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Cooperative effects in a system of three-level atoms in cascade configuration interacting with in-
tense resonant fields are investigated. Analytical expressions for atomic -populations in the excited
levels, fluorescence intensities, and normalized intensity correlations are presented. The intensity
correlations are used to test the violation of the Cauchy-Schwarz inequalities. The analytical results
predict in the cooperative limit N— o, a discontinuous behavior of all atomic observables with
respect to a parameter related to the field amplitudes and the atomic decay coefficients. This
discontinuous behavior is analogous to a typical nonequilibrium first-order phase transition.

I. INTRODUCTION

Cooperative behavior of a system of atoms interacting
with common coherent field and the vacuum of radiation
is a subject of continuing interest in quantum optics. In
particular, superradiance and superfluorescence have re-
ceived a considerable theoretical and experimental atten-
tion' 73 since Dicke' first introduced the concept of col-
lective spontaneous emission. For a system of N excited
atoms, the signature of superradiant emission is an inten-
sity proportional to N the release of energy takes place
with a delay which is proportional to 1/N and within a
short time 7/N, 7 being the natural lifetime of the excited
state. In contrast, independent emission of spontaneous
photons would give a linear dependence on the number of
excited atoms. Cooperative emission from a Dicke super-
radiant state is analogous to the radiation emitted from a
classical dipole prepared by an initial phasing of the
atomic state.

The first experimental demonstration of superradiance
was made in optically pumped HF gas by Skribanowitz
et al.> This and subsequent experiments® ° essentially
involved a creation of a totally inverted state of two-level
atoms by incoherent excitation from a three-level
configuration. With complete initial inversion there is no
initial macroscopic polarization, instead it must build up
from the quantum noise of spontaneous emission. Dicke
superradiance from such an inverted sample is known as
superfluorescence!! and all experimental observations are
of this type. Also, all observations pertain to samples
with linear dimensions that are large compared with the
wavelength A of the emitted radiation. Dependence of
superradiance on the shape and size of the sample was
pointed out by Dicke' and several others.!>”!* The
relevance of optically thick samples in order that
coherent decay prevails over the incoherent decay has
been emphasized by Friedberg and Hartman.'®

These experiments®”° established the general proper-
ties of superfluorescence, viz., that the pulse intensities
proportional to N? and pulse delays proportional to 1/N.
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However, the emitted radiation showed interesting new
features like strong reshaping, ringing, and frequency
chirping which could be attributed to ‘“nonlinear propa-
gation and diffraction” aspects'® 7192627  of the
phenomenon not considered in the early theoretical pa-
pers.!®11.20.21 More specifically, the experimental results
could be interpreted by the semiclassical propagation
model*!® based on the coupled Maxwell-Bloch equations.
The semiclassical predictions were later confirmed by the
quantized-field treatments??”2* of superfluorescence
which rigorously included propagation effects along with
the quantum initiation process. On the other hand,
mean-field theory!®!! which excludes propagation effects
failed to interpret the experiments’”® which showed
strong ringing and could not explain quantitatively even
the single pulse observations®® subsequently made on cesi-
um atomic vapor.?® The suppression of ringing in the
later experiments’® was accounted for by further
refinement of semiclassical propagation models which in-
cluded transverse effects (non-plane-wave field varia-
tions).?” Several review articles surveying the theoretical
models?® and comparing in detail the theoretical predic-
tions and experimental observations? ™32 exist.

