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We compare theoretical predictions and experimental data for the multimode instability of opti-
cal bistability, which arises from the coherent dynamics of a system of two-level molecules con-
tained in an optical cavity and driven by an external stationary laser field. Considerable insight into
this phenomenon is provided by two "rules of thumb" that govern the behavior of the self-pulsing

frequency, and establish its relation with the Rabi frequency of the intracavity field. We describe in

detail the experimental apparatus and the main features of the experimental findings. The theoreti-
cal results are based on the Maxwell-Bloch equations for a ring cavity in the plane-wave approxima-
tion. Despite the crudeness of this model, the numerical data display a satisfactory qualitative
agreement with the experimental results. Additional period-doubling and chaotic phenomena, pre-
dicted by the theory and not observed in the experiment, are presumably washed out by the longitu-
dinal and radial variation of the electric field in the cavity.

I. INTRODUCTION

After the discovery of the self-pulsing regimes in
homogeneously broadened masers and lasers, ' ' the field
of optical instabilities has been much investigated under
the joint impulses arising from the investigation of insta-
bilities in the optical bistability (OB), ' the experimental
observation of self-pulsations in inhomogeneously
broadened lasers, and the discovery of optical chaos. '
General references on the subject of optical instabilities
are found in Refs. 11—15.

From a fundamental viewpoint, most relevant are the
instabilities which arise in systems with constant parame-
ters, in absence of any modulation or addition of any
feedback different from that which arises intrinsically
from the optical cavity. Classic are the instabilities that
emerge in the framework of the set of the Maxwell-Bloch
equations for a ring cavity and a homogeneously
broadened system of two-level atoms. Due to its relative
simplicity and to the fact that it includes the fundamental
elements of the atom-field interaction, this model
represents the paradigm of nonlinear, dissipative dynami-
cal system in the framework of quantum optics.

It is customary to distinguish single-mode (SM) and
multimode (MM) instabilities. This procedure is based
on the notion of the resonant mode which, in the case of
externally driven systems, is defined as the longitudinal
cavity mode nearest to the frequency of the input field.
In SM instabilities the resonant mode itself becomes un-
stable, whereas in MM instabilities one or more longitu-
dinal side modes of the resonant mode are destabilized.

In order to ensure single-mode operation, it is sufficient
to satisfy two conditions: (1) the refiectivity coefficient R

of the cavity mirrors must be close to unity, to guarantee
that the longitudinal modes are narrow and well separat-
ed from one another; (2) the atomic linewidth must be
much smaller than the frequency spacing of the cavity
modes, to exclude that the atom-field interaction induces
an instability in a side mode of the resonant mode. Con-
dition (l) implies that the absorption coefficient al must
be small to ensure that the bistability parameter
C =czl /2( l —R ) remains finite in the limit R ~ l.
Furthermore, in order to have any transmission at all, the
frequency separation between the driving field and the
resonant mode must be on the order of or smaller than
the cavity linewidth, which becomes small for R ~1. Fi-
nally, in condition (2) one must take into account the
power broadening in the atomic line.

On the other hand, a MM instability can arise only if
the power-broadened atomic linewidth is on the order or
larger than the free spectral range; this condition requires
a large atomic linewidth and/or a long cavity, and is not
satisfied in the standard homogeneously broadened all-
optical systems which meet the conditions for the two-
level-system description. This feature makes it very
difficult to observe experimentally MM instabilities which
arise from the interplay of different longitudinal modes,
unless one uses a hybrid system which includes a delay
line. '

Single-mode and multimode instabilities are linked by
precise correspondence principles demonstrated in Ref.
17, which provides a fundamental justification of the so-
called "weak-sideband approach, " that is often used in
the interpretation and discussion of optical instabili-
ties. ' This approach ascribes the rise of the instabili-
ty to the gain experienced by the various modes, which

39 703 1989 The American Physical Society



704 SEGARD, MACKE, LUGIATO, PRATI, AND BRAMBILLA

work as weak probe fields in the presence of the strong
cavity field. As is well known, a probe field can undergo
amplification even in a passive medium without popula-
tion inversion. The analysis of Ref. 17 shows that
the same gain function determines both single and mul-
timode instabilities, and the rise of a SM or a MM insta-
bility depends only on which cavity mode lies in the fre-
quency regions characterized by the presence of gain.
The two kinds of instabilities remain, however, quite
different from the operational viewpoint of an experimen-
tal observation: in the SM case, one must fulfil the condi-
tions for single-mode behavior, whereas in the case of
MM instabilities one must push under the atomic line at
least one cavity side mode of the resonant mode.

The single-mode instability of OB was predicted,
and experimentally observed ' using a short (5-cm) ring
cavity crossed at right angles by ten atomic beams of
sodium, in a configuration which satisfies the conditions
for single-mode operation. The experimental data are in
satisfactory agreement ' with the predictions of a model
which assumes that the internal field retains the same
Gaussian radial profile of the input field.

The multimode instability of optical bistability, pre-
dicted in Refs. 6 (purely absorptive case) and 32 (mixed
absorptive plus dispersive OB) and analyzed in Refs.
33—35 has been recently observed experimentally using a
microwave Fabry-Perot cavity filled with HC' N. ' '

The large cavity length (182 m) and power broadening
( —= factor of 40) allow a side mode of the resonant mode
below the atomic line.

We note that both the SM instability observed in Ref.
29 and the MM instability observed in Ref. 36 arise from
the coherent dynamics of the atom-field interaction, and
therefore require a full set of Maxwell-Bloch equations
for their description. This is different from the Ikeda in-
stabilities, ' '' which arise basically from delay mecha-
nisms and can be described in the rate equation approxi-
mation.

Furthermore, the SM and MM instabilities of OB are
the passive counterpart of the classic instabilities in
homogeneously broadened lasers in the laser case the
experimental observation of these instabilities is still
a focus of discussion.

The aim of this paper is to provide a detailed compar-
ison between theoretical predictions and experimental
data for the MM instability of OB; in this sense, this
work is complementary to Ref. 31 which carries out the
same program for the SM instability of OB. In the case
of this paper, the comparison is rather crude because our
numerical simulation is based on the Maxwell-Bloch
equations for a ring cavity and in the plane-wave approxi-
mation, whereas in the experiment the cavity is of
Fabry-Perot type and the radial profi1e of the electric
field corresponds to the Bessel function J, . Nonetheless,
we find a satisfactory and systematic correlation between
our numerical results and the experimental data.

A key role is played by the two "rules of thumb" which
characterize this instability, "' in the sense that they estab-
lish the behavior of the frequency of the spontaneous os-
cillations in the output intensity, and its relation with the
Rabi frequency of the intracavity field. These rules pro-

II. DYNAMICAL EQUATIONS AND RULES OF THUMB
FOR THE MULTIMODE INSTABILITY

Figure 1 illustrates (a) a Fabry-Perot of length l and (b)
an "equivalent" ring cavity of length 21; we will consider
the latter configuration in our numerical calculations.
We assume that mirrors 2 and 3 in Fig. 1(b) are ideal
reflectors, while mirrors 1 and 4 have reAectivity
coefficient R. In order to match the experimental situa-
tion, we allow in general the transmissivity coefficient T
of mirrors 1 and 4 to be smaller than 1 —R. The input
field E, is stationary, coherent, and has a frequency vo.
The cavity is filled with a large number of identical two-
level molecules of transition frequency v . We indicate
by y~ and

y~~
the relaxation rates of the molecule polar-

ization and population difference, respectively; y~ coin-
cides with the linewidth of this homogeneously
broadened system.

In the dipole, rotating-wave and plane-wave approxi-
mations the dynamics of the system molecules plus field
in the ring cavity is governed by the Maxwell-Bloch equa-
tions
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FIG. 1. (a) Fabry-Perot cavity. M, and M~ are lossless semi-
transparent mirrors of reflectivity R. (b) Equivalent ring cavity
(ERC). M& and M& are totally reflecting mirrors; M, and M4
have reflectivity coefficient R and transmissivity coefficient T.
In presence of losses, T +R ( 1.

vide physical insight, allow describing in an organized
and unified way the theoretical and experimental results,
and identifying without ambiguity the experimentally ob-
served instability as that predicted a long time ago in Ref.
6.

