluid flows
as long as normal stresses are not neligigible. The Knud-
sen number dependence of the velocity slips calculated
can be fitted to the following formula:

0.75

FIG. 8. Reduced temperature profiles for various values of
K„. The values of the Knudsen numbers are the same as in Fig.
10. In the units of ks/e [i.e., temperature (reference tempera-
ture )] T„=(T;+To)/2=2.563 and ET=0.0668. Thus in the
LJ units Tz& =0.0668T*+2.529, where T* is a temperature in
the figure.

Au =—1 —u*

= 1.0167

—0.0740sinh '[12.5(K„—K„')]/(K„—K„'),

where K„~K„'. We mention that the effective viscosity
(i.e. , non-Newtonian viscosity' ) approximately depends
on the Knudsen number like an inverse hyperbolic sine
function. Note that 5 is proportional to K„.

In Figs. 8 —10 are plotted temperature, pressure, and
total normal force (p„*) profiles for K„ranging from
0.0544 to 1.3621. They are labeled 1 —6; curves 1 —3 are
for the subcritical values of K, as indicated in the previ-
ous figures, while curves 4—6 are for the supercritical
values. The subcritical temperature profiles have thinner
boundary layers than the supercritical profiles, and they
are due to a larger viscous heating effect which is more
effective at higher gas densities. The viscous heating
effect practically disappears by the time K„=1.3621 is
reached. We have already mentioned that the p„* profiles
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FIG. 7. Au vs lnK„. X, values for q, &1, i.e., solutions of
(2.18)—(2.21); ~, values for q,, =1, i.e., for corotational Maxwell
and Cattaneo-Vernotte slip below K;, . FIG. 9. Reduced pressure profiles for various values of K„.
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FIG. 10. Reduced total normal force profiles for various values of K„. Notice that the inner wa11 values of p„*6 are larger than its
values of the midstream or beyond. The behavior is reminiscent of Reiner's effect.

are reminiscent of the pressure profiles in Nanbu's Monte
Carlo study, since the enhanced profiles of p,' near the
inner wall exhibited by curves 5 and 6 are exactly the
same as those shown by his pressure profiles at the same
Knudsen numbers. This behavior of p„' near the inner
wall in the supercritical region of K„ is interesting since it
means that the inner wall is exerted on by a total normal
force larger than that in the midstream or beyond. It is
thus suggestive of Reiner's effect. ' '"'

We have calculated the profiles for the shear stress,
normal stress, and radial and tangential heat fluxes. Ex-
cept for the normal-stress difference, they decrease mono-
tonically for all Knudsen numbers, while N*, increases
monotonically toward zero from negative values for all
K„. The heat fluxes, however, behave somewhat

differently and present a little more complicated pattern,
since there is a changeover from one pattern to another
as K„crosses K„'. Although they are interesting, we do
not present them here for lack of space. More interesting
and perhaps more insightful quantities are the effective
transport coefficients g*, gi, and A,

* which are defined by

H = —g y

it*r*-'

Q* = —A, *y*+0 (g*y*)= —(A.*/q, )y*+0 (y*y*),

(3.2)

which we have plotted in Figs. 11—13. They distinctly
depend on position. Therefore the notion of transport
coefficients is not very useful if the transport processes of
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FIG. 11. Reduced viscosity profiles for various Knudsen
numbers.

FIG. 12. Reduced primary normal-stress coefficient for vari-
ous Knudsen numbers.
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FICx. 17. Curve a, reduced shear stress at the inner wall vs lnI(:„. The symbols have the same meaning as in Fig. 7. Curve b, re-
duced radial heat flux at the inner mall vs in%„. The symbols have the same meaning as in Fig. 7.

