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We present an analysis of a quantum nondemolition (QND) measurement, which determines

which of the two possible paths a photon follows through a Mach-Zehnder interferometer. The
measurement is effected by the nonlinear Kerr effect. If a photon traverses the arm of the inter-

ferometer containing the Kerr medium, it shifts the phase of a probe beam and then continues

through to the interferometer output. The measurement does not destroy the photon but does dis-

turb its phase. Using various probe states, we show how such phase disturbances reduce fringe visi-

bility and enforce a principle of complementarity; the more accurately the QND measurement

determines the path of the photon, the lower is the fringe visibility. We determine the appropriate
parameters to optimize the observation of the two complementary quantities.

I. INTRODUCTION

Photons, like all quantum objects exhibit corpuscular
or wavelike behavior under different experimental condi-
tions. It is not possible to consistently attribute corpus-
cular properties and wavelike properties to a photon.
Rather we say that corpuscular or wavelike behavior is a
complementary aspect of the photon. Here we concern
ourselves with a model experiment which reveals a con-
tinuous transition from wavelike to corpuscular behavior
of the photon by adjusting one parameter in the ap-
paratus.

The corpuscular behavior is revealed by placing a
bearnsplitter in the path of a one-photon state. A photon
detector placed at the output port detects either one or
zero photons. The photon exhibits corpuscular behavior
by remaining whole, whereas a wave would be split by
the beamsplitter. If instead the photon passes through an
interferometer, a different result is observed. The photon
passes through a beamsplitter. The photon is presented
with two paths to follow and then is recombined by a
beamsplitter, and a measurement is performed by a pho-
ton detector. A phase shifter is inserted to allow for a
variation of the path difference between the two arms.
An ensemble of single-photon interference experiments
for varying values of the path difference demonstrates the
existence of interference fringes. The single photon is ex-
hibiting wavelike behavior by apparently following both
paths and interfering with itself.

The two experiments described above have been per-
formed' and have demonstrated the corpuscular and
wavelike behavior under the appropriate experimental
conditions. The first experiment detected a strong an-
ticorrelation between photon arrivals at the two photon
detectors when a single photon encountered a beamspli-
tter. The second experiment required a sequence of
single-photon interference measurements in a Mach-
Zehnder interferometer for each value of the phase as
determined by the phase shifter, and the accumulated re-
sult demonstrated the effect of single-photon interference.
However, Grangier et aI. do suggest that a quantum non-
demolition (QND) device could be employed, which

would allow the simultaneous measurement of the in-
terference at the interferometer output and the presence
of the photon in one arm of the interferometer.

Here we design an experiment which employs a photon
number QND measurement ' in one interferometer arm.
The QND measurement is employed in order to deter-
mine the presence of a photon without destroying the
photon, in contrast to the destructive nature of the pho-
ton detector. We shall see how the certainty of measur-
ing a photon along one arm of the interferometer affects
the observation of interference fringes at the interferome-
ter output, and therefore observe the effect of measure-
ment on the wavelike behavior quantitatively.

An experiment which involves a refractive medium in
one of the interferometer arms which absorbs some of the
momentum of the photon has been discussed. A mea-
surement of the momentum transferred to the medium
provides information about the path the photon went
along and simultaneously destroys the interference
fringes due to the momentum uncertainty. However, the
apparatus that we present allows for a complete analysis
of the quantum state of the measurement device in the in-
terferometer and its preparation. Also the scheme
presented here is closer to experimental realization.

II. PHOTON NUMBER QND MEASUREMENT AND
THE OPTICAL KERR EFFECT

For a QND determination of the photon path, it is
necessary to place a detector along one arm which will
provide information about the photon number but which
will leave the number operator in the Heisenberg picture
unchanged by the interaction with the detector. Detec-
tion causes a back action, but the back action in this case
must be confined to affecting the phase of the field. For
the number operator to be a QND variable we require
that it be isolated from such phase disturbances. This is
automatically satisfied if the number operator is a con-
stant of motion in the absence of the measurement. Such
a QND measurement could be made using the optical
Kerr eft'ect which we briefly describe.