In Sec. II we review the set of Maxwell-Bloch equa-
tions that we use in our calculations, and formulate pre-
cisely the two rules of thumb. Section III is devoted to
the detailed description of the experimental apparatus
and results. In Sec. IV we illustrate the numerical results
and compare them with the experimental data.
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electric field, defined by

v„(z, t)
F(z, t) =2~

(ygy)()"'
(2.2)

vm vp6=2' (2.3)

The ring cavity configuration imposes the boundary con-
dition

F(0, t) = Ty +Re 'F(2l, t),
where the normalized input field y is given by

(2.4)

where v„(z, t) is the Rabi frequency (in Hz) of the intra-
cavity field; D and P are the normalized population
difference and the normalized slowly varying envelope of
the molecular polarization, respectively. The parame-
ter a is the unsaturated absorption coefficient per unit
length on resonance for the intensity; 6 is the molecular
detuning parameter given by

2m. v„, ( t)
x(t) = iF(2l, t)i =

(y,y„T)' ' (2.g)

where v„, is the Rabi frequency of the transmitted field,
the stationary-state solutions are governed by the para-
metric equations.

x =2[al —(1+6, ) Ing]/(rl —1),

y =x ( g ) I ( rl R) —+4R g sin [—,
'

( 5 lng —50) ] I /T

(2.9a)

(2.9b)

where x (g) in Eq. (2.9b) is given by Eq. (2.9a). A gen-
eral linear-stability analysis of these stationary solutions
is given in Ref. 43. The negative-slope portions of the
steady-state curve of transmitted intensity as a function
of input intensity are always unstable.

While in Refs. 6 and 34 one considers arbitrary param-
eters, the MM instability predicted in Ref. 6 was mainly
analyzed in the so-called "mean-field" or "uniform-field"
limit defined by the conditions

vn

(ygy~~T)'
' (2.5) al «1, 1 —R &1 6p& 1 (2.10a)

with v„, the Rabi frequency of the injected field, and the
cavity detuning parameter 6p defined by

V Vp

c r'2l
(2.6)
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and the normalized transmitted field
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FIG. 2. Schematic representation of the frequencies in play:
vp and v~ +, are cavity frequencies, vo is the input field frequen-
cy, and v is the transition frequency of the two-level mole-
cules.

In Eq. (2.6) v can be any cavity frequency. Usually v is
chosen as the mode which is nearest to the frequency vp
of the input field (resonant mode); in our case, instead, it
is convenient to select v as the cavity frequency nearest
to the molecular frequency v (Fig. 2). The reason for
this choice is to avoid discontinuous jumps of 5p when
the input frequency vp is swept between two adjacent cav-
ity modes.

The stationary solutions are obtained by dropping the
time derivatives in Eq. (2.1). Introducing the parameter

with

al 6oC= and 0= arbitrary;
2(1 —R) 1 —R

(2.10b)

1 —Ry=x
T

2C
1+5 +x

2CA
1+6 +x

2 I /2

(2. 1 1)

and the MM instability is characterized by arising in con-
ditions of quasiresonance between the Rabi frequency v„
of the intracavity field and the free spectral range-c/2l.
The frequency of, the spontaneous oscillations in the out-
put intensity, originated by the instability, is also near to
the free spectral range.

The experimental conditions, in which osci1lations are
observed in Refs. 36 and 37 do not fulfill the mean-field
condition (2.10a). The refiectivity coefficient R is not
close to unity, and the absorption parameter al is much
1arger than unity. The latter feature is, in fact, much less
dramatic than expected because the oscillations arise in
the upper branch of the hysteresis cycle of output versus
input power, under conditions in which the saturated ab-
sorption parameter a l /( 1 + b, +x ) is smaller than uni-
ty. The condition 5p «1 is, however, badly violated in
Refs. 36 and 37. Hence it is necessary to generalize the
usual picture of the MM instability to the parametric
domains well out of the mean-field limit.

A straightforward procedure to achieve this goal is
offered by the "weak-sideband" or "gain-feedback" ap-
proach to optical instabilities, ' which in the case of
multimode instabilities can be rigorously justified on the
basis of the linear stability analysis. ' ' This approach

in this case v in Eq. (2.6) is defined as the cavity frequen-
cy nearest to the input frequency vp. In this limit the
steady-state equation reduces to

2
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vo I
(2.12)

as the "first rule of thumb" of the MM instability. The
two different values for v,h, obtained by following
prescriptions (1) and (2), will be indicated by v,'h' and v', h',

respectively. We note that in the mean-field limit, in
which the cavity detuning parameter 5o is small and the
effect of dispersion on the cavity frequencies is negligible,
Eq. (2. 12) reduces to the well-known result that the oscil-
lation frequency coincides with the free spectral range.

In the experiment the oscillation frequency which
arises from the single-mode instability is close to the
difference between the empty-cavity frequency of the res-
onant mode and the input frequency, and is therefore
essentially proportional to the cavity detuning parameter;
the rule (2.12) describes quite well the behavior of the os-
cillation frequency.

In the case of the MM instability observed in Ref. 36,
v, coincides with v i or v +, (Fig. 2); the prescription
(2.12) will be compared with experimental and numerical
data in the following sections. Our analysis will show

starts from the fact that when a weak probe beam in-
teracts with a passive two-level medium saturated by a
strong field, there are frequency regions in which the
probe experiences gain instead of absorption; in this way,
one can obtain gain without any population inver-
sion. The concluding section of Ref. 45 proposed to
enclose the medium in an optical cavity resonant at a fre-
quency for which the medium is amplifying, in order to
realize an oscillator. This result was achieved recently,
using cavities which provide feedback only to the probe
beam, and obtaining laser action at the probe frequen-

46, 47

In the case of optical instabilities of the type we are
considering here, the cavity provides feedback also to the
strong field, i.e., the input field of the optically bistable
system. The cavity modes act as probe fields; if some of
them lie in frequency regions where there is gain, and if
this gain is larger than the losses of the modes, an initial
random fluctuation provides the impetus for these modes
to grow, and the stationary state is destabilized. When,
as in the case of the instabilities observed in Refs. 29 and
36, only one cavity mode becomes unstable the frequency
of the spontaneous oscillations of the output intensity is
the beat note between the frequency of the unstable mode
and the input frequency.

Unfortunately, in this argument there is one element
that cannot be determined in a straightforward way, i.e.,
the frequency of the cavity mode when it interacts with
the nonlinear medium. In fact, dispersion displaces the
cavity frequencies with respect to their empty cavity
values. In this paper, we will follow two options: (1) to
use the empty-cavity value c/2l for the mode spacing or
(2) to use the value of the mode spacing obtained from
the stationary curve by sweeping the input frequency be-
tween two adjacent modes of the filled cavity; this pro-
cedure gives a value of the mode spacing which depends
on the input intensity and is larger than c/2l. Indicating
by v, h the value of the oscillation frequency predicted by
the theory, and by v, the frequency of the unstable mode,
we will indicate the prescription

also that there is a systematic correlation between the os-
cillation frequency and the Rabi frequency of the intra-
cavity field. The second rule of thumb (Fig. 2)

Oscillation frequency

=Rabi frequency of the internal cavity field (2.13)

was already mentioned in connection with the mean-field
limit, but remains valid in general. Out of the mean-field
limit the Rabi frequency varies along the medium, but
this is not a difficulty because the prescription (2.13) pre-
tends to give only an estimate of the oscillation frequen-
cy', for the sake of accuracy, we will consider the value of
the Rabi frequency just before the output mirror. Here,
again, we meet different options that concern the precise
definition of the Rabi frequency to be considered in the
rule (2.13): we indicate by v„' and v'„'= j(v'„' ) +[(yi/
2n)A] ]' the Rabi frequency and the generalized Ra-
bi frequency, respectively, obtained from the value of
the intracavity field in the unstable stationary solution;
we indicate by v'„' and v'„'= [(v~„') +[(yi/2')h] i'~

the Rabi frequency and the generalized Rabi frequency,
respectively, obtained from the r.m. s. value of the intra-
cavity field in the oscillations which arise from the insta-
bility of the stationary solution. Of course, in the experi-
ment only v'„' and v'„' are available.

The correlation with the Rabi frequency strongly sug-
gests that this instability arises from what is usually
called the Raman gain; ' it must be kept in mind, how-
ever, that the exact theoretical expression of the gain
which governs the instability is provided by the linear
stability analysis and, in the plane-wave approximation is
given by the expressions reported in Ref. 17 for the
mean-field limit and in Ref. 43 for the general case.

