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Quantum nondemolition measurement of photon number in a lossy optical Kerr medium
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A photon-number quantum nondemolition (QND) measurement theory that takes dissipative
losses into account is presented. A QND measurement criterion is developed to determine the feasi-

bility of QND measurements in a lossy optical medium. Using an analysis based on loss-error
characteristics, we examine a lossy Kerr medium. We obtain restrictions on the losses and require-
ments for the nonlinearity and signal and probe powers necessary to observe the QND eff'ect. We
calculate the expected results for an experimental system meeting such requirements. We conclude
that QND measurements are possible in existing media.

I. INTRODUCTION

After quantum nondemolition (QND) measurements
were first discussed by Braginsky, ' several QND mea-
surement schemes in optics were proposed. One such
proposed suggested a method to make a QND measure-
ment of the number of photons in an optical signal using
an optical Kerr medium in a nonlinear Mach-Zehnder in-
terferometer. The assumption was made that the Kerr
medium was totally transparent to optical signals. In
practice, however, the optical Kerr medium has a finite
transparency which changes the photon number in an op-
tical signal. Under what conditions is a QND measure-
rnent practical in a medium with loss? To answer this
question, we present a QND measurement theory that
takes into account dissipative losses for a medium with
finite transparency.

We first discuss a general criterion for lossy QND mea-
surement. This criterion, which is independent of any
particular scheme used, can be expressed as a require-
ment on a loss-error function. Next, we show that for an
optical Kerr medium, we can take losses into account,
and obtain a QND criterion using the loss-error function.
This gives us a criterion for determining whether or not
we can obtain QND measurements in a Kerr medium
with known losses. To relate this criterion to experiment,
we calculate the correlations between the photon number
measured in a Kerr-QND measurement system and the
photon number transmitted through the QND rneasure-
ment system. We conclude that it is possible to make
QND measurements using existing finite transparency
media.

II. GENERAL CRITERION FOR LOSSY QND
MEASUREMENT

The conventional method for measurement of the num-
ber of photons in a signal beam requires random deletion
of photons from the beam. A large deletion rate is neces-
sary for an accurate measurement, but this causes in-
creased randomness in the number of photons. A low
deletion rate is required to preserve photons, but this pro-
duces a low level of measurement accuracy. Thus, an ac-
curate measurement of photon number would seem to re-
quire change in the photon number. This change in the
photon number can be described by loss-error charac-

teristics.
The loss-error characteristics for several different mea-

surement schemes are shown in Fig. 1. Here, the figure
shows the measurement error 6 plotted against the inser-
tion loss g. 6 is defined as

where 8;„ is the photon-number operator of the input sig-
nal beam, h „,is the photon-number operator that is ac-
tually measured, and &h;„& is the average signal photon
number. We take 6 as our loss-error function, because
usually b depends upon the losses in the system. The
loss-error characteristics of any photon-number measure-
ment scheme can be plotted in Fig. 1. For example, point
3 denotes ideal photon counting, where all the photons
are absorbed. Point 8 denotes an ideal QND measure-
ment, where there is neither loss nor error. However,
there is no detector that is totally transparent, so point B
cannot be achieved. Practical systems with finite trans-
parency and finite accuracy give loss-error characteristics
that fall elsewhere in Fig. 1. For these systems, we can
establish a criterion for the possibility of a QND mea-
surement.

The criterion depends on the existence of quantum
correlations in the system. We base the criterion for
QND measurement of photon number on whether or not
the measurement error and the transmitted photon-
numberPuctuations are smal1er than those required by the
quantum mechanical -fluctuation dissipation -theorem Be-.
cause the fluctuation-dissipation theorem results from a
linear-response theory, reduced photon-number fluctua-
tions necessarily result from a nonlinear system. The role
of the nonlinear effect is to produce quantum-mechanical
correlations between the signal and the probe.

