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Saturation broadening by inhomogeneous fields
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According to the standard Karplus-Schwinger theory of saturation broadening, saturated line
shapes are Lorentzians with linewidths that increase linearly with the perturbing field strength.
This, however, is not what is observed experimentally when the saturating field is inhomogeneous.
If the saturating field strength varies significantly over the experimental signal volume, we find that
the saturated line shapes are strikingly non-Lorentzian. The "sharpness" of the experimental line
shapes is quantified by an "effective linewidth, " which is the half width at half maximum of a
Lorentzian that approximates the experimental line shape near line center. For certain classes of in-

homogeneous fields, we find that this effective linewidth increases approximately as the square root
of the saturating field strength, rather than linearly. We show that this class of inhomogeneous
fields is distinguished by the presence of a node in the field geometry, and that the effect arises be-
cause the line shape near line center is dominated by the atomic population in the vicinity of the
node. These results indicate the importance of understanding and accounting for inhomogeneous
field effects when extracting physical information from experimental line shapes.

I. INTRODUCTION

&v= V' —2S(vo)/S "(vo), (2)

where S(vo) is the signal amplitude at the resonance fre-
quency vo and S"(vo) is the corresponding value of the
second derivative. Thus, since saturation-broadened line

In the mid to late 1940s Townes, ' Karplus and
Schwinger, and Snyder and Richards were concerned
with the problem of collision broadening in the presence
of intense electromagnetic radiation fields, and as a result
initiated the study of saturation- (or power-) broadened
resonance line shapes. Working in the impact approxi-
mation for the collision process, Karplus and Schwinger
showed that though resonance line shapes retain their
Lorentzian character in the presence of strong fields, the
width of the Lorentzian will be larger than that expected
from relaxation alone. Defining Av as the resonance
linewidth [half-width at half maximum (HWHM)],
Karplus and Schwinger obtained a simple relationship
between the linewidth and the field-atom interaction
strength,

»=[@ +(lsF/h) ]' (l)
Here p is a transition matrix element, F is the field
strength, and y is the quantum system's relaxation (de-
phasing) rate.

As a consequence of the Lorentzian character of the
Karplus-Schwinger line shape, the saturation-broadened
linewidth provides a good measure of "line-shape sharp-
ness, " and hence a good estimate of the spectroscopic
ability to find a saturated resonance's center frequency.
Though the actual measure of line-shape sharpness is the
line shape's second derivative evaluated at the resonance
frequency, in the case of a Lorentzian it is quite easy to
show that

shapes are expected to retain their Lorentzian character,
the Karplus-Schwinger linewidth formula, Eq. (l), has
the spectroscopic implication that in the saturation re-
gime the ability to find a resonance's center frequency de-
creases inversely to the field strength (i.e.,

QS"(vo ) —l /F).
In recent years some of the interest in saturation-

broadened line shapes has been directed towards extend-
ing the theory of collision broadening in strong fields to
situations where the impact approximation is not valid, '

and experimentally verifying the Karplus-Schwinger
linewidth formula in the optical regime. There has also,
however, been considerable interest in extending experi-
mental research into regimes where the assumptions of
the Karplus-Schwinger theory may be only marginally
valid. For example, power broadening has been exam-
ined in regimes where the radiation field bandwidth is
non-negligible. Additionally, deviations from the
Karplus-Schwinger linewidth formula have been ob-
served in solids; they have been observed when the de-
phasing rate 1/T2 is not equal to the longitudinal relaxa-
tion rate 1/T, and they have been observed when the
quantum system has more than just two levels. "

A significant assumption in the Karplus-Schwinger
theory is homogeneity of the field over the experimental
signal volume. However, for the real fields employed in
the laboratory this assumption is never rigorously
satisfied. Hence, a question arises as to the shape of sa-
turated resonances when this assumption is relaxed;
specifically, when the field shows significant inhorno-
geneity over the signal volume. This question is of more
than just academic interest, since the magnetic resonance
signal of atomic clocks and masers is often stimulated by
a specific microwave-cavity mode. In the present study
we therefore relax the assumption of field homogeneity,
and examine the resulting non-Lorentzian character of
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saturation-broadened resonances.
In the following sections attention will focus on the