We expect that the same rules of thumb hold for the
laser instability in Ref. 4 and 5, when it is generalized out
of the mean-field limit; in this case, vo in Eq. (2.12) should
be understood as the oscillation frequency of the field in
the stationary state of the laser. In more general terms,
one can observe that, after experimental results as the
ones obtained in Refs. 46 and 47, the distinction between
active and passive systems becomes much weaker. This
fact does not eliminate, however, the existence of
significant differences between instabilities in active and
passive systems; for example, the MM laser instability of
Refs. 4 and 5 disappears in the rate equations approxima-
tion, whereas in the case of OB one obtains a MM insta-
bility even from the rate equation in the mean-field lim-
it.4'

III. EXPERIMENTS

Our experiments have been made at a millimetric
wavelength (A. = 3.5 mm) in a Fabry-Perot cavity contain-
ing a molecular gas at low pressure. The use of mil-
limetric waves, unconventional in the studies of nonlinear
optics, has the following advantages.

(1) The amplitude noise of the available source
(klystrons) is much lower than that of most lasers.

(2) Some molecules have in this domain well-isolated
rotational lines, heavily absorbing in linear regime but
saturable by reasonable fields ( —=O. 1 V/cm).



39 MULTIMODE INSTABILITY IN OPTICAL BISTABILITY 707

(3) The Doppler effect is quite moderate (—= 100 kHz)
and it is then possible to approximate the ideal homo-
geneously broadened two-level medium with a bulk gas.

(4) The relaxation times, fixed by the molecular col-
lisions, are long, in inverse ratio to the gas pressure p
( Ti =-T2 ——7 ps at p = 1 m Torr in our experiment).

(5) It is possible to guide the electromagnetic beam in a
well-defined mode with very low losses, avoiding the
problems related to self-focusing and self-defocusing
effects. This enables one to develop very long cavities
(182 m in our experiment) and, since the frequency of the
multimode instabilities is expected to be of the order of
the free spectral range, to observe these instabilities in
real shape, without any particular treatment (filtering,
averaging, etc, ) required at higher frequencies.

We present in Sec. III A the physical system under in-
vestigation, in III 8 the experimental arrangement, and in
III C our observations of self-pulsing.

A. Physical system

0.5

T 04
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z 0.3

K

0.~-
hJ
z

0.1

J
0.0—15 -10 I

—5 5 10 15
FREQUENCY (k Hz )

FIG. 3. Hyperfine structure of the J =0~J = 1 line of
HC"N. The frequency 0 is that of the line when the hyperfine
effects are neglected and the vertical unit is the corresponding
intensity of the line.

The requirement of a heavily absorbing and easily
saturable two-level transition natura11y leads to consider-
ing the rotational line (I =O, M =0)~(J=1,M =0) of a
strongly polar molecule, as light as possible, since the ab-
sorption coefficient a (collisional limit) increases rough-
ly as the cube of the line frequency in the microwave
domain. We have restricted our field of investigation to
the frequencies lower than 100 GHz (A, =3 mm) where
low-noise and sufficiently powerful klystrons of reason-
able cost are available. The best molecule then appears
to be hydrocyanic acid (HCN). Unfortunately the strong
electric quadrupolar moment of ' N entails an important
splitting of the lines of the most abundant isotopomer
HC' N (3 MHz for the 0-1 line). ' Our interest has then
be brought to the isotopomer HC' N which presents only
a very narrow hyperfine structure, resulting mainly from
the coupling of the spins —,

' of ' N and H with the rota-
tion. The corresponding hyperfine Hamiltonian (in fre-
quency units) reads

Hhf —CN J.IN+ CH J.IH, (3.1)

with CN= —6.92 kHz, CH= —4.20 kHz, and where J,
IN, and IH are, respectively, the rotational angular
momentum, the spin of ' N, and the spin of H. Neglect-
ing the hyperfine effects, the 0-1 line of HC' N is charac-
terized by the transition frequency v =86.054961 GHz
(Ref. 53) and a single Rabi frequency v„=pE/h &3
(p=2. 986 D, the dipole moment of HC' N, ' E is the
amplitude of the microwave field). The line is in fact split
by the spin-rotation coupling in four components (Fig. 3)
which are not resolved in conventional linear spectrosco-
py. We checked the inhuence of this structure on the
nonlinear response of the system. For this purpose, the
Bloch equations in the rotating-wave approximation
were solved by standard computational procedures in the
16-dimension space subtended by the rotational states
J =0 and J =1, neglecting any homogeneous and inho-
mogeneous relaxation. Figure 4 gives the result obtained
in the case of a stepwise incident field, resonant with the
transition frequency v in the absence of hyperfine

effects. As expected, a single Rabi frequency, equal to v„
previously defined, is present in the oscillations as soon as
v„significantly exceeds the hyperfine splitting. This con-
dition is always fulfilled in our experiments. The
hyperfine effects may then be ignored and the HC' N
molecules may thus be considered as ideal two-leve1 sys-
tems. ' '

As indicated before, the relaxation mechanism of the
rotational transitions is essentially collisional and may
generally be characterized by an unique rate
(y~~~=-yi=y), proportional to the gas pressure. For the
0-1 line of HC' N, the measured pressure self-broadening
coefficient is y/2ir=22. 75 kHz/mTorr, leading to re-
laxation times T, =T2-=0.7 ps at p =10 mTorr. When
the collisional broadening prevails on the power broaden-
ing (v„) and the Doppler broadening (collisional limit),
the dependence of the power absorption coefficient a on
the molecular detuning 5=v —vo (vo source frequency)
is Lorentzian. Its value a on resonance does not de-
pend on the gas pressure and may be considered as a
specific attribute of the line considered. For the 0-1 line
of our homemade HC' N, a„was about 1 m ', slightly
below its theoretical value, due to the presence of impuri-
ties (see Sec. III B). For the pressures used in the experi-
ments (p ( 1.5 mTorr), the Doppler broadening, though
moderate [100 kHz half width at half maximum
(HWHM)], prevails on the collisional broadening. The
line shape a(5) in linear spectroscopy is then a Voigt
profile and the absorption coefficient on resonance reads

a(0) =a „&erg exp( g )[1—erf( g) ], (3.2)

where erf(g) is the error function and g=y/kuo (k is the
wave number, and U& the most probable molecular veloci-
ty). For p =1 mTorr, we get a(0) =0.27a„. In fact, the
important quantity is obviously the gas power transmis-
sion exp[ —a(5)l] where l is the gas thickness. In our ex-
periments, a(0)l )) 1 (l =182 m) and only the far wings
of the Voigt profile contribute to the transmission. It is
we11 known that these far wings are Lorentzian
and we checked that the actual transmission does
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FIG. 5. (a) Power transmission of a 182-m-long sample of
HC"N in the absence of saturation. (b) Relative absorption
cz/u when the power broadening (Rabi frequency v„=400
kHz) prevails on the Doppler width (100 kHz HWHM). These
quantities are plotted vs the source detuning vo —v referred to
the collisional broadening, for a pressure of 1 mTorr. The solid
curves are exact whereas the dotted lines are obtained when the
Doppler effect is disregarded.

not significantly depart from the transmission
exp[ —a„l/(1+5 /y )] in the absence of Doppler effect
[see Fig. 5(a)]. The same situation occurs (whatever the
medium thickness) in the nonlinear regime when the Rabi
frequency v„(power broadening) prevails over the
Doppler broadening, a condition generally fulfilled at the
power levels where self-pulsing is observed [see Fig. 5(b)).
The absorption coefficient on resonance reduces then to

E, =E,=O,

E~ =EDJ, (j,„r/a) cos(cot k„z), —
(3.3)

(3.4)

where J~ (x) is the first-order Bessel function, j„its n th
zero, and a is the helix radius. Let us notice that this
field distribution is that of the so-called parallel beams,
recently revisited under the name of diffraction-free

a„/(1+ v„/y ) which may be several orders of magni-
tude below a . Note, however, that the Doppler effect
may affect the response of the strongly driven medium to
a probe field, decreasing, for instance, the induced probe
gain and then the amplitude of the possible instabilities.