The beamsplitter is a linear-response device that is well
understood and can be used to illustrate the basis for our
criterion. A lossy QND measurement is one in which the
measurement error is smaller than that for a photon-
number measurement using a bearnsplitter with a unity
quantum efficiency photon counter. We illustrate the
measurement scheme with a bearnsplitter in Fig. 2. Here,
8;„ is the photon annihilation operator for the input field,
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(3)

and

b = —+pa;„+&I—r)c . (4)

When the noise field c is in a thermal state (blackbody ra-
diation), then Eqs. (3) and (4) give results in agreement
with the usual fluctuation-dissipation theorem for a sys-
tem with a heat bath. Quantum theory imposes a noise
field c even when the temperature of the heat bath is at
zero degrees, i.e. , for vacuum fluctuations. Using Eqs. (3)
and (4), the loss-error function b, for the beamsplit-
ter can be shown to be

0
0 0.5

A: Ideal Photon
Counting

1 —
13: Ideal QND

Measurement

Q
1 ~ 0

where we assume that c is in the vacuum state. This gives
us the desired QND measurement criterion, using b, for a
measurement scheme to be examined, as

INSERTION LOSS g

FIG. 1. Loss-error characteristics for photon-number mea-
surement schemes. Any photon-number measurement scheme
can be plotted within this figure. Point 3 denotes an ideal pho-
ton counting, and point B denotes an ideal QND measurement
having no loss or error.

8,„, is the annihilation operator for the transmitted field,
b is the annihilation operator for the transmitter field for
reflected field, and c is the annihilation operator for the
transmitted field for the noise field coupled in through
the unused portion of the beamsplitter. The input photon
number 6;„=8,„&;„can be estimated from the reflected
photon number 6'„z —=b b for the reflected field. The
reflected photon number is reduced (on average) by the
reflectivity factor g of the beamsplitter, so we define mea-
sured photon number 6' „,as

8' „,=b blr) . (2)

This allows us to directly compare the measured photon
number with the input photon number. The expectation
value for 6' „, is thus equal to that for &;„,
((h „,—8',„) ) is the photon-number uncertainty added
as a result of the measurement.

The input and output operators obey the operator
equations

This shows the tradeoff between the measurement error
and the insertion loss. The loss-error function (= mea-
surement error) goes to infinity when the insertion loss
goes to zero, and the loss-error function goes to zero
when the insertion loss goes to unity. This is shown in
graph form in Fig. 3.

We can also obtain this result by two other methods.
One is to consider photon-number variance. We define a
normalized photon-number variance as ( ( b, h ) ) /( 1t ),
and define the increase in photon-number variance pro-
duced by a measurement as AV. For the reflected beam,
the increase in variance 6 V„z is given by

C

reflectivity 9

A

& +out

~ ~meas = 0.5

INSERTION LOSS q

1.0

FICs. 2. A dissipative photon-number measurement with a
beamsplitter and an ideal photon counting. Vacuum fluctuation
c is linearly coupled to the incident field 8;„.

FIG. 3. General criterion for dissipative QND measurement
of the photon number.
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same form as in Eq. (11), the variance product is

(15)
and for the transmitted beam, the increase in variance
6 Vout 1s given by

Because of the normalization, the photon-number vari-
ance for the incoming beam, which we define as 6 V „,is
equal to AV„„, i.e.,

~ Vmeas ~ Vrefl (9)

6 V „,and 6 V,„, are uncertainties induced by the mea-
surement because the photon number uncertainty
&(«;„) )/& &;„), which depends on the input-photon
state, is eliminated.

For a beamsplitter, the increased photon-number vari-
ances become

1 —g 1
rneas (10)

and

AV, „,=
1

The product of the variances for the beamsplitter is,
therefore,

1
rneas out / g.

(12)

This product is in agreement with the results of the
fluctuation-dissipation theorem.

For the general case of a measurement on an arbitrary
system with linear loss g, the variance product for a
photon-number measurements can be obtained as follows.
The photon-number operator & „„which we want to
determine from an actual measurement, can be expressed
as

(13)

(14)

where 6 is defined by Eq. (1). Because b, V,„, has the

where 6& is a noise operator resulting from measurement
and uncorrelated with &;„. Here, & „,has the same ex-
pectation value as &;„,so that the expectation value of AR'

is equal to zero. We define 6 „,so that 5& is not corre-
lated with n;„. If a measurement somehow introduces a
correlation between &;„and the noise of measurement, we
include the correlated "noise" in & „,. The variance for
6' „,then is the summation of the variances for &;„and
AR'. 5 V „,is therefore expressed as

&(«..., )'& —&(«,„)'&
meas =

&R,„)'

and the result is general. If we require that this general
result for a QND measurement should be smaller than
the beamsplitter result given in Eq. (12), we obtain Eq. (6)
as the QND measurement criterion.