spectroscopically important relationship between the
average saturating field strength and line-shape sharp-
ness. In Sec. II an experiment examining the saturated
line shape of an atom confined in the inhomogeneous field
of a microwave cavity will be described. As will be
shown, the saturated line shapes obtained in this experi-
ment differ markedly from the Lorentzian line shapes ex-
pected from the Karplus-Schwinger theory. Then in Sec.
III the results from a numerical simulation of the experi-
ment and its cavity mode field geometry will be presented
and discussed, as well as simulations of experiments em-

ploying other types of field geometries. The results from
these calculations will highlight those spatial properties
of the field that have a primary inAuence on the shape of
the saturated resonance. Finally, in Sec. IV, using the
conclusions of the previous sections, we will present an
approximate analytic solution to the problem of a sa-
turated resonance's line shape. The purpose of this sec-
tion will be to gain physical insight into why the saturat-
ed atomic resonance displays a non-Lorentzian shape.

present in order to both reduce the contribution of wall
collisions to the atomic systems's relaxation rate, ' and to
limit motional averaging of the field. The resonance cell
was placed inside a microwave cavity whose TE», mode
was resonant with the Rb 0-0 ground-state hyperfine
transition. The spatial variation of the TE», mode s axi-
al magnetic field component, which is the field com-
ponent responsible for exciting the 0-0 transition, is given
b 15

F, (r, p, z) =FoJ, (1.841rlR) cos(p) si n( 1zr/L), (3)

where J, (x) is a first-order Bessel function, R is the cavi-

ty radius, and I. its length; the radial and angular varia-
tions of this field mode are illustrated in Fig. 2. This par-
ticular cavity mode was chosen because the field
geometry has a nodal plane, which is a condition of
significant field inhomogeneity. As a result of the high
nitrogen density motional averaging of the field inhomo-
geneity was negligible. Under the experimental condi-
tions the atomic diffusion coefficient D had the value 1.4
cm /sec, ' so that the rms atomic spatial displacement 51

II. EXPERIMENT

In order to examine saturation broadening in the pres-
ence of inhomogeneous electromagnetic fields, at least
two conditions must be present in the experimental
design. Obviously, it is necessary that the field exhibit
sufficient inhomogeneity in order that the field's spatial
variations are manifested in the observed line shape. Ad-
ditionally, it is necessary that the atomic motion be
"slow" so that the atoms do not motionally average the
field inhomogeneities. Both of these conditions can be
met in experiments examining the 0-0 hyperfine transi-
tion line shape in optically pumped alkali-metal vapors.
Additionally, as a result of Dicke narrowing, ' Doppler
broadening does not confound the experimental results.

The experimental arrangement is shown schematically
in Fig. 1. Light from a Mitsubishi ML-4102 single-mode
diode laser, ' tuned to the D2 resonance of Rb at 780.2
nm, was allowed to pass through a —1 cm orifice in the
front face of a microwave cavity and into an atomic reso-
nance cell. The total output power of the laser at the D2
resonance was 2.5 mW, and it had a single-mode
linewidth (full width at half-maximum) of 44 MHz. Ad-

ditionally, in an attempt to probe atoms throughout the
cavity volume, the beam was made to diverge after pass-
ing through a lens; a beam diffusing element was placed
over the cavity orifice, and a photodiode for detecting the
transmitted light was placed inside the cavity. (The sen-

sitive area of the photodiode was approximately equal to
the cross-sectional area of the cavity. ) By centering the
cavity and resonance cell in a pair of Helmholtz coils,
which produced an axial static magnetic field of several
gauss, the ground-state Zeeman degeneracy was lifted so
that only the (m~=0)-(mF=0) hyperfine transition was

resonant with the cavity's microwave field.
A vapor of natural Rb (28% Rb and 72% Rb) in

equilibrium with a droplet of liquid metal at approxi-
mately 64'C was contained in a cylindrical Pyrex reso-
nance cell along with 100 torr of N2. The nitrogen was
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FIG. l. (a) shows the experimental arrangement. A diode
laser optically pumps Rb atoms contained in a Pyrex glass res-
onance cell. The resonance cell is located inside a microwave
cavity whose TE,» mode is resonant with the alkali-metal-
atom's ground-state 0-0 hyperfine transition. The microwaves
are supplied to the cavity through the chain of rf multiplication
and arnplification shown in the figure. (b) illustrates the per-
tinent energy levels of Rb. Depopulation optical pumping
creates a population imbalance (i.e., hyperfine polarization) be-
tween the alkali-metal ground-state hyperfine manifolds, which
is perturbed by the strong microwave field at -6835 MHz.
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was estimated as 0.17 cm (assuming a 10 msec dephasing
time T2 and taking 51=+2DT2); this is to be compared
with the microwave cavity's 2.7 cm diameter and 3.8 cm
length.