This can be calculated if the profiles are known for H',
N", , Q*, and Qs along with the temperature, pressure,
and density. Since such calculations must be performed
for many values of E„ in order to construct a X„„i—K„
curve and they are very time consuming to construct, we
have simply calculated the entropy production at the
inner boundary. Although only at /=0, this result con-
veys a very good idea of the global entropy production,
since the profiles monotonically vanish as g increases to
unity. In Fig. 19 is plotted against lnK„ the entropy pro-
duction at the inner boundary. Interestingly, the entropy
production shows a sharp singular behavior at K„=K„'
and vanishes as K„ increases to infinity as it should, be-
cause the fluid becomes vacuous at K„=~. The figure
shows that the entropy production is continuous, but not
analytic at the critical Knudsen number. Therefore the

Knudsen number appears to be an order parameter that
signifies the onset of a new "phase" of the fluid in which
the fluid behavior is qualitatively different from that in
the older "phase. " In fact, judged from the figure, the
fluid appears to undergo a "second-order phase transi-
tion" at K„=K,'. We believe that this figure for o pro-
vides a deeper understanding of the behavior exhibited by
the fluid when the normal stresses are included in the
generalized hydrodynamic equation. It says that the en-

tropy production increases owing to the increasing nor-
mal stresses as 6 or K„ increases, but the normal stresses
cannot increase indefinitely since there is a hydrodynamic
constraint imposed on it by (2.29) or (2.29') and the sys-
tem becomes vacuous. Then there is a point reached
beyond which the normal stresses must diminish and con-
sequently the entropy production, that is, an energy dissi-

l.2—

O.S—

20—

10-

04— 0 Q

FICx. 18. Reduced tangential heat flux at the inner wall vs
lnI(:„. The symbols have the same meaning as in Fig. 7.

FIG. 19. Reduced entropy production at the inner wa11 vs
in@„. The reduced entropy production is logarithmic but con-
tinuous at K;, .
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TABLE I. Fitting functions at the inner wall. F =a +b sinh '(12.5~K„—K„'~ )/~K„—K„'
(K„'=—0.2257).

Relative error
(intercept) (coefficient)

p* /K„

N,*

( ge)1/4
gal/2
g*/K„
X*/K„
Au

—0.0835
—0.0832

0.0611
—0.0432

0.9678
—0.0411
—0.0960
—0.1264

1.0167

Supercritical region
0.2278
0.2286

—0.1680
0.1188
0.0765
0.1082
0.1793
0.2359

—0.0740

0.0631
0.0631
0.0463
0.0328
0.0219
0.0695
0.0687
0.0904
0.0150

0.0047
0.0047
0.0034
0.0024
0.0016
0.0052
0.0051
0.0067
0.0011

K„/p*
K„ /p

*
x'*,

K„/rr*
K„ /Q*
g 41/2

K„ /q*
K„ /A.

*

Au

—0.4343
—0.4298

2.8608
—0.2036

0.0199
—1.6426
—0.4845
—0.4119

0

Subcritical region
0.0558
0.0553

—0.3704
0.0263

—0.0026
0.2186
0.0610
0.0528
0

0.0080
0.0076
0.0511
0.0028
0.0003
0.0276
0.0171
0.0082
0

0.0017
0.0017
0.0111
0.0006
0.000 06
0.0060
0.0037
0.0018
0

pation, must diminish and eventually vanish altogether.
After all, a vacuum cannot dissipate energy. Neither is it
able to support stresses. We remark that the reduced en-
tropy production & would be monotonically decreasing
with K, if the normal stresses were absent.

The K„dependence of p* p*, N*, , H*, Q*, and Qz
shown in Figs. 14—18 can be summarized to a good ap-
proximation by the form

F =a +b sinh '(12.51K, —K„'I)/IK„K;, I
(3.6)

where a and b are constants and F stands for one of the
I

quantities listed above or a function of the quantity in
question. In Table I we list the values of a and b for the
quantities along with the accuracy of fitting. Through
these fittings and their quality we see that the singular be-
havior of the quantities shown in Figs. 14—18 is basically
logarithmic. In view of the fact that the entropy produc-
tion is given in terms of the quantities mentioned above,
it is not diScult to see that it also has a logarithmic
singularity. It is indeed the case as is evident from the
following:

K„/& = —0.004'37+0.000 551sinh '(12. 5 ~K„—K;, ~
)/~K„—K;, (3.7a)

for the subcritical region and

lJ =
I

—0.2347

+0.4766 sinh '[12.5(K„—K;, )]/(K„—K;, ) I

(3.7b)

for the supercritical region. The standard deviations are,
respectively, 8X10 and 0.2519 for the intercepts in
(3.7a) and (3.7b) and 5 X 10 and 0.019, respectively, for
the coe%cients to the hyperbolic function. The fitting
can be improved, but we believe a point is made about
the K, dependence of o. .