By consideration of signal-to-noise (S/N) ratios, we
can obtain Eq. (6) in yet another way. If we define S/N
ratio as &

R') /& («) ), the S/X ratios for the measured
and transmitted photon numbers for a beamsplitter with
input light in a coherent state can be shown to satisfy

(S/N) „,+(S/N), „,=(S/&);„. (16)

III. THE QND MEASUREMENT CRITERION FOR
A LOSSY KERR MEDIUM

In this section we calculate the loss-error function 5
for a QND measurement with a lossy optical Kerr medi-
um. We thereby obtain the QND measurement criterion
in terms of the Kerr nonlinearity, the losses in the medi-
um, and the input laser power. We use a measurement
scheme previously proposed for loss-free conditions.
This scheme is diagrammed in Fig. 4 and consists of a
Mach-Zehnder interferometer that senses the refractive
index changes induced in a Kerr medium by a signal
beam. In operation, signal photons (in the beam labeled
by operators a;„and a,„,) pass through a loss-free di-
chroic mirror into the Kerr medium and then out
through a second dichroic mirror. The probe beam is
transmitted down the two legs of the interferrometer and
recombined at the output beamsplitter. In one leg the
probe acquires an additional optical phase proportional
to the signal photon number. The signal number is deter-
mined by measuring the probe phase with a balanced
mixer detector at the output bearnsplitter. The result is
QND measurement for the loss-free case, as signal pho-
tons pass unabsorbed through the interferometer.

For QND measurements using a nonlinear Mach-
Zehnder interferometer with a lossy Kerr medium, we
consider three different cases as shown in Fig. 5: (a) inser-

A

b

1:1
Cp

Kerr
med i um

&out

FICx. 4. Photon number QND measurement scheme with the
Kerr eft'ect under loss-free conditions (Ref. 4). The signal
photon-number modulates the probe phase via the loss-free
Kerr e6'ect. The probe phase is measured by means of the
Mach-Zehnder interferometer with a balanced mixer detector.

Equation (6) can then be seen to be the case where the
photon-number measurement scheme has a larger 5/X
ratio than that required by Eq. (16).
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a'=Pl —rla+&r)c, ,

(
t )1/2b +~

(17)

(18)

b =(—')' 'b—
0 Cp

tion loss before the Kerr medium, (b) insertion loss after
the medium, and (c) distributed insertion loss in the Kerr
medium. Case (a) describes input coupling loss for a sig-
nal coupled into a single-mode optical fiber. This is the
most severe case because a measurement is done after the
loss of photons has occurred. Case (b) represents the
least severe case because the measurement is done before
the loss of photons occurs. Case (c) is the most important
case, because its results are determined by the intrinsic
characteristics of the medium. In case (c) the photons are
measured while they propagated through the lossy medi-
um. For simplicity we assume that losses for the probe
beam are the same in the two legs of the interferometer.

The loss error functions for cases (a) and (b) are ob-
tained as follows. Using field operators as defined in Fig.
5(a), we have
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Here g is the insertion loss for the signal beam, q is theP
insertion loss for the probe beam, and t/F is proportional
to the magnitude of the Kerr effect, and is defined as

rr
(26)

pn ~s~p jef
where g' ' is the third-order nonlinear susceptibility, L
the medium length, 3,& the beam cross-sectional area, ~
the time interval for photon counting, and ( & ) the aver-
age probe photon number. We take the photon number
of the input signal beam to be 6' „„which we define as

wf A.

g g ff—(27)
(1 —ri)(i —ri, ) v'F (g, )

This reduces to

&
1

't/F (n )(1—q)

(e, &, (n,„&»1,
moderate Kerr effect,

&
6'

& F, & n;„) F and ( n & & 6';„)F ((I,

(29)

(3O)

and we assume we are in the linear-response regime of the
interferometer, so that

sinO =—0, cosO = 1 —
—,
' 0 (31)

Using Eq. (28), the expectation value of g „,can be
shown to be equal to that of the input photon number.
The loss-error function 5 for case (a) is then