Microwave power was supplied to the cavity through
the chain of rf multiplication and amplification shown in
Fig. 1(a). Since the power entering the cavity is propor-
tional to the stored energy in the cavity, ' the attenuators
placed in the microwave path could be used to vary the
magnitude of the average field strength in a well defined
manner. Additionally, the frequency of the approximate-
ly 106.8 MHz rf coming from the voltage-controlled os-
cillator was ramped by a function generator, so that the
microwave frequency swept slowly over the 0-0 hyperfine
transition.

By tuning the diode laser to the D2 Rb transition
[5 P3&z(F=1,2, 3)—5 S,z~(F=2)] the atomic popula-
tion in the F=2 ground-state hyperfine manifold was
transferred by depopulation optical pumping into the
F =1 ground-state hyperfine manifold. ' In the absence
of microwaves at the appropriate frequency, this resulted
in a maximum for the light intensity transmitted through
the resonance cell. As the microwaves swept over the 0-0
hyperfine transition at 6835 MHz, atoms in the (F =1,
mF =0) Zeeman sublevel returned to the (F =2, m~ =0)

Zeeman sublevel, with the effect of reducing the transmit-
ted laser intensity. Since the atoms were locally confined
by the nitrogen buffer gas, the change in transmitted light
intensity associated with any particular region of the va-
por depended upon the local field strength in that region,
and the region s initial (equilibrium) population imbal-
ance due to optical pumping. The observed change in
transmitted laser intensity thus mapped out the full signal
volume's 0-0 hyperfine transition line shape as the mi-
crowave frequency was scanned across the hyperfine reso-
nance, and this line shape was recorded with a signal
averager.

An example of a saturated line shape obtained in this
experiment is shown in Fig. 3(a). Since the intrinsic
HWHM of the transition under the experimental condi-
tions was —1 kHz, the observed -25 KHz HWHM for
this experimental line shape implies a condition of ex-
treme saturation broadening. For comparative purposes
the figure also shows a Lorentzian line shape with the
same HWHM as the experimental line shape, and it is
clear even visually that the experimental line shape devi-
ates significantly from a Lorentzian. Specifically, the ex-
perimental line shape appears to be sharper than a
Lorentzian of the same linewidth. In order to quantify
the relative sharpness of the observed saturated reso-
nances, we define an "effective linewidth" 6v which is re-
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FIG. 2. This figure illustrates various spatial variations of the
microwave magnetic field's axial component (F, ); it is this com-
ponent of the electromagnetic field which is responsible for the
transitions between the rnF=O Zeeman sublevels of the alkali-
metal ground state. In (a) the radial variation of ~F, ~

is shown
for both a TE„, cavity mode (solid line) and a TEo„cavity
mode (dashed line) ~ For illustrative purposes the relative rms
atomic spatial displacement 51 discussed in the text is also
shown. (b) is a polar plot showing the variation of F, with az-
imuthal angle P for a TE», cavity mode; the TEO» mode has az-
imuthal symmetry, so there is no P dependence.
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FIG. 3. (a) shows the experimental saturated line shape ob-
tained from the TE»1 mode field geometry. (b) is a Lorentzian
line shape of the same half-width half-maximum (HWHM). It
is clear that the saturated line shapes obtained with the inhomo-
geneous field differ significantly from the Lorentzians predicted
by the Karplus-Schwinger theory.
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and

(4b)

Since a power-law relation should only be valid when the
intrinsic width of the saturated resonance is negligible,
the lowest field strength data were excluded from the
analysis (since the intrinsic linewidth must be less than or
equal to this value).