All reported experiments on superfluorescence utilize
optical pumping on a manifold of a minimum of three
atomic or molecular energy levels to create an inverted
population of two-level atoms. Apart from the mean-
field analysis of Bowden and Sung,** most of the theoreti-
cal papers deal with the relaxation process from a
prepared state of complete inversion in a two-level mani-
fold of atomic energy levels. Theoretical analysis includ-
ing coherent pump dynamics initiation was first present-
ed by Bowden and Sung?* and Sobolewska.’® This work
has been the forerunner of subsequent more complete
analysis of three-level superfluorescence including the
dynamical and propagational aspects of the é)ump field
discussed in a recent article by Matter et al.>® A theory
supporting the experimental observations of Florian
et al.¥” on two-color superfluorescence has been dis-
cussed by Haake and Riebold.®® Further, a stochastic
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theory of cooperative cascade emission interpreting the
experimental observations on two-photon excited lithium
vapor has been developed by Ikeda er al.** Also,
cooperative effects in stimulated Raman scattering in-
cluding the propagation effects and their consequences on
the superfluorescence from the Stokes transition have
been reported.*

An extension of the Dicke model for superradiance is
widely used*! 73! to discuss cooperative resonance fluores-
cence. Here N two-level atoms are confined to a volume
of dimension smaller than the radiation wavelength and
coherently driven on resonance by an intense laser light.
Incidentally, resonance fluorescence from a single
coherently driven two-level atom shows some predom-
inantly quantum features, viz., the dynamical Stark effect
reflected in the triplet fluorescence spectrum,’? anti-
bunching and subPoissonian photon statistics,>® and
squeezing.”* Cooperative resonance fluorescence com-
bines both resonance fluorescence and collective decay.
While superradiance is a transient effect, the long-time
evolution drives the atomic system to a steady state in the
present case. Further, the continuous presence of the
driving field includes a phased dipole moment. At first
sight, classical radiation from this collective dipole would
imply fluorescent intensities proportional to N2. This ex-
planation, however, holds only for low fields. At
sufficiently high laser intensities, the N-atom system is sa-
turated and in this limit the mean dipole moment van-
ishes; the persistent N? dependence of the fluorescent in-
tensity arises from the quantum fluctuations as in the
case of superradiance. Indeed, the theoretically predict-
ed*+*48 phase transition® at ©=2Q/Ny=1 2Q is the
Rabi frequency; 2y is the Einstein A coefficient) distinct-
ly shows the onset of saturation in the collective dipole
moment and the subsequent role played by quantum fluc-
tuations into the underlying dynamics. However, just as
in superfluorescence, modifications in this simple picture
would be expected due to dipole-dipole interactions and
geometric or propagational effects. The consequences of
dipole-dipole interactions for a special symmetric ar-
rangement of an arbitrary number N of atoms in a sam-
ple?® are known.’®” It has been shown®®>” that dipole-
dipole interaction even in this restricted case may, under
certain conditions, alter the nature of the phase transition
from being of second order to first order.

More recently, collective effects in resonant Raman
scattering of intense optical waves have been discussed by
Bogolubov et al.’® Their model essentially considers a
point Dicke model of three-level atoms in Raman
configuration with two coherent fields resonantly driving
the Rayleigh and Stokes transitions. In this paper, we
have formulated a theory of collective effects in a system
of N three-level atoms in cascade configuration continu-
ously interacting with two intense resonant fields. We de-
scribe the system by means of the quantum-mechanical
master equation and employ the secular approximation
valid for strong fields. The resulting approximate master
equation admits a steady-state solution. This solution is
used to derive analytical expressions for the steady-state
fractional atomic populations in the excited levels, nor-
malized intensities, and normalized-intensity correlations.

In the cooperative limit N — o, these atomic observables
are found to show a discontinuous behavior with respect
to a parameter X related to the amplitudes of the two
driving fields and the coefficients for the spontaneous
emission from the two excited levels. This discontinuous
behavior is similar to a nonequilibrium first-order phase
transition.

The expressions for the intensity correlations are fur-
ther used to study a nonclassical feature of cascade emis-
sion, viz., the possibility of violating the Cauchy-Schwarz
(CS) inequality.” Incidently the violation of CS inequali-
ty has been observed by Clausser® in the two-photon cas-
cade emission in an optical double-resonance experiment.
This effect has also been predicted in the two-photon
laser® and parametric amplifiers.®>% Our analysis pre-
dicts a strong violation of the CS inequality over a regime
of the parameter X for all finite N as previously report-
ed.** The inequality continues to be violated even in the
cooperative limit N — c. Thus, unlike antibunching, the
violation of the CS inequality persists even for a large
number of atoms and, in that sense, appears to be a mac-
roscopic quantum effect.