FIG. 5. Three cases used in the analysis of lossy Kerr-QND
measurement scheme. (a) Loss before the Kerr medium, (b) loss
after the medium, and {c)distributed loss.

ber

X (b b —coco) sinO —i (b cz cob ) cosO— +1 1

F ( n;„& & n & ( 1 &1 ) ( 1 r)~)——(32)

Ip

2(1 —q )

' 1/2

(bt
2 2

The loss-error function for case (b) can similarly be
shown to be

bt~ + tb) (28)
1

F & n,„)& n, ) (1 rip)—(33)

when we make the approximations of large photon num- One can see that the values of the loss-error functions
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FICs. 6. Model of the QND measurement scheme with a lossy
Kerr medium. Alternating loss plates and Kerr media represent
a lossy Kerr medium. The number of the plates M is set to be
oo under the constraint of a constant total loss and the Kerr
effect.

(1—1, ) =1—g (34)

and

(1 —1 ) =1—rlP P
(35)

The losses in each plate and in each Kerr medium section
lead to the recursive equations

given in Eqs. (32) and (33) are larger than those for the
loss-free (rl=rl =0) case, where b, = I /F(R;„) (R~ ).
The increase is larger for case (b) than for case (a), as we
have anticipated.

The loss-error function b, in case (c) can be obtained as
a limit to an infinite number of alternating loss plates and
Kerr media as shown in Fig. 6. Let M be both the num-
ber of loss plates and the number of Kerr media, 1, (1 )

the loss of each plate for the signal (probe) beam, respec-
tively, and rl (g„) the total insertion loss for the signal

(probe) beam. Then, we have

&„=(QI—l, a„&+Ql,d„expIi [Ic(1 —1 )b„&b„&+1c„c„+Ql (1—1 )](b„)c„+c„b„&)]I (36)

and

b„=(+I 1 b„,+—Ql c„)exp I is [( I —1, )a„,a„,+ l,d„d„+Ql, (1—1, )(a„,d„+d„a„,)] ) . (37)

Here, a=&F /M .is an effective value for the Kerr effect in each medium. Solving these recursive equations and letting
M ~ oo, the loss-error function is obtained:

2
1 ln(1 —g)

F(n,„)(R,)
1 g(2 —

rl ) +2( 1 —q ) ln( 1 —rl )+
(1—rl )

(38)

A solution of the differential equations describing the
fields propagating through a lossy Kerr medium gives the
same result.

We concentrate on case (c), as the analysis of case (c)
gives a QND measurement criterion for the intrinsic
medium characteristics, which are independent of input
or output coupling loss. Then substituting the calculated
value of b, into Eq. (6), the QND measurement criterion
for a Kerr medium can be obtained in terms of g' ', the
total insertion loss g, and the product of the signal and
probe beam powers. This criterion can be written as

( )(R )
[ln(1 —q)]

[—2(1 —rl) ln(1 —g) —g]( 1 —g )
(39)

and is plotted in Fig. 7 as a function of total insertion loss
where g=q is assumed for simplicity. Here, the vertical
axis is F(&;„)(R ), which can be written in terms of the
beam power product as

2 (~(3) )2L 2

F(R,„)(R,)=, ,E4C2 g g g2 n2
(40)

P, is the signal beam power and P is the probe beam
power.

Figure 7 also shows F(n, )(n ) plotted for case (a)
and case (b) and indicates that there is an upper limit on
the loss value for each case. For example, an insertion

P,P =7.17
2 2

&pc
(41)

loss of less than 0.5 is required to realize a QND mea-
surement for case (a). This implies that a beamsplitter is
better than the Kerr effect when the input coupling loss
exceeds 0.5. In comparison, any loss value is allowed for
ease (b). This implies that when the photon number is
correlated to the probe phase by a transparent Kerr
medium, subsequent losses cannot destroy the quantum
correlation completely. Note that the upper limit for
case (c) is intermediate between those of case (a) and of
case (b) with a value of 0.715.

Assuming that the medium loss per unit length is con-
stant, the total insertion loss is a function of the medium
length. We can thus calculate the required beam power
for a given medium length in a given Kerr medium using
Eq. (39). The beam power required for a single-mode op-
tical silica fiber is shown in Fig. 8 for various loss values.
For example, the optimum fiber length is 8 km with 0.2
dB/km loss and requires 40 mW for both the signal and
probe beams. This can be accomplished with existing
fibers and lasers.