In connection with the singular behavior shown above,
it is also interesting to add the following. We have men-
tioned that the shear and normal stress are confined to
the cone surface shown in Fig. 2. In fact, they follow a
trajectory on the cone surface as the Knudsen number
varies; see the dotted curve in Fig. 2. The trajectory is
shown in Fig. 20, where the solid curves are equipressure

(isobaric) contours on the cone surface which are project-
ed on the (H*,N& ) plane at p* =0. The squares
represent the values of the set (H*,N*, ) satisfying the
generalized hydrodynamic equations (2.18)—(2.21) at the
inner wall, i.e., their solution. The leftmost upper square
(i) is for the highest value of p* corresponding to the
lowest K„value. As K, increases, the value of p* de-
creases and the system moves toward the rightmost
square (c) near —2N

&
/3 = 1.6. When this point is

reached, the discriminant 5 vanishes and the maximum
point in —

( —', )N& is reached. The system then must fol-
low a path along which the magnitude of Ni decreases
and the system moves toward the state of @*=0that is
located at the origin of the three-dimensional space
(H*,N,*,p*). Thus the system follows the lower part of
the trajectory and tends towards the origin as K„ in-
creases. The abrupt turnaround of the trajectory in the
three-dimensional space is intimately related to the singu-
lar phase-transition-like behavior in various macroscopic
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FIG. 20. Trajectory of shear-stress and normal-stress
difference on the cone surface projected onto the p*=0 plane.
The solid curves are the equipressure ellipses defined by (2.29).
The squares represent the solutions of the generalized hydro-
dynamic equations (2.18)—(2.21). As K„ increases, the solution
tends toward the origin as indicated by the arrow.
H *=(—')' 'H* and N*, = —( —')N*, .

3 1

In this work we have extended the previous calcula-
tions on Aow profiles in cylindrical Couette Aow of a

properties as we have shown in Figs. 14—18, and point c
is the state at which the discriminant vanishes for the
first time. Note that the discriminant is equal to zero
along the lower curve leading to the origin from point c.
Such a singular behavior is due to the presence of N ~,
which also forces the system to remain on the + half of
the cone surface; see Fig. 2. Therefore the velocity slips
we have seen arise from a combination of hydrodynamic
and irreversible thermodynamic reasons as presented in
this section. To these reasons will have to be added the
surface —gas molecule scattering effects ' in a more
complete theory which takes into consideration the pres-
ence of boundaries in formulating generalized hydro-
dynamic equations. A formulation of such a theory is an
open question at present.

The theoretical density profiles by either the present
theory or the Monte Carlo direct simulation method
show some noticeable deviations from the experimental
data except at K, =0.0544, although the deviations are
invariably less than a few percent at most. Besides the
experimental error, there is also an error inherent in the
theoretical analysis which arises from the assumption
that the length of the cylinders is infinite. This assump-
tion is made to remove the end effects on the profiles and
to simplify the theory, which otherwise would involve a
larger set of generalized hydrodynamic equations since
there would be a nonvanishing u, component in the fluid
velocity. It is not known at present how a nonvanishing
u, will affect the density profiles and other Auid proper-
ties. It will also be very helpful for developing a theory
and ascertaining its validity if there are more detailed
data especially in the boundary layers. We hope that the
present work would induce such measurements in the fu-
ture.

IV. DISCUSSION AND CONCLUDING REMARKS

Lennard-Jones fluid. The extension is achieved by in-
cluding normal stresses in the generalized hydrodynamic
equations. Normal stresses become significant in the in-
termediate range of Knudsen number in the neighbor-
hood of the critical Knudsen number. In this intermedi-
ate range, owing to the inclusion of normal stresses, the
dynamics of such a Auid is qualitatively changed from
that which excludes the normal stresses. It is important
to note that the Navier-Stokes theory in the present
geometry is one example which neglects normal stresses
and that the generalized hydrodynamic equations used in
this work reduce in the Navier-Stokes and Fourier equa-
tions in the limit of 6~0 or K, ~0.