In Sec. II, we present the basic formulation leading to
the derivation of the master equation in the high-field
limit and its steady-state solution. Sec. III is devoted to
the derivation and discussion of the analytical expres-
sions for the steady-state values of the atomic populations
and their fluctuations, fluorescent intensities, and
intensity-intensity correlations. Finally, some concluding
remarks are added in Sec. IV.

II. BASIC MASTER EQUATION

We consider a system of N identical three-level atoms
in cascade configuration shown in Fig. 1. The atomic
transitions |2) to |1) and |3) to |2) are resonantly
driven by two single-mode continuous-wave (cw) lasers of

13)

FIG. 1. Schematic diagram of a three-level atom interacting
with two resonant fields.
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respective Rabi frequencies 2a; and 2a,. The Einstein

coefficients A; and A4, for spontaneous emission from

the upper (/1)) and lower (|2)) excited levels are denoted

by 2y, and 2y,, respectively. We assume that the aver-

age distance between the atoms is such that the system of

N atoms can be described by collective operators
A, =§ Al

where 4,/ is the operator |i ), (| for the /th atom. The

collective operators obey the commutation relations

[Aij’ Ayl= Ailsjk =&y Ay

(2.1)

(2.2)

and the conservation condition ¥; A; =N. The master
equation describing the stimulated and spontaneous tran-
sitions for the collective system can be obtained in the

standard way® and reads as
d .
;g*z_I[HO’P]-Yl(A12A21P+PA12A21_2A21PA12)

Vo Ay AypptpApdy—245p4,) , (2.3)

where p is the reduced atomic density operator and H is
the effective Hamiltonian given by ‘

H():al(A]2+A21)+az(A23+A32). 2.4)

The master equation (2.3) involves the usual electric di-
pole and rotating-wave approximations. Further, the
Born and Markov approximations with respect to the in-
teraction with the continuum modes of the radiation field
are inherent in the derivation. Lastly, the equation is
written in a frame rotating with respect to the laser fre-
quencies.

This equation cannot be solved analytically, in general.
A considerable simplification arises if we assume the
fields to be strong. In this case, it is convenient to go to a
dressed-state picture and derive an approximate equation.
For this purpose, we introduce the dressed states which
are n(ol)rmalized eigenstates of the single-atom Hamiltoni-
an Hy',

HY =2 4

Diagonalizing the Hamiltonian H{’, we can obtain ex-
plicitly the dressed states,

W)y =",01),—T13),, A,=0

(2.5)

5 == (DD £ [2), 4113, 2, =20
(2.6)

J

where Q=(a?+ad), I ,=a;,/Q. We may therefore
write

3
li), = > Uij"/’;‘”) >
j—1

3 (2.7)
"y =3 Uli)
j=1
where the transformation matrix U is given by
r, r,/vV2 /"2
u={0 1/V2 —1/V2 (2.8)

-T, T,/V2 TI,/V2

Note that the transformation matrix is real and orthogo-
nal.

We now define the dressed operators B/ for the Ith
atom and the collective operators B;; as

B[(j”= [¢$1)>(¢;1)| ,

= (n
By=3 B} .

(2.9
(2.10)

The new collective operators B;; satisfy the same commu-
tation relations and the closure property as the old opera-
tors A4;;. The transformation between the A4,; and B;
operators reads as

A4;=3 Uy UyBy, , (2.11)
P
B;=3U,Uj; Ay . (2.12)

k1

It is important to point out here that under the collec-
tive Hamiltonian H,, the operators B;; evolve in time as

B;;()=B,;(0)exp[i(A; —A,)t]. (2.13)

The diagonal operators B, are then slowly varying in
time while the off-diagonal operators B;; (i) are rapid-
ly oscillating in time. Hence, under intense field condi-
tion, that is, when Q>>Ny,,Ny,, we may insert the
transformation (2.11) into (2.3) and neglect the rapidly os-
cillating terms (secular approximation) to arrive at the
approximate master equation