A figure of merit for a lossy Kerr medium can be
defined using Eq. (39). Differentiating Eq. (39) with
respect to distance, we obtain the beam power product
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FIG. 7. Required values for F(8;„)(&~)vs the total inser-
tion loss in order to realize a QND measurement of the photon
number. The total loss should be smaller than 0.5 for case (a),
while any loss value is allowed for case (b). Case (c) sets the
upper loss limit between them: 0.715.

IV. LIMITATIONS IMPOSED BY NONLINEAR
ABSORPTION

In Sec. III we assumed that the loss of the Kerr medi-
um is constant and linear. A linear loss can be expressed
as the imaginary part of g'", with the real part of g"
corresponding to the square of the refractive index. The
optical Kerr effect can be represented by the real part of

The imaginary part of g' ' corresponds to nonlinear
loss, which is not negligible for a resonantly enhanced
nonlinear material. Such a nonlinear loss can spoil a
QND measurement because it causes absorption of pho-
tons.

In this section we examine the effects of Im(y' ') on
QND measurements, assuming that linear losses are
negligible. We will not consider self-transparency, where
losses decrease with increasing power. Rather, we con-
sider two-photon absorption, where the losses of the sig-
nal and probe waves are proportional to their intensities,
i.e.,

a, =a,I (43)

and

Exp cx2Iq (44)

Here, I, and I are optical intensities of the signal and
probe beams, and a, and a are the losses corresponding.
The nonlinear loss coeScient o,'2 is written in terms of
lm(q~") as

(3)
~o =—

n'aQX, X, W,~
(42) = 2~

az=, Im(y' ') .
A.c Eo

(45)
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FIG. 8. Required laser power product vs medium length. A
single-mode optical silica fiber is assumed as the Kerr medium.
Parameters used are as follows: g' '=3.6X 10 " (MKS),
A, = 1.55 pm, A, = 1.32 pm, A,~ =50 pm, and n = 1.45.

Here, n and a are the refractive index and linear loss of
the Kerr medium, A,, and A. are the signal and probe
beam wavelengths, and A,z is the effective cross-sectional
area in which the beams copropagate. We can take Mo
as a figure of merit for QND measurements in a lossy
Kerr medium. The larger the value of Mo, the smaller
the value of the beam power product required to produce
the QND measurement.

The total losses for the signal and probe beams are q
and g and can be expressed as

—a2I I.g=l —e (46)

and

—e2I, L=1—e (47)

Im(y"') &, [Re(y"')]2~L
« ~&o

(48)

where we assumed that A, =k
The reason that inequality (48) is linear with respect to

Im(p' ') but quadratic with respect to Re(g' ') follows
from the QND criterion. For a beamsplitter, b, is ap-
proximately inversely proportional to g (when g «1).
But for a Kerr medium, 6 is inversely proportional to
Re(yI ') squares while g is proportional to Im(Z' ').

The QND criterion (48) is satisfied for nonresonant
material„such as the silica in optical fibers. However, it

where L is the medium length. Although these losses are
nonlinear, we can regard them as linear when I and I,
are approximately constant. Then, we can use the QND
measurement criterion for a Kerr medium with a linear
loss. Substituting Eqs. (46) and (47) into (39), we can ob-
tain the QND measurement criterion for a medium with
Im(y' '). Assuming that azI, L, a2I L « 1, this criterion
becomes
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FIG. 9. Measurement error and output correlation of a lossy QND measurement scheme. b, represents the difference between the
input and readout photon numbers, while 5„„,is the difference between the output and readout photon numbers.

must be taken into account when using resonantly
enhanced g' ' nonlinear material for QND measurements
of photon number. The Kramers-Kronig relationship be-
tween Re(y'3') and Im(y' ') is an integral over frequency
and does not impose a relationship between Re(g' ') and
Im(y' ') at any given frequency. Therefore, one can al-

ways choose a frequency or a frequency domain where in-
equality (48) holds. In this paper, we assume measure-
ments at single frequencies, so measurement times are
long. However, for measurements with short optical
pulses, the situation becomes more complicated, and a
QND measurement criterion must take the response time
of g' ' and the probe and signal pulse widths into ac-
count.