In the optical Kerr effect two single-mode fields are
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sent through a nonlinear crystal. The annihilation opera-
tor for the probe field is B and a2 is the annihilation
operator for the field through arm 2 of the interferome-
ter. The Hamiltonian for the system is given by

b =2 ' (a +ia2) . (3.1)

The photon detector measures the photon number and
the number operator is

H =%CO, n2+AmBnB+2hgn2nB+ —,'AX, n 2+ 2APBnB nb=btb = —,'(n, +nz)+ —.(a2 a, —
a2a& ) .

l
(3.2)

where the number operators are defined by

nB=B B and n, =a, a, , i =1 or 2,

(2.1)

(2.2)

We are interested in the case that one photon is injected
into the interferometer. In this case the field inside the
interferometer is given by

and the angular frequencies for the modes are co, and coB.
The parameters of nonlinearity are y, y„and gB, which
are frequency dependent. The parameters are elements of
the g' ' tensor for the particular medium. Experiments
to measure the observables corresponding to the Hamil-
tonian have been analyzed and performed in optical
fibers in a cavity for which the values of y, g„and gB are
equal. At the other extreme are the analyses in which y,
and yB are both zero.

The Heisenberg equations of motion for the operators
are

(3.3)

which represents the superposition of the photon in one
arm and the vacuum in the second arm with the case of
the vacuum in the first arm and the photon in the second
arm and is consistent with the beamsplitter transforma-
tion (3.1). The —,", beamsplitter does not change the phase
of the transmitted field, but the rejected state undergoes
a phase change of ~/2; the phase of the terms in the sum
(3.3) is a consequence of these induced phased shifts.
Given that the density matrix for the probe is pB, we

define a function Z (y) by

and

da2/dt = —i (ci),'+2yn~+y, n2)a2 (2.3a)

dB /dt = i (ru~+—2yn, +ps n~ )B,
where

(2.3b)
IO)

I
~a, B ~a, B ++a,B (2.4)

As the number operators n2 and nB are constants of
motion, the operators after the interaction are given by a'

a2 =exp[ i (y+—ru,'+2/ns+g, nz)]a2,

where y is the phase of the phase shifter and

B' =exp[ —i (cu~ +2yn2+y~ns )]B,

(2.Sa)

(2.5b) Pp
where the interaction time in the crystal is set as unity.
The number operators after the interaction are

2 &2 and &B =nB (2.6)

Therefore, the interaction has altered the phase of the
fields but not the photon number. Thus, the insertion of
the Kerr medium along one arm of the interferometer
will not affect the photon number distribution along that
arm.

III. INTERFEROMETER OUTPUT FRINGES

The inclusion of the photon number QND measure-
ment device in the interferometer is depicted in Fig. l.
The probe field undergoes a quadrature phase measure-
ment (QPM) which will be discussed further in Sec. V.
As the nonlinear Kerr medium causes the fields a2 and B
to induce phase changes in each other, a phase-sensitive
measurement of the probe field is necessary to determine
the nature of the field a2.

The interferometer output field 6 is a superposition of
the fields a i and a 2 given by

FIR. 1. Quantum nondemolition measurement of com-
plementarity. A one-photon state l 1 ) and the vacuum l0) are
injected into a Mach-Zehnder interferometer with —,'o beamspli-
tters (BS). The interferometer output photons are detected by
the photon detector (PD). The phase shifter (PS) allows for ad-
justments of the phase difference between the two paths. A
Kerr medium (KM) is placed in arm 2 of the interferometer.
The probe field (B) interacts with the field in arm 2 of the inter-
ferometer via the KM, encounters a second KM, and is detected
by a quadrature phase measurement apparatus (QPM).
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Z (y)—:trs [psexp(2ign~ )] exp(ign )la) = lae'~) (3.1 1)

P~(n)e '+",
n=0

(3.4) which is a rotation of the original coherent state. Thus,
for the probe field initially in the coherent state la), we
obtain the element

where Ps(n) is the photon number distribution in the
probe state. The mean photon number measured by the
photon detector is

Z(y) = (alae'r &

=exp( —2
l
a l

sin g )exp[i a! sin(2y ) ] . (3.12)

(nb ) =
—,'+Re[exp(iQ, )Z(y)]/2, (3.5) Therefore, the visibility and phase shift are given by

where we define the constant

Aa —cP+ co~ +gg

To characterize the effects of the probe on the inter-
ferometer fringes, we define the visibility

and

V=exp( —2lal sin g)

b,y= lal sin(2y),

(3.13a)