%% =—iQ[Q,p]—e([Q,0p]+[pQ,21)—([By3,B3,,p1+[pB,3, B3, 1+ [B3;, Bysp]l +[pB3y, B3 1)

—f1([By1,Bp]+[pBy1,B 1,1+ [ B3y, B13p] +[pB3y,B 13 ])

—f2([B13,Bypl+1pB s, By 1+ [By;3,B3p]1+[pB13,B5 1), 2.14)
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where
Q=B,,—Bj;, (2.15)
e=(y,[+y,I3) /4, (2.16)
_Vzrf _Vlr%
fi= 5 [T (2.17)

The steady-state solution of the master equation (2.14)
is obtained by using detailed balance. It has the form

SS = (2.18)

p ~lexp( —uBy),

which has also been obtained in Ref. 66. Inserting (2.18)
in the steady-state form (dp/dt=0) of Eq. (2.14) one
determines u, while D is obtained by the requirement
Trp3S=1. Hence, u and D are given by

fa

1

pu=In , D=Tr[exp(—uB,;)] . (2.19)

The analytical expressions for the various physical
quantities of interest presented in the subsequent section
are based on the steady-state solution (2.18) of the ap-
proximate master equation (2.14). Note that the assump-
tion of the intense field limit is inherent in our results. A
correction to these results will be of the order of
(Ny /Q)* where v is the larger of 7,,7,. It is clear from
the nature of the steady-state solution that the expecta-
tion values of all off-diagonal products of B;; operators
will vanish. The expectation values are obtained by in-
troducing the collective states®’ |N,n,,n,) correspond-
ing to SU(3) algebra of the dressed operators. Here, in
the state |N,n,n,), rn, atoms are in the dressed state
[$,), ny—n, in the state |¢,), and N —n, in the state
|45). The matrix elements of the collective operators can
be obtained from the set of relations

B IN,n,ny)=n|N,n;,n,) ,
By, IN,n\,ny)=(n,—n)IN,n;,n,) ,

B33!N,nl,n2>=(N—n2)]N,n1,n2) ’
(2.20)

By,IN,ny,ny)=[(ny—n)n,+D1"2N,n,+1,n,) ,
B3IN,ny,ny ) =[(N—n,)(n,+1D]"?N,n,+1,n,+1) ,
B,y IN,ny,ny ) =[(N—ny)n,—n;+1)]'"?|N,n;,n,+1).

Also, for a given N, the allowed values of n,, n, are
n,=0,1,2,...,N while n,=n;, n;+1,...,N. In par-
ticular, it is easy to derive the following results:
N N n
D=3 ¥ x'
ny=0n,=n,
_(N+D—(N+2)x+xV*2
(1-X)? ’

(2.21)

<B;1>=ilx#"—JD,

D X (2.22)

where

Y2

e

71

a,

X=e (2.23)

a

We may also note here some explicit results for X=1
which are used in the next section:

D=LN+1)N+2), (2.24)
N +1
(B]1>:-3_, <B%1 >=_1X(‘E6__—) ) (2.25)
(B}, )=3%N(3N2+6N+1) ,
) (2.26)
(B}, =%N(N+1)(2N2+4N—1).
It is also straightforward to show that
(B 0, X<I1
Jim IR 2/[(n+1)(n+2)], X=1 .27
- 1, X>1

for all n. This discontinuous limiting behavior of the ex-
pectation values of the powers of the dressed operator
(B,;/N) results in the corresponding discontinuous be-
havior of the atomic observables discussed in the subse-
quent section.

III. STEADY-STATE EXPECTATION VALUES
AND COOPERATIVE LIMITS

In this section we discuss the steady-state behavior of
the atomic populations in the upper and lower excited
levels, the corresponding fluorescence intensities G {',G 5"
and the intensity correlations g,»(jz’(O). All these quantities
can be expressed in terms of the expectation values of
various powers of B,,. Further, they are functions of X
and also depend on the ratio B=1y,/y,. We shall also ex-
amine and discuss the limiting behavior as N — o0.