The observation of multimode instabilities in a passive
cavity containing a two-level medium requires that the
Rabi frequency may be brought to a value of the order of
the free spectral range (FSR) of the empty cavity (fre-
quency difference v —v, between two successive longi-
tudinal modes). This condition is obviously easier to
fulfill in a long cavity and, moreover, this facilitates the
observation of the self-pulsing, the frequency of which is
expected to be comparable to the FSR. We used a
Fabry-Perot cavity of length I = 182 m [FSR
v —v, -=830 kHz (Ref. 60)] consisting of a waveguide
cell, initially designed for propagation studies, ' closed by
two identical mesh mirrors of negligible losses (power
reflection coefficient RO=0. 95, transmission To= 1 —Ro
=0.05). The waveguide is an oversized helix waveguide
(inner diameter /=60+0. 02 mm), developed a long time
ago for telecommunication applications. The helix
structure acts as a mode filter, allowing only the propoga-
tion of TED„modes, such that the components of the
electric field in cylindrical coordinates r, 8, and z (Oz axis
of the helix) read
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Ee:EpJi (kpr sina) cos(cot —kpz cosa), (3.5)

where a is the half-angle of the cone and k 0 is the free-
space wave number. The tangential field must cancel on
the helix and this obviously fixes the values c7„allowed
for c7 and the corresponding wave number k„:

koa since„=j&„, k„=ko cosK„ (3.6)

In our oversized waveguide (a =30 mm, Ap=3. 5 mm), 16
modes are allowed to propagate (for n ) 16, sina„& 1 and
the corresponding modes are cut of@. Among these
modes, only the TEO~ mode, presenting the lowest losses
(=2X10 dB/m), is excited in our experimental ar-
rangement (see Sec. III B). a, is about 4' and the guided
wavelength A, , = 2m. /k, departs from the free-space wave-
length Xo= 2m /ko by o»y 0.2

Figure 6 gives the corresponding distribution of the
electric field. Note that this distribution (as for all the
TEp„modes) is unvarying in a rotation around the axis Oz

but that, in each point, the electric field is linearly (not
circularly) polarized. The power transmission of the
waveguide elements is 0.92 per single trip of 1 82 m, but,
as a result of unavoidable localized losses (see Sec. III B),
the actual transmission of the cell falls to Ap =-0.724 (1.4
dB). The power transmission of the Fabry-Perot cavity,
filled with a linear medium of power absorption
coefficient o. and of refractive index n, , is easily derived
by standard procedures. We get

—
alp 2

1+ Ap pe
' —2ApRpe 'cosy

(3.7)

where, taking account of the waveguide oversizing and
assuming ~n,

—I~ &(I (as usual, in low-pressure gases),
the phase g reads

y=2k, n, I . (3.8)

beams, and may be seen as resulting from the superposi-
tion of an infinity of plane waves, the wave vectors k of
which are uniformly distributed on a cone of axis Oz, each
of them having its electric field linearly polarized perpen-
dicularly to k and Oz. Indeed the total electric field
fulfills (3.3) and E& reads

This transmission is identical to that of the same cavity
without cell losses (Ap= 1) provided that Rp and Tp are
replaced by the effective coefficients R =R o A o:0.69
and T=Tp+Ap=0. 043. The resonance of the empty
cavity are characterized by a finesse F

F= sr~ R /( 1 —R ) —=8.4 (3.9)

E, =E,~T /(1 —R), (3.10)

where E, is the amplitude of the input incident field. E;
and A o being given, note that the conditions of a high
cavity finesse (requiring R p-1) and of a large intracavity
field are confiicting (E, =0 for Rp =1). The value
Ro =0.95 may be considered as a good compromise, lead-
ing to a finesse F =8.4 not far from its upper bound
(F =9.7 for R p

= 1) and to a reasonable ratio
E, /E; =0.67

In principle, the equivalence between the ERC and the
real Fabry-Perot cavity breaks down when the intracavity
medium is nonlinear. This results from the inhomogenei-
ty of the field distribution (longitudinal, mainly related to
standing waves, and transversal, related to the mode
structure). Another possible eff'ect is the generation in
the absorber of other modes TEO„ that the initially excit-
ed TEO& mode. However, the waveguide losses
significantly increase with the mode number n; only the
TEpi mode is coupled to the detection (see Sec. III B) and,
as a result of the strong saturation of the medium, the rel-
ative absorption per round trip in the cavity remains
moderate in the conditions where instabilities were ob-
served (upper branch of the bistability curve). It is then
expected that the higher-order transverse modes play no
significant role. In fact, the nonlinear behavior of the
real system turns out to be similar to that of the ERC.

corresponding to a mode width of 49 kHz (HWHM) and
a photon lifetime ~=3.2 ps. The transmission on reso-
nance and antiresonance are, respectively, T /(1 —R)
=1.86X10 ( —17.3 dB) and T /(1+R) =6.31
X 10 (

—32 dB).
As we said in Sec. II, we simulate the experimental sit-

uation by the equivalent ring cavity (ERC) of Fig. 1(b).
In our calculations we fix R =0.69 and T =0.043 so that
T +R =0 733 & 1 . The ERC filled with HC' N is
characterized by a cooperativity parameter C = cx jF/
2m )200 that is much beyond the threshold of bistability
(C =4 in the mean-field limit ). In the absence of gas,
the amplitude E, of the intracavity field in resonance
reads

B. Experimental arrangement

FICx. 6. Transversal distribution of the electric field in the
TEpl mode along a diameter of the waveguide.

Figure 7 gives a diagram of the Fabry-Perot cavity
used in the experiments. Due to space limitations, the
1 82-m-long waveguide cell was split in two approximate-
ly 91-m-long straight sections and folded by means of two
90 mitre elbows. Each section included eight elements of
helix waveguide, carefully lined in order to reduce the
losses resulting from mode conversion. The waveguide
elements, manufactured by the Societe Anonyme des
Telecommunications, are high-quality aluminum tubes,
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FIG. 7. Diagram of the cavity.

the inner wall of which are covered successively by a
180-pm-thick Mylar sheet and by a close-wound solenoid
in insulated copper wire, of pitch equal to the wire diame-
ter and of the inner diameter /=60+0. 02 mm. This
structure provides a very low attenuation for the TEp,
modes (2X10 dB/m for the TEo, mode at A, =3.5 mm)
and a very large absorption for the other modes (up to
200 dB/m).

The waveguide cell was closed by two windows (not
shown in Fig. 7) in compressed Kel-F (polychloro-
trifluoroethylene). Their thickness e —= 1.2 mm was
chosen such that n, e =Ap/2, in order to present spurious
refiections on the windows. Note that the windows have
to support a differential pressure of about 1 atm on an
area approximately 30 cm . Among the transparent ma-
terials having the required mechanical strength we re-
tained compressed Kel-F because of its negligible
birefringence. The cell was evacuated through eight
holes of 16-mrn diameter drilled in two short sections of
circular waveguide, inserted in the medium of each
straight section of the helix waveguide and having the
same inner diameter (/=60 mm). The large apertures in
the walls of the waveguide (total area of about 16 cm')
were necessary to achieve a reasonable pumping time of
the cell. Fortunately, due to the oversizing of the
waveguides, they do not entail dramatic microwave
losses. Two other short sections of circular waveguide
were inserted close to the input and output vacuum win-
dows. They communicated through a single hole of small
diameter (2 mm) with the adjustable leak used to intro-
duce the HC' N gas and with the pressure gauge. After
one month of continuous pumping, necessary to evacuate
most volatile materials, the total rate of degazing and re-
sidual leak was about 1.6X10 l Torr/s for the whole
cell (volume of about 520l) and the minimum pressure at-
tained at the end of the cell, that is 45 m away from the
pump, was about 6 X 10 Torr. A time of about 15 min
was required to bring the pressure at this point from 60
to 0. 1 mTorr.

The HC' N gas used in our experiments was synthe-
tized in the laboratory by reaction of phosphoric acid on
potassium cyanide KC' N. No attempt was made to
obtain pure HC' N. The composition of the gas, deter-
mined by gas-phase chromotography and by mass spec-
trometry, was approximately as follows: HC' N=81%,

H20-=12%, Nz -—6%, Oz -—1%. Note that the main im-

purities have no lines close to the 0-1 line of HCN. The
pressure broadening coefticient of 22.75 kHz/mTorr was
determined on HC' N prepared by the same technique.
The gas optical thickness is too large to be measured by
standard techniques. It was indirectly determined from
the analysis of the transient pulse transmitted by the gas
subjected to an incident stepwise field on resonance (see
Fig. () and Ref. 61). This gives access to the quantity
a„l /Tz (related to the superradiant time) from which we
derived a =1+0.1 m '. The gas pressure was mea-
sured by a well-compensated, high-sensitivity Pirani
gauge, including four elements mounted in a Wheatstone
bridge, two being connected to the cell and the other two
evacuated and sealed off with a getter. This gauge was
calibrated on an absolute capacity gauge. The pressure
read is exact for air but a recent calibration with our
HC' N samples showed that it has to be multiplied by a
factor 0.70 for this gas.