The data of Fig. 4 support the previous qualitative con-
clusion that the observed line shape is sharper than a
Lorentzian of the same half-width. This is illustrated in
Fig. 4 by the fact that the effective linewidth is always
smaller than the HWHM. Additionally, the data show
that the HWHM and the effective linewidth increase at
different rates as the magnitude of the average field
strength increases. As evidenced by the values of a and P
given in the figure, it appears that the HWHM increases
in a nearly linear fashion with the field strength (a —l),
consistent with the Karplus-Schwinger theory, while the
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FIG. 4. Plot of the experimental HWHM (Av) and effective
linewidth (6v) vs average field strength (F). The data were fit

to power-law scaling relations to determine the values of the ex-
ponents shown in the figure.

lated to the resonance line shape's second derivative
through Eq. (2) [S"(vu) was obtained from the line-shape
data stored in the signal ave rager by numerical
differentation]. In essence 6v is the linewidth of the
Lorentzian that approximates the experimental line shape
near line center, so that in regimes where the Karplus-
Schwinger theory is valid, one would have Av=6v.

The results of this analysis are shown in Fig. 4, where
the effective linewidth (6v) and the HWHM (b,v) are
plotted as a function of the average field strength in the
microwave cavity. The straight lines represent least-
squares fits to the data, assuming a power-law scaling re-
lation between linewidth and field strength

(4a)

effective linewidth exhibits a square-root dependence on
field strength magnitude (P- —,

' ).
Naively, these results might be taken as strong evi-

dence that field inhomogeneity has a pronounced effect
on the saturation-broadening behavior of experimental
line shapes. However, it is important to mention that the
high nitrogen density used in this experiment has a fur-
ther consequence for the observed line shape. It is well
known that as a result of the strongly relaxing glass sur-
face, the presence of a buffer gas results in spatial modes
for the population imbalance between the two hyperfine
manifolds. ' Consequently, not all spatial regions within
the field contribute to the observed line shape to the same
degree. Hence, the experimentally observed line shape is
a manifestation of two inhomogeneities: one due to the
field, and the other due to the equilibrium population im-
balance (i.e., the population imbalance between the two
states in the absence of the microwave field). At this
point in the discussion we can only suggest that the ob-
served saturation-broadening behavior is associated with
the field's inhomogeneity. In the next section we will ad-
dress this problem with a series of numerical simulations
of the experiment. Our method will be to unravel the
various spatial variations that might give rise to this be-
havior, and to see separately the effect of each on the
macroscopic line shape.

III. NUMERICAL SIMULATION

The numerical simulation of the preceding 0-0
hyperfine transition line-shape experiment has been ex-
tensively discussed in previous publications. ' ' There-
fore, only a brief description of the simulation, highlight-
ing some of its salient features, will be given here. In the
calculations the relevant gas-phase physics occurs on two
different scales. On the microscopic scale, the line shape
is determined by the generalized Vanier theory. " This
density-matrix theory describes the multi-Zeeman level
optical pumping process which results in the alkali-metal
hyperfine polarization (i.e. , the population imbalance be-
tween the two hyperfine manifolds), and yields a
Lorentzian 0-0 hyperfine transition line shape, with a
HWHM that depends on the field strength in a fashion
analogous to Eq. (l). However, since atoms in different
regions of the cavity experience different microwave-field
strengths, and since atomic diffusion through the molecu-
lar buffer gas yields spatial modes of hyperfine polariza-
tion, ' the microscopic response to the field varies on the
macroscopic scale of the field's and polarization's spatial
distributions.

In practice the observed (macroscopic) line shape is
calculated by dividing the cylindrical cavity volume into
thousands of small tubes, minimally 4300, and calculating
the total optical power transmitted by these tubes as a
function of microwave frequency. The tubes are chosen
to have a small diameter so that variations of field

strength and hyperfine polarization across the tube face
are not appreciable. Thus, for an individual tube the only
spatial variation in either the field or the hyperfine polar-
ization is an axial one. Each tube is associated with an
appropriately normalized field strength value, so that any
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particular transverse geometry for the. field may be con-
sidered in the calculations. To account for the transverse
spatial distribution of hyperfine polarization, an ap-
propriate weighting function is superimposed onto the
generalized Vanier theory solutions for each tube. For a
given microwave detuning from resonance, and a given
microwave field energy in the cavity, the optical power
transmitted through each tube is determined by assuming
a Bouger-Beer-Lambert law for optical attenuation:
I -Ioexp (

—[X]oL ). Here, [X] is the average number
density of absorbers in the tube of length t., which is a
function of the axial distribution of microwave-field
strength and hyperfine polarization. The optical powers
transmitted by the tubes are then summed, which yields
the observed signal amplitude for the specific microwave
frequency detuning from resonance.