A. Atomic populations and fluctuations

The expectation value of the diagonal operator A;
yields the population in the ith level. According to Eq.
(2.11)

<Aii>:2UikUik<Bkk> .
k

The fractional populations in the upper and lower excited
levels are given by

<A|1>_ 1 1_(Bll> X+2<B”)
N  2(1+BX) N [P N ’
(3.1)
<Azz>_1 <Bu>
—T-—z I—T] (3.2)
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The expectation value (B,,;) may be readily evaluated
using Eq. (2.22). It is of interest to derive the limiting be-
havior of { 4,,)/N and { 4,,)/N as N— . The re-
sulting expressions read as

BX
—P2 x <l
(4.y | 20+BX)
Jim L=l x=1 (3.3)
| — L xs
1+BX’
and
1+ X<1
o (4y)
A}xm N 5L X=1 (3.4
0, X>1.

Note that in cooperative limit (N -— ) the atomic
populations are equally divided among the three levels at
the critical point X =1, while for X > 1 the population in
the intermediate level |2) tends to zero. It is clear that
the fractional population show in the limit N—o a
discontinuous behavior at X=1. This behavior is similar
to that of a nonequilibrium first-order phase transition at
the critical point X=1 where the ratio of the intensities
of the driving fields is equal to 8. The plots of { 4,,) /N
as functions of X for some infinite values of N and for
=1 are shown in Figs. 2(a) and 2(b), respectively. The
dashed curves in Fig. 2 show the behavior as N — .
Note that for finite values of N, the curves intersect at
point X =1 where ( 4,,)/N and ( 4,,)/N=1. Also,
the discontinuous behavior of { 4,,) /N is independent
of B while that of { 4,,) /N is dependent on 3. Curiously
enough, the discontinuity in ( 4,,)/N disappears for
B=2 as seen from Eq. (3.3).

It may be of some interest to examine the behavior of
the fluctuations in the atomic populations. We have

U%=<A%1>—<A11>2

_ 1
(14+B8Xx)?

N

2

N +2
6

(BX)2+BXl

0.5
{ T\\ (a)
P
I
|
I
|
|
I
i

FIG. 2. Steady-state values of the fractional atomic popula-
tions in the (a) upper and (b) lower excited levels as a function of
the parameter X for S=1. The solid (dashed) curves indicate
the behavior for finite N (N — o).

+[LQ2N +1)BX — LN+ 1)(BX)PI(B ) +[HBX ) —2(BX)+11{B) —[L(BX ) —BX + 1B, )? |,

03=(A43,)—( A, )=LN(N+2)—2(N+1){(B,; ) +4(B3} ) —3(B,)?].

We may now take the cooperative limit N — c and
show that

1 BX
- , X<
) of _ 2 1+ﬁXJ !
lim —= n _
N—w N 5 X (3.7)
0, X>1

(3.5)
(3.6)
f
5 &5, X <1
li 22 _ 14 X=1
Ngnw N |® = (3.8)
0, X>1.

It is interesting to note here that the quantum fluctua-
tions o2/N? and 03/N? are finite and nonzero in the re-
gime 0 <X <1, which is characteristic of the cooperative

behavior of the system in this regime. On the other hand,
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the vanishing of the fluctuations above the threshold
(X >1) indicates typically a single-atom behavior.
Curves in Figs. 3(a) and 3(b) show the behavior of the
fluctuations o?/N? (i =1,2) with respect to the parame-
ter X for finite N as well as for N — o0.