The overall attenuation of the empty waveguide cell in
the TEO& mode was measured to be 1.4 dB (corresponding
to a transmission Ao =0.724), roughly distributed as fol-
lows: 0.6 dB in the mitre elbows (due to unavoidable
mode conversion ), 0.3 dB in the circular waveguide ele-
ments, 0.2 dB in the helix waveguide, 0.2 dB in the join-
ing of the different waveguide elements, and 0. 1 dB in the
vacuum windows. The cell was transformed into a cavity
by adding two identical mesh mirrors, made of 330-pm-
thick plates in gilded copper, drilled of circular holes (di-
ameter 1.1 mm) according to an hexagonal pattern
(period 1.6 mm). The reflexion and transmission
coefficients (respectively, R o

=0.95 and To =0.05) of
these mirrors were derived from measurements of the cw
transmission of the empty cavity on resonance (

—17.3
dB) and from the study of its transient response to a step-
wise field (Fig. 9).

The selective excitation of the cavity in the TEp& mocle
raises a di%cult problem related to the waveguide over-
sizing. We used a three-component device including the

G

0
I

TZ~E C &+ ~

FIG. 8. Transient signal transmitted by a 182-m-long sample
of HC"N at 0.98 rnTorr subjected to an incident step on reso-
nance. 0. I/T2 may be derived from the zeroes of the signal,
observed, respectively, at times 2.89, 15.2, and 37.4 T2/a I (see
Refs. 61 and 68).
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It has been obtained by slowly sweeping the input power,
controlled by the p-i-n modulator. The molecular fre-
quency v coincides with that of a longitudinal mode of
the cavity v but differs from the source frequency vo.
For a fixed input power (cw excitation), the self-pulsing is
almost purely sinusoidal (see inset of Fig. 10) and its fre-
quency v, , of the order of 600 kHz, does not significantly
vary inside the instability region. The sinusoidal nature
of the self-pulsing has been verified in all our experi-
ments. A spectral analysis shows only the presence of
harmonic 2 at a very low level (more than 30 dB below
the main component) but no evidence of subharmonics.
This point is discussed more extensively at the end of this
section.

Except obviously for the self-pulsing, the hysteresis cy-
cle of Fig. 10 is fairly well (within 30%) fitted by the
steady-state bistability curve of the equivalent ring cavity
(ERC) defined in Sec. II, computed in the plane-wave ap-
proximation [see Eq. (2.9)] without any adjustment of the
experimental parameters. This surprising agreement has
been confirmed on hystersis cycles obtained in different
conditions. It may be improved by slightly adjusting
the optical thickness a l of the gas, taking 146 instead of
182+18. The ratio of the upper (P„) and lower (PI)
switching powers in Fig. 10 is then exactly reproduced.
For the maximum input power, the Rabi frequencies, de-
rived from the calculations on the ERC, are v„, =1.33
MHz and v„=0.45 MHz just before the input and output
mirrors, respectively. Note that v„,- so calculated is con-
sistent with the estimates of the corresponding input
power (80+30 mW), this showing the accuracy of the
mode1.

Though the recording time of Fig. 10 was about 1 s,
dynamical effects are probably present, especially in the
vicinity of the turning point (where the self-pulsing disap-
pears) for which the response times become very long. In
order to study more quantitatively the dependence of the
self-pulsing on the incident power, we have performed ex-
periments in which the input power, starting from its
maximum value, is lowered step by step with a long sta-
bilization time provided after each step before the mea-
surements allowing the steady state to be reached. The
procedure has been fully automatized in order to keep a
reasonable duration of the data collection and to prevent
drifts of the experimental parameters (cavity tuning, gas
pressure, etc, ). At the end of each stabilization
time, the self-pulsing frequency and the upper and lower
levels of the oscillations are measured during a short time
(=10 ps). Figure 11 shows a recording obtained by this
technique, with 124 steps, a stabilization time of 0.25 s
and then an overall duration of the recording of about 32
s. The fact that the self-pulsing frequency v, is almost
independent of the incident power is confirmed [Fig.
11(a)], its variations in the region explored being below
the experimental uncertainty. A new point is that the
distribution of the oscillation extrema is well fitted by a
parabola [Fig. 11(b)], as expected in the vicinity of a su-
percritical Hopf bifurcation. This feature was hidden
on the recording of Fig. 10 by dynamical effects which
artificially extend the oscillations outside the instability
region.
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FIG. 11. Quantitative study of the dependence of the self-

pulsing parameters on the incident power. (a) Frequency; (b)
distribution of the oscillation extrema (dotted line: parabola
achieving the best fit). Experimental conditions:

vp v v —vo =—300 kHz, p =0.60 mTorr, maximum power as
in Fig. 10 ( v„, = 1.33 MHz).

In all our experiments, self-pulsing has been observed
only in the presence of bistability and in the upper branch
of the bistability curve. By the standard procedure con-
sisting of sweeping the input power, this branch is at-
tained only when the available input power P, is larger
than the upper switching power P„. P„ is strongly
dependent on the experimental parameters, especially the
molecular detuning v —vo. A much wider domain of in-

stability can thus be explored by use of the source fre-
quency vo as control parameter. ' Starting from a de-
tuning such that P„ is low, it is indeed possible to follow

by continuity the upper branch of the bistability curve as
long as P,- is larger than P& which may be one order of
magnitude lower than P, on account of the large value of
the bistability parameter C (see Sec. IV). Moreover, by
removal of the p-i-n modulator, no longer required, the
input field can be significantly enhanced.

Figure 12 has been obtained in these conditions for
v =v . Curve a, given for reference, shows three suc-
cessive TEO, modes of the empty cavity. Note the ab-
sence of parasitic modes. With introduction of the
HC' N gas, self-pulsing is observed for source frequencies
ranging from 150 to 370 kHz apart from the molecular
frequency v, on each side of this one. Note that, for
suitable detunings of the source, the peak-to-peak ampli-
tude of the oscillations may be of the order of the average
signal detected. For p =0.98 mTorr (curve d) the bist-
able system switches down when P& becomes larger than
P, and switches up back only when P„becomes smaller
than P;. The symmetric curve is obviously obtained rev-
ersing the frequency sweep. At too high pressures (de-
pending on P, ), the condition PI & P, is no longer fulfilled
inside the instability domain and the self-pulsing cannot
be observed.

The shapes of the curves of Fig. 12 and, in particular,
the frequencies at which the switchings occur, are very
sensitive to the values of the physical parameters. A
good fit between the experimental data and those calcu-
lated for the ERC (see Sec. IV) is obtained by taking
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FIG. 13. Self-pulsing in an antiresonant configuration.
The output power is plotted vs ( vo —v ) for v

=(v~+v~+, )/2=v~+c/4I, p =0.60 mTorr, v„, =1.44 MHz.
Note that the wiggle on the curve is an artifact resulting from
the sampling procedure. Inset: self-pulsing for vo —v = 127
kHz (v,„=400kHz).
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FIG. 12. Power transmitted by the cavity vs vo —v for

v,„=v~ and p=0 mTorr (curve a), 0.91 mTorr (curve b), 0.95
mTorr (curve c), and 0.98 mTorr (curve d) (see Ref. 68). The in-

put power P; is such that v„, = 1.44 MHz.

a„l =146 as previously and v„=1.44 MHz, a value
again quite consistent with the estimated incident power.
From v„, it is easy to derive the Rabi frequency inside the
empty cavity on resonance v„=v„'I/ T l(1 —R) =0.96
MHz [see Eq. (3.10)] and then, all the recordings being
obtained with the same sensitivity, to determine v, in any
point from the corresponding amplitude of the detected
signal. The r.m. s. value of v„ turns out to be nearly con-
stant in the instability regions of curves b, c, and d
(vP'=630 kHz) and comparable to the self-pulsing fre-
quency ( =670 kHz). Moreover, the ratio of the cavity
transmissions, with and without gas, enables us to give an
estimate of the gas absorption per passage. We get a
small value ((ai) ),, -=0. 15), as expected because of the
strong saturation of the molecular line.