Considering the cases of a TE&&& cavity mode, and us-

ing other parameters appropriate to the previously de-

100 I I I I I I I 'I

10—

scribed experiment, Fig. 5 provides several examples of
calculated line shapes for dj6'ering values of the average
cavity mode field strength (F). (Nearly all the parame-
ters required by the numerical simulation are measured;
the only free parameters in the calculations are the mi-
crowave power entering the cavity and the cavity Q.) It is
clear that as the average field strength increases, the
HWHM increases, as observed experimentally. Addi-
tionally, for increasing values of (F) the line shapes
display a growing deviation from the Karplus-Schwinger
Lorentzian character. In particular, at the very highest
value of ( F ) the resonance has a cusplike appearance,
implying that the second derivative of this line shape is
comparatively large given its HWHM (i.e., 5v &( b, v).

To quantify the growing non-Lorentzian character of
the saturated resonances, Fig. 6 shows the calculated
HWHM and effective linewidth as a function of average
field strength. The solid lines correspond to least-squares
fits of the numerical data, and give exponents for the
power-law scaling relations. Comparing Figs. 4 and 6 it
is clear that there is reasonably good agreement between
theory and experiment. In particular, the theoretical
HWHM shows a nearly linear dependence on field

strength, while the effective linewidth shows an approxi-
mately square-root dependence on field strength.

These theoretical results indicate that the source of the
line-shape's non-Lorentzian character is properly
modeled by some portion of the numerical simulation.
Therefore, by examining the simulation s predictions un-

der alternate fictitious" conditions, where the various
spatial distributions are eliminated one by one, it should
be possible to uncover this portion of the numerical simu-
lation, and hence the source of the observed line shape
behavior. With this as a goal, several sets of calculations

1.0—

0.5—

0.0
-100 -50 0 50 100

FIELD FREQUENCY DETUNING (kHz)

(c)

FICx. 5. Theoretical line shapes for three different values of
the microwave power supplied to a TE„, cavity mode (cavity Q
was set equal to 100): (a) microwave power is 0.001 rnW, (b) mi-

crowave power is 0.1 rnW, and (c) microwave power is 10.0
mW. Since the average field strength in the cavity is propor-
tional to the square root of the power. (a)—(c) represent a factor
of 100 change in the average field strength. Note that as the

average field strength increases, the line shapes exhibit an in-

creasing deviation from a Lorentzian shape.
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FIG. 6. Plot of the theoretical HWHM (Av) and effective
linewidth (fivl vs the average field strength (F). The calcula-
tion is for the specific case of a TE», mode field geometry, as
was used in the experiment. The numerical data were fit to
power-law scaling relations to determine the values of the ex-
ponents shown in the figure.



74 J. C. CAMPARO

were thus performed. In the first set we considered the
same experiment, except that the axial field component of
the TE]» mode was only allowed to exhibit an angular
and axial spatial variation [i.e. , we removed the radial
dependence of the field from the calculations so that
F,(r, g, z)~F, (i/i, z)]. Similarly, in the second set we

only allowed the field of the TE», mode to vary along its
radial and axial dimensions [i.e., we removed the angular
dependence of the field from the calculations so that
F,(r, g, z)~F, (r, z)]. Then in the third set we removed
both the radial and angular field variations from the cal-
culations, so that the field of the TE», mode had only an
axial spatial variation [i.e., F,(r, i/i, z)~F, (z)]. In all of
the calculations the spatial distribution of hyperfine po-
larization was the same as that used in the previous TE»,
mode simulation of the experiment.

The power-law exponents obtained from these fictitous
simulations are collected in Table I, while Fig. 7 shows
both 6v and Av as a function of average field strength for
the F,(g, z) and F, (z) calculations. The dashed-dotted
line and circles correspond to calculations of Av and 6v,
respectively, for the F, (z) calculations, while the dashed
line and triangles correspond to F, (g, z) calculations of
Av and 6v, respectively. From Table I it is clear that the
square-root dependence of 6v on field strength is a conse-
quence of field inhomogeneity: as the field becomes
homogeneous in the simulations, /3 approaches unity.
Additionally, the simulations indicate that the —,

' value of
/3 is primarily associated with the radial and angular field
variations, and also that the —,

' value of /3 is more tightly
coupled to the angular field variations than to the radial
field variations (i.e. , in the simulation where the radial
field variations are removed /3 only increases by 0.04, but
when the angular field variations are removed /3 increases
by 0.17). Csiven that a field node implies a strong degree
of field inhomogeneity, these observations are consistent
with the hypothesis that the source of the saturated line
shape's non-Lorentzian character is somehow associated
with nodes in the field distribution.