Normal stresses put a constraint on the shear stress in
the sense that normal and shear stresses must be confined
to the stress-pressure cone surface (see Fig. 2), and this
constraint and the fact that the vacuum cannot sustain
stresses are the ultimate reason for the occurrence of a
second-order phase-transition-like behavior of various
Auid variables. The entropy production associated with
this behavior is rather insightful; see Fig. 19. From this
figure it is quite clear that the derivative of o with respect
to K„will have a discontinuity, and this discontinuity is
the reason for the terminology, second-order phase tran-
sition, that we have repeatedly used in connection with
the singular behavior in Auid variables.

The density profiles that we have calculated and com-
pared with experiment and the Monte Carlo direct simu-
lation results are not too different from those in the previ-
ous work, except for the appearance of thin boundary
layers and a little flatter profiles in the high-Knudsen-
number regime. It is important to point out that the
high-K„experimental data seem to exhibit a tendency for
boundary layers near the walls although an incomplete-
ness of the data would make this interpretation open to
dispute. In any case, in the vicinity of the inner wall, the
high-K„results by the present theory are clearly incon-
sistent with the Monte Carlo direct simulation results.
The tendency for the gas molecules to accumulate near a
rotating inner wa11 as predicted by the Monte Carlo
method is against common intuition, although we have
given a reason which we believe is behind the predicted
phenomenon, on the basis of Nanbu's temperature and
pressure profiles. If his prediction were indeed to be
found consistent with the experimental fact, then the
temperature and pressure profiles predicted by the Monte
Carlo method would become more convincing.

The basic viewpoint taken in the present series of
work' ' is that Aow properties can be studied with stick
boundary conditions, provided that nonlinear transport
processes, in other words, generalized hydrodynamic
equations, are used, instead of the Navier-Stokes and
Fourier equations, for description of low. This does not
mean that surface —gas molecule interactions are unim-
portant for Aow properties. We believe that there are two
basic components influencing Aow properties: one is
surface —gas molecule interactions and the other is the
bulk transport properties which can be generally non-
linear, especially when the parameter 5 is not small. In
this series of work we have shown that nonlinear transport
processes can be a major component to determine fi'uid
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Pow properties and it is possible to describe them with the
generalized hydrogeneralized hydrodynamic equations
with stick boundary conditions. The generalized hydro-
dynamic equations can be further extended by following
the procedure as described in the modified moment
method. We hope to report on a more complete theory
that takes surface —gas molecule interactions more care-
fully into account than in the existing theories.

Lastly, the following remark should be useful to the
reader interested in transport processes in dense fluids.
Although the generalized hydrodynamic equations are
applied to a rarefied gas in the present series of work, '
they can be applied to fluid dynamics of dense fluids if ap-
propriate linear transport coefficients (i.e. , qo and Xo) are
supplied as functions of density and temperature. In fact,
since the expressions for go and ko used in the present
work are believed to be valid up to the triple point densi-
ty of argon, one can calculate its nonlinear flow proper-
ties up to the triple point by using (2. 18)—(2.21). This hy-
drodynamic method would thereby provide, for example,
effective transport coefficients which can be compared
with those obtained by means of nonequilibrium molecu-
lar dynamics methods or Monte Carlo simulation
methods. This line' ' of study has been pursued in a

semiempirical manner in the past since linear transport
coefficients are taken as adjustable parameters, but it
would be worthwhile to compute them numerically and
then combine the results with the generalized hydro-
dynamic equations in order to calculate nonlinear fiuid
properties. This line of study is actively pursued at
present and will be reported in the future.

Note added in proof Equa. tion (2.12d) in Ref. 2 is in er-
ror. There should be added —2pP on the right-hand side
of the equation. The last term in (2.6) in Ref. 2 should
read —P (Pb. +P)sinhtr ltcilt o. The additional Pressure
term is unfortunately missing in all the previous papers of
this series. We would like to correct the error on this oc-
casion. The results of Ref. 2 are not affected by these er-
rors.