For a given input power P;, the most robust oscilla-
tions are observed when the molecular frequency v
coincides with the frequency vz of a resonance of the
empty cavity ("resonant configuration") and when the
gas pressure is close to the highest value such that there
exists an overlapping of the region where P, & P& with the
instability region. These conditions are fulfilled in Fig.
12, but self-pulsing can be observed in quite different con-
ditions. As an example, Fig. 13 shows oscillations ob-
tained in the extreme case where the molecular frequency
v is just halfway between two resonances of the empty
cavity ("antiresonant configuration"). Let us emphasize
that, even in this case, (i) the system is bistable with
respect to the incident power and the self-pulsing appears
on the upper branch of the corresponding hysteresis cy-
cle, and (ii) the gas absorption remains moderate in the
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FICx. 14. Dependence of the self-pulsing amplitude and of v'„'
on v„; for v —vo =270 kHz, v„—v =95 kHz, p =0.75 m Torr.

instability region ((al ),„&1). Note again that the intra-
cavity Rabi frequency in this region (v'„'=260 kHz) is of
the same order of the oscillation frequency (v, -=400
kHz).

The theory of the multimode instability predicts that
self-pulsing occurs in a restricted domain of input
power. The upper bound of this domain cannot gen-
erally be attained with the microwave power delivered by
our source. However, the existence of an optimum input
power leading to a maximum of the self-pulsing ampli-
tude has been evidenced in particular conditions. Figure
14 shows the result of an experiment where self-pulsing is
observed for incident Rabi frequency ranging from 1.28
to 1.81 MHz. The frequency of the oscillations is nearly
constant in this domain (690+10 kHz). An important
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point is that their amplitude is maximum when their fre-
quency coincides with the generalized Rabi frequency v', '

inside the cavity. This result is clearly related to the fact
that the Raman gain is maximum at vo —v', ' when
v ) vo (Ref. 26) (see the second rule of thumb in Sec. II).

In order to study more systematically the dependence
of the self-pulsing frequency v, on the physical parame-
ters, experiments have been achieved in difterent
configurations and in various experimental conditions.
We note first that the self-pulsing frequency v, does not
significantly depend on the gas pressure, at least in the in-
stability regions attainable with the available input
powers. Our attention has been then focused on the
inhuence of the molecular and cavity detunings and of
the intracavity Rabi frequency.

Recordings obtained in detuned configurations for
fixed values of the gas pressure and of the incident power
are presented Fig. 15. The recording c corresponds to the
resonant configuration. It allows us to define unambigu-
ously the central mode p (v =v ) and the side modes
p+1 of the empty cavity. When the cavity is detuned
from v it is easy to follow by continuity these modes

which remain well defined. The recordings of Fig. 15 are
extracted from a series and, for a given source frequency,
it is possible to derive the intracavity Rabi frequency
from the level of the detected signal and to measure the
frequency v, of the self-pulsing. The results obtained for
vo=v —240 kHz are shown Fig. 16. The measured
self-pulsing frequency v, , v, h'=

~ vo —v
& ~, the Rabi fre-

quencies v,"' and v', ', the generalized Rabi frequencies
v', ' and v'„' are plotted versus the cavity detuning v —vo.
The closeness of all these curves shows that the rules of
thumb discussed in Sec. II provide a good tool for the in-
terpretation of the experimental results. As mentioned in
Sec. II v'„" and v'„', which correspond to unstable station-
ary solutions, cannot be determined experimentally.
They have been estimated by prolonging by continuity
the recordings from the stable regions to the unstable
ones.

The previous results have been obtained for a single
value of the molecular detuning. In order to explore a
wider experimental domain, we have developed a semiau-
tomatized procedure where only v, and the r.m. s. detect-
ed signal (giving v'„' and v'„') are measured. Moreover,
the arrangement of the experiment has been slightly
modified in order to increase the incident field (v„, —= l. 81
MHz). Note that self-pulsing has never been observed
when vo =v (purely absorptive bistability).

In Figures 17—19, the experimental data collected for
six positive values of the molecular detuning v —vo are
directly compared to the predictions of the rules of
thumb discussed in Sec. II. In Fig. 17 v, is plotted
versus v, h

=
~
v i

—
vo~ where v i is the frequency of(i)

the side mode of the empty cavity for which the gain of
the medium may be positive (v~, & vo & v ). The
departures of the measured points from the bisectrix give
a direct insight into the validity of the first rule of thumb.
These departures are in general quite moderate ( & 25%).
They become negligible for the highest oscillation fre-
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FIG. 15. Self-pulsing in detuned configurations. The dotted

and solid arrows, respectively, indicate the modes of the empty
cavity and v . The output power is plotted vs vo (unit: 210
kHz) for p =0.70 mTorr, v„;=1.44 MHz, v —v„=(a) —90
KHz, (b) —62 KHz, (c) 0 KHz, (d) 47 KHz, (e) 90 KHz, and (f)
265 kHz.
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FIG. 17. Comparison of the self-pulsing frequency v, with
the predictions of the first rule of thumb for p =0.9 mTorr,
v„;= 1.81 MHz. The symbols relate to the values of the molecu-
lar detuning (v —vo) described in the inset.

quencies, that is, when the Rabi frequency is large (see
Fig. 19) and the saturation is strong. The medium being
then nearly transparent and amplifying in a region wider
than the cavity linewidth, it is not surprising that the fre-
quency of the oscillations is fixed in this case by the reso-
nance of the empty cavity. The second rule of thumb
prescribes that the self-pulsing frequency v, has to be of
the order of the intracavity Rabi frequency. Figures 18
and 19 show that the measurements are in fairly good
agreement with the prediction, regardless of the Rabi fre-
quency considered (generalized or not). Recall that in a
homogeneously broadened medium the Raman gain is
maximum at vo —v'„' (for vo(v ), whereas numerical
calculations on a Doppler-broadened medium have
shown that this maximum may occur at vo —v'„'. In fact,
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FIG. 18. Comparison of v,„and v', '. Other conditions as in
Fig. 17.

RRBZ FREGUENt:Y
FIG. 19. Comparison of v, ~ and v'„". Other conditions as in

Fig. 18.

v'„' and v'„' are not significantly different in our experi-
ments. The second rule of thumb is perfectly verified for
intermediate values of the Rabi frequency (around 80%
of its maximum). We have experimentally observed that
the self-pulsing amplitude is maximum in these points.
When the intracavity field increases, the region of net
gain widens and the self-pulsing frequency is no longer
mainly fixed by the gain peak condition. This may ex-
plain the departures observed for the highest Rabi fre-
quencies. This interpretation is well confirmed by the
recording of Fig. 14 where, by reducing the input power,
a maximum of the oscillations have been observed when
their frequency becomes equal to v', '. On the contrary,
the gain peak condition is expected to be determinative at
low Rabi frequency. Note, however, that the medium is
far from being optically thin in this case. The apparent
departures from the second rule of thumb may then be
attributed to the fact that the Rabi frequency averaged
on the whole cavity is significantly larger than that mea-
sured just before the output mirror, used in plotting Figs.
18 and 19.

To summarize the previous discussion, all our results
turn out to bring an experimental support to the side-
mode gain model of which the rules of thumb are a
simplified formulation obtained by disregarding the
transversal and longitudinal distribution of the field and
neglecting possible shifts of the relevant side mode result-
ing from induced changes of the refractive index (see Sec.
II). In this model, the self-pulsing is seen as the beat note
between the driving frequency vo and a single frequency
vo+v, . However the video detection, considered up to
now, cannot discriminate between this situation and
another one where the driving field would be amplitude
modulated at the frequency v, . We have then achieved a
spectral analysis of the field transmitted by the cavity
with the linear heterodyne detection described at the end
of Sec. IIIB. Figure 20 gives a typical spectrum. The
molecular detuning v —vo and the self-pulsing frequen-
cy v, are, respectively, 270kHz and 645 kHz. The verti-
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ratic, it is easy to predict from the spectrum of Fig. 20
the relative amplitude of the components at v, and 2v, .
We get 34 dB, a value in good agreement with the obser-
vations. This confirms the correctness of our interpreta-
tions.