B. Intensities of fluorescence

The expressions for the intensities of fluorescence from
the upper |1) and lower |2) excited levels are defined by
the usual expressions®

GV=(E!"'E!*)), i=1,2 (3.9)

where E/*' are the positive and negative frequency parts
of the fluorescent electric field operator E; at the detector
and are, in general functions of space and time. Now, in
the far-field limit, the fields E(ltz) can be expressed in
terms of the atomic operators A,; and 43, as®

E\"(r,t)=E{ (r,0)+ 14 (r) Ay (e —1 /c) ,

EST N, )y=EW  (rt)+1yy(r A, (t—r/c) . (3.10)

Here, E{){ ' and E{; ' are the incident laser fields and

3ﬁa)’}/1‘2

d}%l(r): 2

sin’@, , , 3.11

2cr

O, ; being the angle between the observation direction r
and the atomic transition dipole moment d, ,. In particu-
lar, if the measurements are carried out in such a way
that the incident fields do not contribute, the intensities
in the steady state (t— o) are given by G\V=( 4, 4,,)
and G5"'=( A,; A3,) apart from an unimportant spatial
factor. The evaluation of G\! and G} yields the analyti-
cal expressions

GV=(A4,4,)

2
~

z

ok

0.00 n L L T
[oXe} 05 1.0 15 20

FIG. 3. Fluctuations 0?/N’ in the steady-state fractional
population in the (a) upper and (b) lower excited levels as a
function of X. Data same as in Fig. 2.

- _ _ 2
6(1+BX){N(N+2)BX+[3(N+2) 2AN+1)BXI(B,)+(BX—3)B3)}, (3.12)
G(21J=(A23A32)=€(1T1B?)-{3N(BX)+N(N+2)+[3(N—I)BX—?.(N-H)](B,])+(1—3BX)(B%1 Y. (.13)

It is clear from these results that

X
G 6(1[)4;[3’X)’ x<l
Nim —T T, x= (3.14)
0, X>1
R S
G 6(1+BX)’
Nim T s x=1 (3.15)
0, X>1.

Thus, below the bifurcation threshold X =1 the intensi-
ties G| and G}" are proportional to N2, indicating that
the system behaves cooperatively. Above the threshold,
the intensities vary as N and the system behaves as a col-
lection of atoms radiating independently of each other.
The normalized intensities G{" /N2 and G'"/N? as
functions of the parameter X for some finite values of N
and for =1 are shown in Figs. 4(a) and 4(b), respective-
ly. The dotted curve in each of these figures corresponds
to the limiting behavior as N — «. Note that the mean
dipole moment corresponding to the transition |1)—|2)
([2)—1[3)) is proportional to { 4,) ({ 4,;)). Since the
steady-state expectation values (B;)»=0 (i+j) and
(B,;,)»=(B,;), it follows from the transformation equa-
tion (2.11) that the mean dipole moment corresponding to
[1)—[2) (12> —13)) vanishes identically over the range
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oler malized second-order intensity correlation functions
(@) which are defined by
(Ty[G(N)G V(e +7)])
ol g ()= , (3.16)
/ (GGt +)
c‘” where Ty is the time-ordering normal ordering operator.
— aoe In the far-field limit, we may use the relations (3.9) and
(3.10) to express g,-(jz’(r) in terms of the atomic operators
A;;- In particular, we are interested in the steady-state
oo correlations g,'(0) which are given by
gP0)=(5/sls;s,) /((s/s)(s]s;)) (3.17)
060 where, for brevity, we have set S, =4, and S,= 43,.
- The quantity gm( ) (i,j =1,2) is a measure of the proba-
bility of detectmg simultaneously a photon from the ith
020 excited level and another photon emitted from the jth ex-
cited level For a single atom g'3(0)=g'}(0)=g5'(0)=0,
while g{3) =1 /( A5, »5=0. It turns out that the intensity
ol correlatlons g,] '0) can be expressed in terms of the ex-
pectation values (B7,) (n=1,...,4). The analytical
expressions for g(z’(O) are as follows:
)
G2 oio) .
I (2) (0)= 1 1
&n (BX+17 (G\")?
005 X[(BX)*{R,)+BX{(R,)+{(R3)], (3.18)
1 1
(2) () —
g5 (0)=
0%%% : 05 - s 05 20 2 (BX+1 )2 (G(zn )?
x
X[(BX)*(R,)+BX{Rs)+{(R )], (3.19)
FIG. 4. Steady-state fluorescent intensities G,'/N? plotted
against X for finite N and N— . (a) G}""/N? and (b) G}’ /N?
B=1. g2 )= 1 1
2 (BX+1)2 G(ll)G(zl)
(0 <X < ). The superradiant behavior of G, and G, for X[(BX)(R¢)+BX(R;)+(R)], (3.20)
X <1 thus arises solely from the quantum fluctuations.
This is analogous to the intense field limit of cooperative @0 1 1
resonance fluorescence from a system of two-level atoms. 821 (BX +17 G(II)G(zl)
C. Intensity-intensity correlation X[(BX){Rg)+BX{R ;) +{(R,;)]. (3.21)
and violation of CS inequality
The nature of the fluorescent light emitted from the ex- The various expectation values (R;) (i=1,2,...,11)
cited levels |1) and |2) may be understood from the nor-  have the following expressions:
|
(R,)=%[N(N—1)N+2)(N+3)—2(N+1)(2N>*+4N—=3)(B};)
+(6N2+12N+1){B} ) —4(N+1){B3)+{(B})], (3.22)
(R,)=L[N(N+2)N+3){B)—(3N*+10N+6){B}, ) +(3N+5)(B},)—(B})], (3.23)
(R3)=1[—(N+2)N+3){B;)+(N>+TN+11){(B} ) —2(N+3){(B}, ) +(B})], (3.24)
(Ry)=1[2N(N—1)+(3N—1)N—2){B,;) +(N*~TN+5){B}, ) —(N—2)(B}, ) +(Bj)], (3.25)
(Rs)=1[N(N—1)N+2)+(N*—2N2—4N+2)(B,, ) —(3N*—~N—3)(B}, ) +3N(Bj, ) —(B})], (3.26)
(R¢)=L[N(N+1)N+2)+(N3>—4N—2)(B,, ) —(3N*+3N—1){B}, ) +(3N+2)(B},) — (B} )1, (3.27)