V. QND MEASUREMENT CRITERION FOR A
CORRELATION EXPERIMENT

In this section we consider for an experimental system
that meets the requirements of the QND measurement
criterion. Our discussion of the QND measurement cri-
terion was based on loss-error function. This function,
however, cannot be obtained experimentally unless we
use either a perfect QND measurement scheme or an
ideal number-state generator to test the system, neither of
which is available. However, it is possible experimentally
to obtain a correlation between the measured photon
number and the number of photons that exit the device.
For this reason, we consider the relationship between the
QND measurement criterion and this correlation.

The correlation between the measured photon number
and the exiting photons can be evaluated using the vari-
ance A,&of the difference between the measured photon
number and the transmitted photon number. This vari-
ance is &(n „,—&,„, ) &l&n,„,&, where n' „, is defined
as &

' „,—= ( 1 —r) ) n „„which normalizes the photon
number to facilitate comparison with n, „,. The variance
b,„, does not directly evaluate the measurement error 5,
because the measurement error is the difference between
the input and estimated photon numbers. Rather, 6,„, is
the difference between the estimated and transmitted
photon numbers, as shown in Fig. 9.

When the measurement error satisfies the QND mea-
surement criterion, we can calculate the variance 6,„, as
follows. Using a similar analysis to that illustrated in
Fig. 6, we obtain

2
ln( 1 —iI)

7l

I

F&~,„&&.-, &

+ rl(2 —il)+2(1 —g) ln(1 —rl) (49)

where we assume that r) =rl. Equations (39) and (49)
then lead to an inequality

1+2(1—r1) ln(1 —r))
7l

(50)
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FIG. 10. Criterion for b,„„,for QND measurement [case (c)].
A smaller 6 „, should be obtained if a K.err medium satisfies the
QND measurement criterion.

This inequality establishes the QND measurement cri-
terion in terms of 6,„, for case (c) and is shown graphical-
ly in Fig. 10.

It should be noted that there seems to be no upper loss
limit in Fig. 10. It may seem that any loss value is possi-
ble, if 5,„, is made small enough, which contradicts the
existence of the loss limit as indicated in Fig. 7. That this
is not so can be seen by considering the minimum value
of 5,„,. By letting the magnitude of the Kerr effect go to
infinity in Eq. (49), the minimum value of 6,„, is seen to
be
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min(A, „,) = rj(2 —g)+2(1 —g) ln(1 —rI )
(51)

Hence the QND regime for the 6,„, is indicated by the
values greater than indicated in but below those indicated
by Eq. (50). Figure 11 shows the QND regime of 6,„,for
cases (a), (b), and (c). This figure shows an upper loss lim-
it of 0.5 for case (a), 1.0 for case (b), and 0.715 for case (c).
This is consistent with Fig. 7.

FICs. 11. Required and attainable 6,„, for the three cases il-

lustrated in Fig. 5. The loss region for the QND measurement
is 0 q&0. 5 for case (a), 0~g&1 for case (b), and 0 g&0.715
for case (c), which are consistent with Fig. 7.

We have presented a photon-number QND measure-
ment theory that takes dissipation into account. A QND
measurement for a system with loss g is defined to have a
smaller measurement error than that of a measurement
which uses a beamsplitter that introduces a loss g. We
take the measurement error (which is a function of the
loss) as a loss-error function for a photon-number mea-
surement scheme and obtain such a loss-error function
for a lossy Kerr medium. This allows us to determine the
QND measurement criterion in terms of loss, y' ', and
the beam powers. We show that there is both an upper
limit on the device length and an optimum device length
for a medium with a given loss. We further show that the
required signal and probe beam power product for a mea-
surement is determined for a medium with a given Kerr
constant. If we assume a single-mode optical silica fiber
as the Kerr medium, the upper limit and the optimum
lengths, respectively, are 27 and 8 km, and the required
optical power is about 40 mW for both the signal and
probe beams.

A QND measurement criterion for a medium with
nonlinear absorption was also obtained. Furthermore, we
show how these QND measurement criterion relates to
experimental observables. We conclude that a QND
measurement of photon number is possible using existing
Kerr media and light sources.
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