IV. NUMERICAL RESULTS

In order to solve numerically the Maxwell-Bloch equa-
tions (2.1) with the boundary conditions (2.4) we exploit-
ed the same program used in Ref. 78, generalized to in-
clude the presence of the driving field. In the results that
we illustrate in this section, we select the following values
for the parameters:

FREGUENC Y ( 8Hz )

FIG. 20. Spectrum of the field transmitted by the cavity for
p =1.33 mTorr, v„;=1.81 MHz, v —vo=270 kHz. Vertical
scale: 10 dB per division. The frequency increases from left to
right (500 kHz per division). The different components corre-
spond to field frequencies equal to (0) vo, (1) vo —v, p, (2) vo+ v, p,
(3) v0 2vsp& (4) vo+ 2v

p
with v

p
645 kHz.

cal scale is logarithmic and, because of our good signal-
to-noise ratio we can explore a range of 60—70 dB,
significantly larger than that attained in the optical exper-
iments. " ' As expected, two frequencies prevail, vo and
vo —v,„, the latter being located on the side of vo for
which the medium can amplify ( vo —v,„(vo (v; see
Fig. 2). The sideband amplitude is about 10 dB below
that of the driving field. Additional components at the
frequencies vo+ v,„, vo —2v, , and vo+2v

p appear in the
spectrum of Fig. 20 at a level more than 20 dB below the
main sideband involved in the side-mode gain model. We
have carefu11y verified that these additional components
are not artifacts generated in the mixer used to the
heterodyne detection. In this purpose the field transmit-
ted by the cavity has been attenuated and we have only
observed the same attenuation on the whole spectrum of
Fig. 20 without any change of the relative amplitudes of
its different components. This confirms that our hetero-
dyne detection is actually linear with respect to the field
transmitted and that the additional components are actu-
ally present in this field. This presence may be explained
by multiwave processes in the medium, subjected simul-
taneously to the frequencies vo and vo —v,„. On account
of their low level and of the ratio of the transmission of
the cavity on resonance and on antiresonance ( —= 15 dB),
their generation does not require a resonance of the cavi-
ty, contrary to the main sideband at vo —v,„. Note also
the presence of very small features in the pedestal of the
main peak at vo. They are at the limit of our detection
sensitivity and it is di%cult to say if they correspond to
the generation of possible se1f-pulsing subharmonics in
the medium or to parasites.

As indicated previously, the signal obtained with the
video detection contains a main component at v, and a
weak component at 2v, . They result, respectively, from
the beat note between vo and vo —v, and between vo —v,
and vo+v, . Assuming that the video detection is quad-

al = 146,R =0.69, T=0.043,

—=830 kHz,
2I

(4.1)

40
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~ M
V
C

Q

~ ~

0
0.0
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FIG 21 The parameters not specified in Eq (41) dre
p =0.75 mTorr, v„; =1.42 MHz. As a function of the detuning
parameter v —vo= v~

—vo, the figure shows (a ) the oscillation
frequency, numerically obtained from the Maxwell-Bloch equa-
tions, ( ) v', h', (6) v', h', (0) v'„'', (~ ) v, ' (see Sec. II).

y~~/2ir=yi/2~=22. 75 kHz/mTorr,

while the remaining parameters, i.e., the Rabi frequency
v„; of the input field, the pressure, the molecular and cav-
ity detunings change from diagram to diagram. With the
exception of al, all the values specified in Eq. (4.1) corre-
spond closely to the experimental situation. The value of
al given in (4.1) is smaller than the experimental one by a
factor approximately equal to 0.7; we selected it to fit the
experimental value of the ratio of up-switching power to
down-switching power obtained, for example, from Fig.
10.

Let us discuss first the two rules of thumb introduced
in Eq. (2.12) and (2.13). In Figs. 21 and 22 the pressure is

p =0.75 mTorr, and the cavity is exactly resonant with
the molecules, i.e., v =v . The Rabi frequency of the
input field is 1.42 MHz in Fig. 21 and 1.29 MHz in Fig.
22. Over a wide interval of the detuning, these diagrams
compare the numerical value of the oscillation frequency
with the quantities v,h, v,h, v„,v„,v„,v„defined in(&) (2) (1) (2) (3) (4)

Sec. II in connection with the two prescriptions (2. 12)
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FICr. 22. Same as Fig. 21, but for v„; =1.29 MHz. A and 4
correspond to v„'-' and v', , respectively.

and (2.13). The value vIh' which assumes the free spectral
range of the empty cavity, exhibits a good accord with
the oscillation frequency, whereas v,'h' presents a sys-
tematic deviation. When the detuning becomes large, the
agreement with v,'h' worsens because the numerically ob-
tained oscillation frequency tends to become constant.

Also the Rabi frequency of the intracavity field shows a
strong correlation with the oscillation frequency. There
is not much difference between the results obtained using
the value of the intracavity field in the unstable stationary
solution and those obtained using the r.m. s. value of the
intracavity field in the oscillations around the unstable
state, i.e., v', '' is close to v'„', and v„' is close to v„'. For
increasing values of the detuning, when the difference be-
tween the Rabi frequency and the generalized Rabi fre-
quency becomes significant, in the case of Fig. 21 and 22
the oscillation frequency is in better accord with the Rabi
frequency. This fact is not general in our numerical
analysis; however, we found more often a better agree-
ment with the Rabi frequency rather than with the gen-
eralized Rabi frequency.

In fact, we tested the thumb rules for several choices of
the parameters. Another example is given in Fig. 23, in

T T~~Q 8

which the oscillation frequency is graphed as a function
of the pressure for v„=1.44 MHz, v —vo=v —v„=240
kHz. Note that the frequency varies very slowly with the
pressure as it did in the experiment.

As we said, the MM instability is characterized by the
fact of arising in conditions of quasiresonance between
the Rabi frequency of the intracavity field and the
difference

~ v, —
vo~ between the frequency of the unstable

sidemode and the input frequency. An evident
confirmation is given in Fig. 24(a). Here we consider the
fully resonant configuration v =v = vo, so that the
symmetrical sidemodes v ~, become simultaneously un-
stable, and the frequency ~v,

—
vo~ is equal to the free

spectral range. The input intensity is slowly swept in the
backward direction and the instability arises when the
Rabi frequency of the intracavity field is close to the free
spectral range. Note, in this figure and in all the theoreti-
cal and experimental results of this paper, that the
power-broadened linewidth is much larger than the col-
lisional linewidth. In fact, the ratio of the two linewidths
is given essentially by the parameter x defined by Eq. (2.8)
which, in the case of the unstable interval of the steady-
state curve shown in Fig. 24(a), is on the order of 45. In
Fig. 24(b) the free spectral range is halfed with respect to
the value given in Eq. (4.1). This time, we find two
domains of oscillatory behavior; the one which corre-
sponds to lower (higher) values of the input intensity
arises from the instability of the modes p+1 (p+2).

Let us now proceed to a direct comparison with the ex-
perimental results. Figure 25 is obtained by sweeping the
input power forward and backward with p =0.55 mTorr,
v vo vp vo 3 17 kHz in close correspondence to
the experimental situation of Fig. 10. The similarity with

t
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FIG. 23. The parameters not specified in Eq. (4.1) are
v„=1.44 MHz, v VQ vp VQ 240 kHz. As a function of
the pressure, the figure exhibits the same quantities shown in
Figs. 21 and 22, with the same meaning for the symbols.

I

2
0
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v, ; (MHx )

FICs. 24. (a) Parameters not specified in Eq. (4.1) are
v vQ vp vQ 0, p =0.75 mTorr. The square of the Rabi
frequency of the intracavity field, proportional to the output
power, is plotted as a function of the square of the Rabi fre-

quency of the input field, proportional to the input power, when
this is slowly swept in the backward direction. (b) Same as (a),
but the free spectral range of the empty cavity is now 415 kHz.
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FIG. 25. Parameters not specified in Eqs. (4 1) are
v vp vp vp = 3 1 7 kHz, p =0. 5 5 mTorr. The input power
is slowly swept forward and backward. The square of the Rabi
frequency of the intracavity field v, is graphed as a function of
the square of the Rabi frequency of the input field v„;.

05—

the experimental picture is remarkable; note in particular
the parabolic growth of the oscillation amplitude, com-
pare with Fig. 11(b). The oscillations are purely
sinusoidal, with a frequency of approximately 465 kHz
which varies by approximately 3.2% over the interval of
input power shown in the figure [compare with Fig.
11(a)].

It is interesting to observe that, if the pressure is in-
creased to a value of 0.75 mTorr, the oscillations become
more complicated, as shown in Figs. 26(a) and 26(b). In
the upper branch [Fig. 26 (a)] there is an interval of
chaotic oscillation; the approach to chaos under variation
of the input intensity occurs via breathing, ' i.e. , the
envelope of the sinusoidal oscillations breaks itself into
oscillations. The breathing pattern becomes more pro-
nounced as the chaotic domain is approached. In the
lower branch [Fig. 26(b)] there is the appearance of oscil-
lations which were absent previously. Contrary to the
pulsations in the upper branch„ these lower branch oscil-
lations have a frequency ( —140 kHz) in substantial
disagreement with the rule (2.12), even if the Rabi fre-
quency of the intracavity field remains close to the oscil-
lation frequency. In the experiment, neither chaotic be-
havior nor lower-branch oscillations have been observed.