(3.13b)

V—= ((n, ),„+(n„),„) '((n, ),„—(n, ),„)
= lz(x) I

(3.7a)

and the phase shift

~V —=arg[Z(X)] (3.7b)

r(y)= ~(e '~B+e'~B') (3.8)

for /=0 and 7r/2, respectively. Thus, noise introduced
by the probe beam is minimized. The coherent state,
which is generated from the vacuum by the unitary dis-
placement operator

D (a) =exp(aB a*B)—
is represented in the number state basis by

(3.9)

for convenience.
Fringe visibility and fringe displacement are complete-

ly determined by Z(y). This function depends on the in-
tensity fluctuations in the probe field through the distri-
bution Ps(n) and on the arithmetic of y. Clearly, for y
an integer multiple of m. , Z(y) is unity, and the fringe
pattern is unaffected by the probe. In general we may
think of the sum in Eq. (3.4) as the sum of vectors of
length P~(n) where the angle between each vector is 2y.
[This assumes that there are no "missing" vectors corre-
sponding to values of n such that Ps(n) =0.] If y is a ra-
tional multiple of m. , a great deal of cancellation may
occur in the sum of Eq. (3.4). For example, if y=vr/2,
the sign of each term alternates, and Z(y) is real and
possibly much less than unity. This corresponds to a vec-
tor of length Pii(n) tending to cancel a vector of length
Ps(n +1). Thus, the degree of cancellation depends cru-
cially on the probe field statistics.

Let us assume that the probe field is initially in a
coherent state. The single-mode coherent field is generat-
ed by a classical current distribution which is closely ap-
proximated by a laser. Furthermore, the coherent field is
a minimum uncertainty state with respect to the in-phase
and out-of-phase quadrature operators given by

nr = [exp(iiicos/kT) —1] (3.14)

The photon number probability distribution is given by

P(n) =(1+nz. ) '[nr/(1+nr)]" .

Therefore, the visibility and phase shift are given by

(3.15)

aIld

V=[1+4nr(1+nr)sin g]

tan(hy) =(1+2nrsi yn) 'nrsin(2y) .

(3.16a)

(3.16b)

The existence of fringe damping for values of g which are
not integer multiples of n is evident. A phase shift is also
induced. For the case of zero temperature, the vacuum
result is recovered; the fringes are neither damped nor
phase shifted. We further note that, as with the coherent
probe, the minimum fringe visibility occurs at g=vr/2
for which the fringe displacement is zero.

Alternatively, the intensity fluctuations of the number
state are zero. If the probe is in the pure number state
lm ), then

respectively. The damping of the fringes depends on the
strength of the term lal sin y. As expected the minimum
fringe visibility occurs for y=rr/2. It is interesting that
at this point the fringe displacement is actually zero.

An increase in the intensity of the probe beam, for
fixed nonlinearity g, leads to an exponential damping of
the interference fringes. Furthermore, an increase in the
probe field intensity results in an increased phase shift of
the field a2. The damping of the fringes can be interpret-
ed as being due to the intensity fluctuations in the probe
field. To show this we consider the fringe visibility for
two probe fields, one which has large intensity fluctua-
tions and the other which has no intensity fluctuations.
Let us observe the effect of a probe beam which is in the
thermal state, a state which exhibits large intensity fluc-
tuations at high temperature.

The mean number of photons in a single-mode thermal
state at temperature T is given by the quantity

la) =D(a)lo& V=1 and Ay=2mg . (3.17)

=exp( —lal /2) g (n!) '~ a" ln ),
n

and it is straightforward to demonstrate that

(3.10) T+e nonzero intensity of the number state for m )0 in-
duces a phase change in the a2 field, but the fringe visibil-
ity is not reduced. The visibility is not reduced because
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of the absence of fluctuations in photon number for the
pure number state, which includes the vacuum state as a
special case.