ACKNOWLEDGMENT

This work has been supported in part by the National
Sciences and Engineering Research Council of Canada,
which is gratefully acknowledged for its support.

*Also at the Physics Department, McGill University, Montreal,
Quebec, H3A2Tg, Canada.

'D. K. Bhattacharya and E. C. Eu, Phys. Rev. A 35, 821 (1987).
~R. E. Khayat and B. C. Eu, Phys. Rev. A 38, 2492 (1988).
3B. C. Eu, J. Chem. Phys. 73, 2958 (1980); 74, 2998 (1981); 74,

3006 (1981);80, 2123 (1984); 82, 4283 (1985); 74, 6362 (1981);
87, 1220 (1987).

4B. C. Eu, Ann. Phys. (N.Y.) 140, 341 (1982); J. Nonequil. Ther-
modyn. 11, 211 (1986); Acc. Chem. Res. 19, 153 (1986).

~K. Nambu, Phys. Fluids 27, 2632 (1984).
D. J. Alofs and G. S. Springer, Phys. Fluids 14, 298 (1971).

~M. N. Kogan, Rarefied Gas Dynamics (Plenum, New York,
1969).

~G. Jaumann, Sitzungsber. Akad. Wiss. Wien. Math. Naturwiss.
Kl. Abt ~ 2A 120, 385 (1911); W. Prager, Introduction to
Mechanics of Continua (Ginn, Boston, 1961).

9B. C. Eu, J. Chem. Phys. 82, 3773 (1985).
' B. C. Eu, R. E. Khayat, G. D. Billing, and C. Nyeland, Can. J.

Phys. 65, 1090 (1987)~

''T. C. Lin and R. E. Street, National Advisory Committee for
Aeronautics Report No. 1175, 1954 (unpublished).

' S. Chapman and T. G. Cowling, 3rd ed. Mathematical Theory
of Non Uniform Gases (Cambridge -University Press, London,
1970).

' (a) W. T. Ashurst and W. G. Hoover, Phys. Rev. A 11, 658
(1975); (b) B. C. Eu, Ann. Phys. (N.Y.) 120, 423 (1979).

'4(a) M. Reiner, in Proceedings of the Fourth International
Congress on Rheology, Providence, 1963, edited by E. H. Lee

(Interscience, New York, 1965), p. 267; (b) C. Truesdell and
W. No11, in The lVonlinear Field Theories of Mechanics, Vol. 3

of Handbuch der Physik, edited by S. Flugge (Springer, Ber-
lin, 1965), Teil. 3.

'5G. A. Bird, Molecular Gas Dynamics (Oxford University
Press, London, 1976).
J. C. Maxwell, Philos. Trans. R. Soc. London, Ser. A 157, 49
(1867).

' C. Cattaneo, C. R. Acad. Sci. 247, 431 (1958); P. Vernotte,
i bid. 247, 3154 (1958).

'~B. C. Eu, J. Chem. Phys. 79, 2315 (1983};Phys. Lett. 96A, 29
(1983); Y. G. Ohr and B. C. Eu, ibid. 101A, 338 (1984); J.
Chem. Phys. 81, 2756 (1984); B. C. Eu, ibid. 82, 4683 (1985);
D. K. Bhattacharya and B. C. Eu, Phys. Rev. A 35, 4850
(1987).

'9K. Walters, Rheometry (Chapman and Hall, London, 1975),
Chap. 4.
B. C. Eu (unpublished).
H. Grad, Commun. Pure Appl. Math. 2, 331 (1949); P. We-

lander, Ark. Fys. 7, 507 (1954); E. P. Gross, E. A. Jackson,
and S. Ziering, Ann. Phys. (N.Y.) 1, 141 (1957); J. R. Dorf-
man and H. van Beijren, in Statistical Mechanics, edited by J.
J. Berne (Plenum, New York, 1977), Part B, pp. 65 —179.
See, for example, F. O. Goodman and H. Y. Wachman, Dy-
narnics of Gas Surface Scattering (Academic, New York,
1976).

'-- B.C. Eu, Phys. Rev. A 36, 400 (1987).