With this hypothesis one would argue that the angular
field variation is particularly important in determining
the value of /3, since this spatial variation yields a nodal
plane for the field. The radial field variation might be
viewed as somewhat less important, since it only results
in a nodal field line. Both transverse variations could,
however, be expected to yield significant departures from

TABLE I. Linewidth power-law exponents for different sa-

turatiug electromagnetic field geometries: b, v —( F ) ",
fiv —(F)~. In the calculations the field was allowed to vary

over the given spatial dimensions.

Condition

4.0—
hv for F,(@,z)

hv for F,(z)

z v for Fz(+ z)—.—~v for F,(z)

5 3.0

2.0 —2

l 0 Q
~ o [Average Field Strength (arb. units)1

FIG. 7. Plot of the theoretical HWHM (Av) and effective
linewidth (fiv) vs the average field strength (F). The dotted-
dashed line and circles correspond to b v and 5v calculations,
respectively, for the fictitious TEtll F,(z) mode; the dashed line

and triangles correspond, respectively, to Av and 6v calcula-
tions for the fictitious TE», F, (g, z) mode. The numerical data
were fit to power-law scaling relations to determine the values
of the exponents given in Table I.

IV. ANALYTIC APPROXIMATION

the predictions of the Karplus-Schwinger theory. Alter-
natively, since the field nodes arising from the axial varia-
tions occur at the cavity boundaries, where no resonance
signal is generated due to the strongly relaxing wall col-
lisions, one would not expect axial variations to
significantly alter the /3=1 prediction of the Karplus-
Schwinger theory.

If this conjecture on the role of field nodes is correct, it
should be possible to make qualitative predictions on the
value of /3 for field geometries other than the TE», mode.
Consequently, in our final numerical simulation we con-
sidered a field geometry corresponding to a TED» cavity
mode, which differs in basically two ways from the TE».
cavity mode: (i) as shown in Fig. 2(a) the radial nodes of
the TE„ii mode (axial field component) are at r ) 0, so
that there is a nodal surface in the cavity due to the radi-
al field distribution; and (ii) the axial field component of
the TEo& i mode has azimuthal symmetry. For both cavi-

ty modes, however, the axial field components exhibit the
same axial variation of sin(irz jl.). If the field node con-
jecture were true, one would expect to obtain a value of /3

from the simulation roughly equal to 0.5, and as recorded
in Table I this was indeed the case. The numerical simu-
lations thus strongly suggest that field nodes somehow
lead to significant deviations from the Karplus-Schwinger
theory of saturation broadening, and in the next section
the specific role of field nodes in this regard will be ad-
dressed.

TEl 1 1

TE& 1 1

TE
TEo 1 1

Experiment
mode calculation: F, (r, g, z)
mode calculation: F, (g, z)
mode calculation: F, (r, z)
mode calculation: F, (z}
mode calculation: F, (r, z)

Analytic analysis

0.93
0.94
0.90
0.89
0.98
0.80

0.57
0.46
0.50
0.63
0.84
0.45
0.50

In order to gain physical insight into the behavior of
6v, which is the quantity of spectroscopic importance, we
will consider in this section the one-dimensional problem
of an ensemble of two-level atoms interacting with an in-

homogeneous saturating electromagnetic field as illustrat-
ed in Fig. 8. We assume that the spatial motion of the
atoms is "slow, " so that during a time interval on the or-
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x
S(v) =2 dx,

[y +co, (x) + ( v —vo) ]

b, n (x)= n', (x) n~(x—),

(6a)

(6b)

where n,'(x) is the equilibrium population density in the
i'" state at the position x; cu, (x) is the Rabi frequency at
the position x, which specifies the local strength of the
field-atom interaction [coi(x) =pF(x)/h], and vo is taken

l

I

I I

I

der of the atom's dephasing time, the atom interacts with
the strong field only in some small localized region.
Thus, the signal as a function of field frequency is just the
integral of the one-dimensional signal density s( v, x ):