690 S. V. LAWANDE AND B. N. JAGATAP 39

(R;)=L[N(N+2)N?+2N+2)—(N+1)9N>+18N+14){B,, ) +(N +1)(31N +46)( B},

—3(13N +18)(B3},)+16{B})1,

(Rg)=L[(N+2)XN+3)(B,;)—(N+2)3N+8){B} ) +(3N+7)(B},

(Ry)=L[N?
(Ryp)=%I[(N

—(39N—1){B3,)+16{B%,)],
(R )=LIN(N+1NN+2)B;)—

(N—1)+N(N*—5N+3){B,;)

The limiting behavior of g,-(jZ)(O) as N — o resulting from
Egs. (3.22)-(3.32) can be shown to be given by

1.2, X<1

gP0)=11.6, X=1 (i=1,2), (3.33)
2.0, X>1
1.2, xX<1

g3(0)=10.8, x=1 (3.34)
14X, X>1
1.2, X<1

g3 0)=1{0.8, x=1 (3.35)
1+1/X, X>1.

Thus, in the cooperative limit N — o, the normalized
intensity-intensity correlation functions show a discon-
tinuous transition similar to a typical nonequilibrium
first-order phase transition at the critical point X=1.
The behavior of these correlation functions in the regime
below and above the threshold is also interesting. For
X <1, the intensity correlations show that the scattered
radiation is partially coherent [g\?’(0) <2], which is con-
sistent with cooperative behavior in this regime. On the
other hand, the limiting values of g{3(0)=g2(0)=2
above the threshold imply that the radiation emitted
from the excited levels |1) and |2) is totally incoherent.
This is a manifestation of the fact that in the parameter
regime X > 1 the atoms tend to radiate independently, as
is also evident from the limiting behavior of the intensi-
ties G{''/N?* and GY"/N? discussed in Sec. IIB. The
curves in Figs. 5(a) and 5(b) show the behavior of g/?(0)
(i=1,2) for some finite values of N and in the limit
N— . The cross correlations g{3(0) and gi3(0) are
shown in Figs. 6(a) and 6(b) for the same data as in Fig. 5.
Note that in Fig. 6 the antibunching behavior is shown
by these correlations in the region around X =1 for some
finite N. As N— o, the region over which the anti-
bunching is exhibited collapses to a single critical point
X=1 (dashed curves in Fig. 6).