We investigated further the case p =0.75 mTorr by ex-
ploring what happens if one moves in the direction of the
mean-field limit (2. 10). Precisely, we decreased by a fac-
tor of 10 the parameters al, (1 —R) and v —vo (i.e. , the
input frequency is shifted much closer to resonance with
the mode p), leaving the remaining parameters un-
changed. The lower-branch oscillations disappear,
whereas the upper-branch oscillations persist and, in ac-
cord with prescriptions (2. 12) and (2. 13), occur beyond
the bistable domain, for much larger values of the Rabi
frequency of the intracavity field with respect to Fig. 26.
These upper-branch oscillations are characterized by a
very pronounced breathing pattern (Fig. 27).

Let us now consider the results obtained by sweeping

0.0
I
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4k~iua
I~ 'W

L

, [MH*')
L.
5

FIG. 26. Same as Fig. 25, but with p =0.75 mTorr. In (a)
and (b) the input intensity is swept in the backward and forward
direction, respectively.
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FIG. 27. The parameters are al = 14 6, 1

—R =0 031,
v„; =0.52 MHz, vp vp=31. 7 kHz; the remaining parameters
are as in Fig. 26. The output intensity is plotted as a function of
time in the oscillatory regime of the upper branch.

the frequency of the input field. In correspondence to the
experimental situation of Fig. 12, we fix v„=v,
v„, =1.44 MHz, and consider the three distinct values of
the pressure p =0.9, 0.95 and 1 mTorr. Figure 28 indi-
cates, for each value of the detuning, the values of the in-

put intensity (more precisely, of v„, ) at the turning points
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of the steady-state curve of output versus input power.
There are two turning points when the steady-state curve
is bistable, and four turning points when it is multistable
(see, for example, Fig. 29). We note that multistability
has been observed in our experiments. When the input
frequency is linearly and slowly swept in the forward
direction over the interval indicated in Fig. 28 for
v„, =1.44 MHz, in the case of Figs. 28(a) and 28(b) the
system remains always in the upper branch, whereas at
higher pressure [Fig. 28(c)] it precipitates to the lower
branch at point P and comes back to the upper branch at
point Q.

Figure 30 shows the evolution of the output intensity
(more precisely of v„) under a slow linear sweep of the in-
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I I
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2.vri
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FIG. 29. Steady-state curve for el = 146, R =0.61,
T=0.0043, p =0.9 mTorr, v —-vo=v~ —vo=150 kHz. The
square of the Rabi frequency of the intracavity field is graphed
as a function of the square of the Rabi frequency of the input
field.
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FIG. 28. The parameters not specified in Eq. (4.1) are
v„;=1.44 MHz, v„, =v~ and (a) p =0.9 mTorr, (b) p=0.95
mTorr, (c) p =1 mTorr. The diagram shows, as a function of
the detuning v~

—vo, the values v„; which correspond to the
turning points of the steady-state curve of the output power as a
function of the input power. The horizontal line corresponds to
the value U„'; =(1.44)' MHz'.

I
0

vp - vo ( Nl H*)
FIG. 30. The parameters are the same as in Fig. 28(a), (b),

and (c), respectively. The diagrams show the behavior of v„
when the input field frequency undergoes a slow linear sweep in
the forward direction.
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put frequency in the forward direction. We note that the
frequency distance of the two side modes from the central
mode is larger than the empty-cavity free spectral range
830 kHz. The slight asymmetry in Figs. 30(a) and 30(b)
arises from the nonzero velocity of the sweep, wheras the
marked asymmetry in Fig. 30(c) is due to the transitions
from the lower to the upper branch, and vice versa, in
correspondence to points P and Q in Figs. 28(c). Figures
30(a), (b), and (c) exhibit a remarkable correlation with
the corresponding experimental diagrams Figs. 12(b), (c),
and (d), respectively. They show also some significant
differences.

0.5

0.0—

7 I I I
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c I I I
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I I l~

(i) In the numerical simulations, the unstable regions
are much more extended and the oscillation amplitude is
much larger.

(ii) The experiment never showed self-oscillations when
the cavity, the molecules, and the input field are exactly
on resonance, contrary to what occurs, for example, in
Figs. 24 and 30(a).

(iii) The numerical results exhibit lower-branch oscilla-
tions as in Figs. 26(b) and 30(c).

These features, and more in general, the reduced effects
of the instability in the experiment in comparison with
the computer simulations, can be ascribed to the fact that
the theory is formulated for a ring cavity and a homo-
geneously broadened molecular system, and assumes the
plane-wave approximation. The experiment, on the other
hand, uses a Fabry-Perot cavity, in which the electric
field displays not only a longitudinal standing-wave
configuration, but also a definite radial variation; further-
more, the molecular system is strictly speaking inhomo-
geneously broadened, even if the power-broadened homo-
geneous linewidth is much larger than the inhomogene-
ous linewidth.

It is well known that a Gaussian radial variation of the
electric field destroys the MM instability in the resonant
condition v =v =vo, ' whereas the instability persists
in detuned configurations. ' ' The analysis of the
single-mode instability shows that the Gaussian averag-
ing washes out period doubling and chaotic behavior. '

The instability is reduced also by the standing-wave lon-
gitudinal variation of the electric field in the Fabry-Perot
cavity. Finally, the inhomogeneous broadening de-
creases the side-mode gain' and therefore also reduces
the unstable domains.

Figure 31 considers the antiresonant configuration in
which the molecular line is set halfway between modes
p —1 and p; as in Fig. 30, the input frequency is linearly
swept in the forward direction. Again, the unstable
domains are much wider than in the experiment (see Fig.
13). Furthermore, the oscillations are chaotic almost
everywhere. In the narrow domains of sinusoidal oscilla-
tions in the frequency interval shown in Fig. 31; the fre-
quency is approximately equal to 290 kHz, in reasonable
accord with the Rabi frequency v'," and v'„'. In the ap-
plication of the rule (2.12), it is not obvious whether v,
must be identified with v

&
or with v +&, the choice of

v, =v~ &
for v —vo = 100 kHz gives a reasonable agree-

ment with Eq. (2.12), whereas for v —vo=300 kHz Eq.

-0.3
LM J I

0.0 0.3
v, (NIHz )

FIG. 31. Same as Fig. 30, but for p =0.6 mTorr, v„, =1.9
MHz, v~

—v, =415 kHz.

(2.12) disagrees from the numerical oscillation frequency
for neither choice v, =v + &.

Finally, in Fig. 32 we consider a case in which the
steady-state curve of output versus input power exhibits a
small domain of multistability, similar to Fig. 29. Let us
focus on the small hysteresis cycle in the multistable
domain; in the upper branch of this cycle we found self-
oscillations with a period-doubling route to chaos which
is illustrated in Fig. 32. It is possible that the oscillations
we discovered in the lower branch, and in the multistable
domain in the lower branch, represent a bridge between
the Bonifacio-Lugiato instability, which arises in the
upper branch from the coherent exchange of energy be-
tween field and atoms (Rabi frequency) and the Ikeda in-
stability, ' which arises also in the lower branch under in-
coherent conditions.

p2 Qb) (c) gd)
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FICi. 32. Period-doubling route to chaos in a multistable
domain. The parameters not specified in Eq. {4.1) are p =1.35
m Torr, v —vo =v —vo =250 kHz; v„; varies from diagram to
diagram. {a)—(d) show the evolution of the output intensity as a
function of time; (e)—(h) exhibit the corresponding projections
of the phase-space trajectory on the plane (Rex, Imx) [see Eq.
(2.8)]. (a)+ (e) v„;= l. 824 MHz, period-I oscillations of frequen-
cy 235 kHz; {b)+(f) v„;=1.912 MHz, period-2 oscillations;
(c)+ (g) v„;= 1.919 MHz, period-4 oscillations; (d) + (h)
v„=1.95 MHz, chaotic oscillations. %'e note that in (h) Imx
varies in the interval —0.5 (Imx (0.3, whereas in {f) and (g)
the interval of variation of Imx is the same as in (e).



39 MULTIMODE INSTABILITY IN OPTICAL BISTABILITY 721

Noted added in proof. In very recent experiments, a
sine-wave self-pulsing at a frequency of about 1.5 MHz
has been evidenced and attributed to the destabilization
of the second side mode. This result, which complements
those analyzed in this paper, will be presented in a forth-
coming brief report.
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