The example with which we are concerned is the case
that the probe beam is prepared in a squeezed state.
Whereas the coherent state is a minimum uncertainty
state with respect to the in-phase and out-of-phase quad-
ratures and the quantum noise is phase independent, the
squeezed state is a minimum uncertainty state with re-
duced fluctuations in one quadrature. As the squeezed
state is a minimum uncertainty with respect to the quad-
rature operators it satisfies the eigenvalue equality

Re(o,) Y(0)

(B coshr +B e' sinhr)
~
a, 71 )

= (a coshr + e ' a"sinhr)
~ a, g ) (3.18)

FIG. 2. The phase-space plot of the squeezed state
~ a, q )

with squeezed intensity fluctuations (r )0). Y(0) is the in-

phase quadrature and Y(~/2) is the out-of-phase quadrature.

r =/vy/ and e"=my/[vp/ . (3.19)

The squeezed state is generated from the vacuum by
the transformation

V —K exp( —e "~a~ [ 1 —K cos(2++5)

+ —,'ir[ cos(4&+5)

~a, 'ri) =D( a) S(g)~0), (3.20)
—cos5]sinh(2r) I ) (3.28a)

where D(a) is the displacement operator (3.9) and S(g)
is the unitary squeeze operator

and the phase shift is

hqo= —,'5+ Ire "fa/ [ sin(2y+5)

S(g) =exp( ,'ri*B ~q—B ) .— (3.21) —
—,
' [sin(4y+5) —sin5]sinh(2r) I .

The squeeze transformation of the annihilation operator
1s The visibility coefficient

(3.28b)

S BS=B coshr —B e' sinhr . (3.22) a=[1+sinh (2r)sin (2y)] (3.29)

e""=a/iai . (3.23)

The coherent state corresponds to r =0, and the squeezed
vacuum corresponds to +=0. We shall restrict our atten-
tion to the case that

and the phase

5=tan tanh r sin4y
1 —tanh r cos4g

(3.30)

hence,

&a, ri~B~a, ri& =a (3.24)

and, for hY—= &( Y —
& Y) ) )'

e 'b, Y( —'0) =—' = e "b, Y —8+—1 m

2 2 2 2
(3.25)

The phase-space representation of the squeezed state
mean and dispersion contour are shown in Fig. 2 for r
positive which corresponds to reduced intensity fluctua-
tions. The phase fluctuations are reduced for r negative.

The operator exp(2iyna ) effects a rotation of the
squeezed state

depend on the degree of squeezing and the nonlinearity.
If the probe field is not squeezed or the nonlinearity is
zero, ~=1 and 6=0.

For the squeezed vacuum, V =v' . A plot of visibility
versus g/m is shown in Fig. 3. Whereas the vacuum pro-
duces perfect visibility for all values of g, the visibility for
the squeezed vacuum is less than unity except for when g
is an integer multiple of ~/2. The visibility is unity for
g=m. /2 because the squeezed vacuum contains only even
photons, and every odd term in (3.4) is zero. Maximum
partial cancellation occurs for y=~/4, 3~/4 for the
squeezed vacuum in (3.4). In Fig. 3 the visibility is seen
to be at a minimum for these values of g.

Let us consider the visibility for a general squeezed
state. In the limit of weak squeezing, for example, ~~1
and 5~0. The visibility is approximated by

exp(2iyn~)~a, 7)) =~ae '&, ge '&); (3.26) V=exp[ —2~a~ sin y[1 —2r cos(2g)]I (3.31)

therefore, Z(y) is given by (3.4)

Z(y)= & pa~ac
"~,qe" (3.27)

the overlap of the squeezed states
~ a, 71 ) and

~
ae '~, ge 'z ) . The visibility is, therefore,

The visibility is a small modification of that for the
coherent field (3.13a). Positive squeezing (r )0) results in
improved visibility for O~g&~/4, but negative squeez-
ing (r )0) improves the visibility for vr/4(y ~ a./2 due
to the dependence of the visibility on the overlap.

In Figs. 4(a) and 4(b) the visibility versus y is presented
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I

I

(

/

for the coherent field and for moderately squeezed fields.
The graphs are periodic over vr and symmetric about
7r/2. For low ~a~ [Fig. 4(a)] and low y the visibility is
better for the coherent field than for either moderately
squeezed field (r =+1) although we have seen for weak
squeezing that a small positive value for r will result in
better visibility than for r =0. For ~a~ moderate [Fig.
4(b)] and g small, positive squeezing (r )0) results in im-

proved visibility. For y=m/2 the visibility is improved
for negative squeezing which attains a local maximum at
y=m/2. The visibility for the squeezed states at y=~/2
is given by

Vq q~=exp( —2e "]tz) ) . (3.32)

0.2

FIG. 3. Fringe visibility V vs the nonlinearity g for the

squeezed vacuum, where r =+1 {solid line) and r =+2 (dash

line). For the unsqueezed vacuum (r =0), V = 1 for all y.