Incidentally, the analytical expressions for gm (0) may
be used to test the violation of Cauchy- Schwarz inequali-
ties. For this purpose we introduce two quantities,

(3.36)

x1=[g$7(0)g3(0)1/[g3 (0],

—1)N(N2+1)—(9N3*—8N2+2N—1){B,,) +(31N?*—8N +1){B?
11

(3.28)

—(Bi{1, (3.29)

—(BN—1)N—=2)B})+3(N—1){(B3},)—(B%)1, (3.30)

(3.31)

(3N2+6N +2)(B? ) +3(N+1){B},)—(B%)]. (3.32)
[

=703 (0)]/[g5 (07T (3.37)

The CS inequality is violated if x, ,<1. This would be
the case if the cross correlations between the photons
emitted from the two different excited levels are larger
than the correlation between the photons emitted from
the same level. Clearly for N =1 y,=0 for all values of X
and CS inequality is violated. We may also verify that for
N =3, x, <1 for all values of X. The behavior of ¥, , in

K 1 " L " L -
0.0 05 [£e) 15 20

FIG. 5. Steady-state normalized intensity-intensity correla-
tions (a) g{3’ and (b) g'3’ plotted against the paramter X (8=1).
The limiting behavior as N — o is shown by the dashed curve.
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FIG. 6. Steady-state normalized cross-correlations (a) g{3
and (b) g2’ shown as functions of X (8=1). The behavior as
N — o is shown by the dashed curve.

the limit N — o follows from Eqs. (3.33)-(3.35). Figures
7(a) and 7(b) show the plots of x, and X, as functions of X
for some finite values of N and for B=1. It is seen from
the curves in Fig. 7(a) that y, <1 for X > 1, indicating
that violation of CS inequality persists for increasing
values of N. We may also mention here that the violation
is more for lower values of 3. In the cooperative limit
N — o, we have x;<1 in the entire region 1<X <
manifesting, thereby, a strong macroscopic violation of
the CS inequality [dashed curve in Fig. 7(a)]. On the oth-
er hand, y, shows no violation of CS inequality for all
finite values of N as well as for N — « [Fig. 7(b)].

IV. CONCLUSIONS

In this paper, we have examined analytically the
steady-state behavior of a collection of strongly driven N
identical three-level atoms in cascade configuration. Our
analysis predicts that in the cooperative limit N — oo, the
atomic observables have a discontinuous behavior with
respect to-a parameter X. The parameter X is character-
ized by the relative intensities of the two driving fields
and the ratio of the spontaneous decay coefficients of the

) 05 ’ X6 5

80

60

X, a0

20

00 o5 ro * 5 2.0

FIG. 7. Plots of CS inequality functions ); against X. (a) x,
and (b) x, (B=1). The dashed curve indicates the limit N — .

two excited levels. The critical behavior predicted by the
present model at X=1 is similar to a nonequilibrium
phase transition of first order. In particular, the thresh-
old X =1 marks a transition from superradiant emission
to incoherent emission. The superradiant character of
the emitted radiation below the threshold arises essential-
ly due to quantum fluctuations. This is also evident from
the behavior of normalized intensity-intensity correla-
tions g{%(0) and g$3(0) in the limit N — oo.

The analytical expressions for intensity-intensity corre-
lations also predict a strong violation of the Cauchy-
Schwarz inequality in the region above the threshold
(X > 1) for finite values of N and also in the limit N — .
This interesting result emphasizes a macroscopic mani-
festation of a nonclassical feature of the cascade emission.
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