S(v) =2f s(v, x )dx .
0

Additionally, we will allow the equilibrium population
difference between the two levels (Ni —Nz ) (i.e. , the pop-
ulation difference between the two levels in the absence of
any field) to be a function of position. Thus, taking the
observed signal to be proportional to the increased popu-
lation in the excited state, and assuming that on the local
(microscopic) level the Karplus-Schwinger theory is ap-
propriate for describing the strong-field interaction of the
atoms, we have

to be independent of x (no inhomogeneous broadening ).
It is clear that given the form of Eq. (6a), saturated reso-
nances with Lorentzian line shapes need not be observed
experimentally, except under very special circumstances.
Consequently, in order to characterize line shape sharp-
ness we again employ the effective linewidth 6v which is
related to the resonance line shape's second derivative
through Eq. (2).

Rewriting and differentiating Eq. (6a) with respect to
frequency we find that

X
$(vo) =2f b, n(x)a), (x)/[y +co,(x)]dx, (7a)

0

and

S"(vo)= —4f bn( x)co, ( x)/[y +coi(x)] dx . (7b)

Note that if the Rabi frequency is independent of x, then

(y2+ 2)1 /2

and the effective linewidth increases in proportion to the
field strength (when co, ))y ) as expected for a homogene-
ous field. In the case where the Rabi frequency is not
constant, however, the functional relationship between 6v
and field strength is much less transparent.

To obtain such a relationship the first task is to com-
pute S ( vo), and we begin by defining the ensemble aver-
age equilibrium population difference between the two
atomic states,

(bN) = f b, n(x)dx . (9)
0l—

CC

C/0

C3

One then finds that

S( )v=o2(AN ) —2y f hn(x)/[y +co, (x)]dx . (10)

—
Xp

!

0

POSITION

Xp

We next define a position xo —
A, =g in the field such

that the Rabi frequency at this position equals the atomic
relaxation rate [i.e. , co, (x =g) =y]. In this way we have
the general conditions that

if!x!&!g'! then co,(x)/y) 1

and

if Ixl & lgI then co, (x)/y &1.

ur) ——p(F
~

lh

Splitting the integral of Eq. (10) into two parts, corre-
sponding to the two different spatial regions defined
above, we have

S(vo) =2(AN ) —2y f bn(x)/[y +co&(x)]dx
0

2y f hn( —)/[xy +co, (x)]dx .

FIG. 8. (a) One-dimensional field geometry used in the ana-
lytic analysis of saturation broadening by inhomogeneous fields.
The quantities xo, g', and A, are described in the text. (b)
Energy-level diagram of the simple two-level quantum system
used in the analytic analysis.

Here, the first integral accounts for the signal generated
in the saturated spatial region of the ensemble, and the
second integral accounts for the signal generated in the
unsaturated region. Note that the first integral contains
terms of order [y/co&(x)]2 or higher, so that the magni-
tude of this term will be dominated by the spatial region
where co, -y. If the spatial extent of this region is rela-
tively small, then the first integral makes a negligible con-
tribution to the signal amplitude, and we have
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S(vo)=2(AN) —2y f An (x)/[y' +co, (x)]dx .

Physically, Eq. (12) indicates that the shape of the sa-
turated resonance near line center is dominated by the
unsaturated spatial regions of the ensemble.

We can narrow the limits of integration in Eq. (12) fur-
ther by noting that for x )xQ the Rabi frequency is zero.
Thus, by defining a term A,

A—:(AN ) —f An (x)dx,
xo

(13)

we have finally

XO

S(vo) =2A 2y—f An (x)/[y +co,(x)]dx . (14)

To proceed further, we write the Rabi frequency as the
product of the average field strength (F ) and a function
describing the spatial distribution of the field f (x):

) =(~/h)(F )y( (15a)

f f(x)dx/X=1 .
Q

Expanding cubi(x ) in a Taylor series about xo we then have

(15b)

co,(x)=(p/h)(F)[f (xo)+(x —xo)f'(xo)+ . ] . (16)

and as a consequence

k = —h y /( p ( F ) r) ), (18)

where r) =f'(xo) (evaluated in the case of Fig. 8 from the
direction of increasing ~x~ ). The value of A, (i.e. , the spa-
tial extent of the unsaturated signal region), and hence
the range of integration in Eq. (14), is thus found to be a
monotonically decreasing function of the average field

strength. Physically this corresponds to the fact that as
the field strength increases, the unsaturated spatial region
of the ensemble decreases in size. It is this phenomena
that has important consequences for the shape of saturat-
ed resonances when the saturating field is inhomogene-
ous.