The exponential decay of visibility as ~a increases can
be greatly reduced for g =n/2 by using a strongly
squeezed ( r (0) probe field.

IV. PROBE QUADRATURE PHASE MEASUREMENT
AND PHOTON PATH INFERENCE

The probe field interacts with the field in arm 2 of the
interferometer via the nonlinear Kerr medium. The field
in arm 2 is hereafter referred to as the signal field. The
presence of a photon in the signal field produces a phase
shift in the probe; the phase does not change if there is no
photon in the signal field. The phase shift is measured by
the quadrature phase measurement apparatus whose lo-
cation is shown in Fig. 1. The operator associated with
the measurement is the quadrature phase operator [cf.
(3.8)]

Y((t ) = —,'(e '~B'+e'~B' ), (4. 1)

0.2 0.4 0.6

I (

(

(

I

I

I

where P is the reference phase of the apparatus and B' is
the postinteraction probe field annihilation operator
(2.5b). The single-model quadrature phase measurement,
which we are assuming here, is closely approximated by a
balanced homodyne detector. '

The probe field itself undergoes an intensity-dependent
phase shift in passing through the Kerr medium. Phase
fluctuations in the probe which are induced by the probe
intensity fluctuations due to the nonlinear self-coupling is
observed in studies of the nonlinear oscillator. "' It is
convenient to remove the intensity-dependent phase shift
prior to the quadrature phase measurement. To do this
we pass the probe field through a further length of non-
linear Kerr medium outside the interferometer. The
length is adjusted so that the total self-induced phase
shift is an integer multiple of 2~. When this is done, y~
is effectively zero and

B'=B exp( —2iyn~) . (4.2)

The distribution of quadrature phase readings is given

0.6 0.8 P(y) =tr[ ~y )e (y~exp( —2iyn2ne )

Xp(0)exp(2i7t'nuns )], (4.3)
FIG. 4. Fringe visibility V vs the nonlinearity y/m. for the

squeezed state ~a, q), where (a) ~a~ =1, (b) ~a( =7 and (g~ =1
(solid line), ~g( =0 (dash line), and ~q~

= —1 (dash-dot line).
where ~y )e is an eigenstate of Y((t ) and p(0) is the prein-
teraction density matrix
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P(y) =tr2 ii[ ly &g &ylexp( —2iyn, ns )

Xp'(0 )exp( 2i yn 2 ns )],
where

p'(o)=-,'(lo&, &ol+ I», & ll)p, ,

(4.5)

(4.6)

i.e., the field in arm 2 of the interferometer is a mixed
state of zero and one photon. In Sec. III we consider ex-
amples of p~, including the vacuum, the thermal state,
the number state, and the coherent and squeezed states.
Performing the partial trace over the signal field, the dis-
tribution of readings of y

(4.4)

for l4) the interferometer state (3.3) and pz the probe
field density operator. Performing the partial trace over
the field in arm 1 of the interferometer, we have

i&co) —&c, &

(g 2+g 2)1/2 (4.13)

p~ = la, ri&&a, i)l . (4.14)

The phase of the squeezed state relative to the quadrature
phase measurement reference phase is chosen such that a
and g=r are real. Using the quadrature phase eigenstate
representation for squeezed states, ' we obtain

Po(y) =( —,'ere '") ' exp[ —2e "(y —a)~] . (4.15)

Good inferences are obtained if o. 2, and the inference is
poor if u 1. The SNR is improved by increasing the
separation of the distribution means and reducing the
widths.