If we now assume that An (x) is a slowly varying func-
tion of position over the range g &x &xo, then we can re-

place A, n (x) by its value at xo. The resulting integral is

easily evaluated, and we find that

S(vo) =2A —rrh y An (xo )/2p(F )g . (19)

The evaluation of S"(vo) proceeds along very similar
lines, yielding

S"(vo) = —(3~+2)h An ( x)oI p2(F ) r)y. (20)

Thus, using Eqs. (19) and (20) in Eq. (2) we obtain the
effective linewidth 5v in the case of an inhomogeneous sa-
turating field,

fiv= v 2y/(3vr+2)[4Ap(F) r)/h An (xo) ny]'~, (21)—
which yields in the limit of very strong fields

For the case where xQ corresponds to a node in the field

strength distribution, as in the case considered here,

cu, (x) = (p/h )(F ) (x —xo )q,

6v-(F)" (22)

This result is exactly the line-shape behavior that we were
attempting to explain. From the above derivation it is
now clear that deviations from the Karplus-Schwinger
prediction of P= 1 arise because the line shape near line
center is dominated by the unsaturated atomic popula-
tion, and because the spatial region containing this popu-
lation shrinks in size as the average field strength in-

creases. With regard to Av, since the above derivation
suggests that saturated atomic population contributes
primarily to the wings of the line shape, one would expect
e) 0.5.

V. SUMMARY

In this paper we have examined the line shape of sa-
turated resonances when the atoms cannot motionally
average an inhomogeneity that may be present in the sa-
turating field. The results of this study show that under
these conditions the saturated line shape is non-
Lorentzian, and that the central portion of the resonance
is primarily determined by those spatial regions of the
field where the atoms are not yet saturated. Consequent-
ly, the observed resonance line shape is sharper than
would be expected from the Karplus-Schwinger theory.
By defining an effective linewidth 5v, which is the
linewidth of a Lorentzian that approximates the central
portion of the resonance, the line shape's sharpness can
be quantified and examined as a function of saturating
field strength (i.e., 6v-(F)~). For the specific case of
nodes in the field's spatial distribution, we find that
g-0. 5, as opposed to f3= 1.0 which is the value expected
from the Karplus-Schwinger theory.

These results have important consequences for pre-
cision spectroscopy, especially in the area of atomic
clocks where atomic signals are generated throughout the
volume of some microwave cavity. Since the ability to
find resonance line center can be quantified by a parame-
ter which is inversely proportional to the effective
linewidth, the above results suggest that precision spec-
troscopy may not be as adversely affected by high intensi-
ty, inhomogeneous fields as one might expect given
the Karplus-Schwinger theory (i.e. , for an inhomo-

geneous field with a node, QS"(vo) —1/v'F ). For ex-
ample, with a homogeneous field the Karplus-Schwinger
theory predicts that an increase in radiation intensity
(i.e. , field energy) of 100 results in a factor of 10 loss in
the ability to find resonance line center; however, if an in-
homogeneous field has a node in its spatial distribution,
then a 10 increase in radiation intensity is required in or-
der to degrade this spectroscopic ability by the same fac-
tor of 10. (Of course in this simple example we have ig-
nored the question of ac Stark and Bloch-Siegert shifts,
which is an entirely different aspect of the
inhomogeneous-field problem in spectroscopy. )

In one sense then, the above results indicate a further
important restriction on the validity of the Karplus-
Schwinger theory of saturation broadening. Regarded in
a broader context through, the above results can be seen
as an example of a class of phenomena that arises when
one studies the field-atom interaction with real fields.
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Real fields are never perfectly homogeneous, and the in-
homogeneity can have important consequences for the
outcome of many field-atom interaction experiments. In
this regard it is worth noting that spatial field variations
can play an important role in photoionization experi-
ments, and caution must be exercised in the evaluation of
multiphoton ionization cross sections in the absence of
field inhomogeneity information. ' In this broader
context the present results similarly indicate how micro-
scopic field-atom interactions are not always simply
rejected in macroscopic experimental line shapes, when

field inhomogeneities are present.
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