The probe field is in a squeezed state with the density
operator

P (y) =
—,'P, (y)+ —,'P, (y)

is obtained, where

Po(y)=«(ly &~&ylpB)

(4.7)

(4.8)

For the case that a photon is detected in the signal field,
we apply (3.26) to (4.14) to obtain

P, (y)= [ ,'ir(e "c—os2y+e "sin 2y)]

X exp[ —2(e "cos 2y+e "sin 2y)
is the probability distribution for measuring no photon in
the signal field and

X (y —a cos2y) ] . (4.16)

P, (y) =tr[ly )~ &ylexp( —
2iynii )piiexp(2iynii)] (4.9)

Using the expectation value

&co, ) = f dc c"P„,(c) (4.1 1)

with Po, (c) obtained from Eqs. (4.8) and (4.9) by the
change of variable (4.10},and the noise for each distribu-
tion is given by

(4.12)

The signal-to-noise ratio (SNR) for the normalized quad-
rature phase measurement is

is the distribution of readings if the signal field consists of
one photon.

Each measurement of y is used to decide whether a
photon has been observed. The decision is equivalent to
inferring the path of the photon. The quality of the infer-
ence is as good as the accuracy of deciding to which dis-
tribution y belongs. As the accuracy increases and we be-
come more certain of the path, the corpuscular behavior
of the photon is becoming more evident. The accuracy
improves as the overlap between the distributions is re-
duced. The zero-amplitude states do not allow for an
inference; consequently, the thermal state and the num-
ber state will not be considered as probe field states. The
probe field states are restricted to the quadrature phase
minimum uncertainty states: the coherent and squeezed
states.

The normalized quadrature phase reading

c=l&B&l 'y (4.10)

is introduced for &B ) =tr(p~B)&0. The quadrature
phase signal we are interested in is the diff'erence between
the readings for a photon being present and absent in the
signal field. The mean signal is &co) —

&c& ) where the
nth moment of the distribution is

&a, i)IBla, i) & =a, (4.17)

the substitution of (4. 10) into (4.15) and (4.16} produces
the distribution

Po(c)=a( ,'ire ") '—exp[—2a e "(c —1) ] (4.18)

and

P&(c) = a[ ,'n(e "cos 2y—+e "sin 2y)]

Xexp[ —2a (e "cos 2y+e "sin 2y)

X (c —cos2y) ], (4.19)

respectively. The mean normalized quadrature phase sig-
nal is

& co ) —
& c, ) =1—cos2y=2 sin y (4.20)

and the SNR (4.13) is

a =4a[e "(1+cos 2y)

+e'"sin'2y] '"sin'y . (4.21)

The SNR is improved by increasing a and has a max-
imum for g=vr/2. In this case

3/2 r
c7 y=~/2 2 e 0! (4.22)

and the SNR is improved by using a positively squeezed
probe field (r )0). The SNR is also improved by increas-
ing o..

In Fig. 5 the normalized SNR, o /a, versus g/~ is
presented. The positively squeezed field provides a supe-
rior SNR for g= vr/2 [whereas a—negatively squeezed field
improves visibility in expression (3.32)]. However, for g
small, negative squeezing produces a better SNR and for
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CD +-

C3

0 0.2 0.4

FIG. 5. Normalized signal-to-noise ratio o. /a vs y/~ for the

squeezed state ~a, tl ), where a and t) = r are real, and r = 1 (solid

line), r =0 (dash line), and r = —1 (dash-dot line).

g=~/4, the coherent field produces the best SNR. The
sign of the squeezing parameter r which produces the
best SNR depends on whether g&~/4 or g) w/4. For
small values of g, however, the normalized SNR is much
less than one. Increasing a increases 0. proportionally,
though, and a good inference of the photon path can be
made for small g if the probe field is sufticiently strong.

The probability distribution P(c) is presented in Fig.
6(a) for y=tr/6 and cz= 1 and in Fig. 6(b) for y=rr/2 and
cz= l. For y=rr/6 [Fig. 6(a)] the two distributions Po(c)
and P, (c) are dificult to distinguish. Indeed for these
values Fig. 5 confirms that o & 1 in each case, and the
inference is poor, as expected. However, as the probe in-
tensity increases, the SNR increases proportional to a;
the distributions Po(c) and P, (c) eventually become dis-

tinguishable as a increases. The distributions are distin-
guishable for y=rr/2, a= 1, and r non-negative [Fig.
6(b)]. This is not surprising as cr ) 1 for r nonnegative,
but o &1 for r = —1 (see Fig. 5). An increase in the
probe strength will lead to better inferences of the photon
path. The quantity o. is an accurate measure of the quali-

ty of the inference for a probe field which is a coherent or
squeezed state.

o &

t

t'

/

(

r

0.5
L ~ L ~ $ L

1.5

V. COMPLEMENTARITY

The fringe visibility quantifies the wavelike behavior of
the photon; the SNR quantifies the corpuscular behavior.
The two quantities are, therefore, complementary. We
compare the visibility to the SNR for various parameter
values to consider how to optimize the observations of
complementary quantities.

In Fig. 7(a) the visibility versus SNR is plotted for the
coherent state corresponding to various values of g. In
each case an increase in the SNR corresponds to a de-
crease in the visibility as we expect. That is, an increase
in the certainty of the photon path reduces the fringe
visibility which exhibits the wavelike nature. By combin-
ing the expressions (3.13a) and the SNR for a coherent
probe field [cf. (4.19) for r =0)

0=2 ~ +sin g, (5.1)

we obtain the relation between the visibility and the SNR

CD

CO

1 0.
V =exp

4 sin'y
(5.2)

CV

O

0

FIG. 6. The probability distribution P vs the normalized

probe field quadrature phase readings c for the squeezed state

a, i)), where cz= 1 and q=r are real. The nonlinearity assumes

the values (a) y=vr/6 and (b) g=~/2. The squeezing parame-
ters are r = 1 (solid line), r =0 (dash line), and r = —1 (dash-dot
line).

Vr /Z =eXP( —
—,'Cr ) (5.3)

is true, and the curve is independent of whether the probe

The visibility versus SNR graphs in Fig. 7(a) satisfy (5.2),
and it is clear from (5.2) that the optimal visibility versus
SNR relation is obtained for g=~/2.

In Fig. 7(b) the visibility versus SNR graphs are com-
puted for the squeezed state r =1. Again the optimal re-
lation is obtained for g=~/2. By combining the expres-
sion for visibility (3.32) and the SNR (4.20) for g=~/2,
we observe that
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field is squeezed. However, using a squeezed state can
improve either the visibility or the SNR. For other
values of g, squeezing the field can improve the visibility
for large values of SNR, as shown in Fig. 8 for y=m/6,
but the optimal relation (5.3) represents the limit for ob-
serving the complementary quantities visibility and SNR
for a squeezed-state probe field.

The experimental implementation of the scheme dis-
cussed in this paper must be regarded as being at the lim-
its of current technology. The available Kerr nonlineari-
ties are simply too small. A high but realistic value for a
third-order nonlinearity g' ' is approximately 10 esu
(Ref. 13) which, in SI units, is approximately 10
The g used in this paper is related to g' ' by'

03
C3

C)

2
(3) A~ L

2eo V
(5.4)

05 1.5 2 2.5

FIG. 8. The visibility V vs the SNR o. for g=vr/6, and the
squeeze parameter is r =1 (solid line), r =0 (dash line), and
r = —1 (dash-dot line).

I

O

t

where V is the interaction volume, L is the length of the
nonlinear medium, and c the speed of light.

At co = 5 X 10' Hz this gives g —= 10 rad for a 1-m
length. The phase shift induced by a single photon in the
signal field would be difficult to detect but not impossible.
Recently Xiao et al. ' employed a squeezed-state tech-
nique to measure a phase change near this limit. The
small value of g produces a visibility-SNR relation which
is far from the optimal case. For small g and a coherent
probe field the visibility is approximated by (3.13a)

V=exp( —2a y ) (5.5)

and

23/2 ~2 (5.6)

C)

7 ~ T T T t W 'T

(b)
For g=—10, the visibility decays to zero as the probe in-
tensity rises to 10' photons, but 10 photons in the
probe field are necessary for a good SNR. The fringes
fade long before good values of SNR are obtained for
small g. Nevertheless the corpuscular and wavelike
properties of the photon are observed in the same ap-
paratus, and the observed behavior depends on the con-
tinuous probe field intensity parameter. Furthermore,
despite the difficulty of realizing the scheme described
here, it nonetheless provides a clean illustration of how
complementarity is enforced in a QND experiment and is
rather more realistic than similar discussions of com-
plementarity based on the two-slit experiment.
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