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We study the time evolution of SU(1, 1) coherent states driven by a damped harmonic oscillator as
described by the Kanai-Caldirola Hamiltonian. The coherence of these states is preserved and their
time evolution is described by nonlinear "classical" equations. The trajectories of all SU(1, 1)

coherent states in phase space asymptotically approach a common point as t ~~. In all cases, this

approach is accompanied by a damping of the associated energy expectation value to zero.

I. INTRODUCTION

There has been much recent interest in the construc-
tion of coherent states for time-dependent systems.
Many reports involve some generalization of the usual
harmonic-oscillator coherent states to time-dependent
harmonic oscillators. For example, Hartley and Ray'
have constructed oscillatorlike coherent states associated
with a harmonic oscillator with a time-dependent fre-
quency. The Lewis-Riesenfeld theory of time-dependent
invariants was used for the construction of these states.
Such associated coherent states have most of the proper-
ties of the usual coherent states, as they follow the classi-
cal motion exactly. However, they do not minimize the
uncertainty relations.

Very recently, Yeon et al. constructed a set of
coherent states for a damped harmonic oscillator
governed by the Kanai-Caldirola Hamiltonian

I
(

—xt 2+ 2q2 A e)i

where tr denotes the canonical momentum, and [q, rr] =i
This Hamiltonian, and the general problem of the
damped harmonic oscillator, have recently been reviewed
by Dekker. The coherent states of Yeon et al. are exact
in the sense that they follow the classical motion of a
damped harmonic oscillator: the phase-space trajectories
spiral to point attractors. Other examples of coherent
states for the system defined by Eq. (1.1) are given in Ref.
6. This Hamiltonian has also been shown to be relevant
to quantum optics, specifically in relation to field decay
in a Fabry-Perot cavity.

On the other hand, it will be shown presently that the
Hamiltonian of Eq. (1.1) also preserves, under time evolu-
tion, coherent states associated with the dynamical group
SU(1,1). The coherent states (CS's) referred to are the
Perelomov states. The SU(1, 1) CS's are known to pos-
sess certain nonclassical properties, being an example of
the so-called squeezed states (actually squeezed vacuum
states) familiar from quantum optics. '' In a previous
study, ' the most general Hamiltonian which preserves
an arbitrary SU(1, 1) CS under time evolution was de-

rived. Associated with such a Hamiltonian there also ex-
ists a time-dependent invariant of the Lewis-Riesenfeld
type. ' Other time-dependent oscillator-type systems, in
particular the example of a time-dependent frequency
to(t), with no damping, have been discussed by other au-
thors. '3 's

Returning to Eq. (1.1), we find that the "classical"
equations of motion that arise for the SU(1, 1) CS's are
nonlinear. The qualitative behavior of their solutions will
be studied and illustrated with some numerical results.
In some analogy to the case of the oscillator-like CS of
Refs. 3 and 7, the asymptotic trajectory (i.e., as t ~ ~),
for an initial SU(1, 1) CS (a squeezed vacuum state), ap-
proaches a limit point, as would be expected for the clas-
sical damped oscillator. The time evolution of the vari-
ances of the quadratures

X, = —,'(a+a ), X, =—(a —a ),1

is also studied. We find that regardless of which quadra-
ture is initially squeezed, an enhanced squeezing appears
in the Xz quadrature. In fact, the variance of that quad-
rature tends asymptotically to zeros as t~0, regardless
of the initial condition. The other quadrature, may also
become squeezed for a number of time intervals, before
its variance increases without bound as t ~ ~ .

The plan of the paper is as follows. In Sec. II we
brieAy review the dynamics of the SU(1, 1) CS's and dis-
cuss the associated time-dependent invariant. In Sec. III
SU(1, 1) CS's are constructed for the Hamiltonians of Eq.
(1.1). The actual time evolution of these coherent states
is then discussed. Some concluding remarks are made in
Sec. IV.

II. DYNAMICS OF SU(1,1) COHERENT STATES

Our discussion is kept brief here, and the reader is re-
ferred to Ref. 10 for a more detailed exposition. The Lie
algebra of SU(l, 1) consists of the generators Ko and K,
satisfying the commutation relations
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[KO, K+]=+K+, [K,K+]=2KO . (2.1)

The Casimir operator is given by

C =Ko —
—,'(K+K +K K+ ) . (2.2)

We consider here only the positive discrete representa-
tion D+(k) whose basis states are ln, k ), which obey the
relations Koln, k ) =(n +k)ln, k ) and Cln, k ) =k(k
—1 ) l n, k ) . The SU(1, 1) CS's, according to Perelomov,
are given by

i =H(t)$,. a~
at

they must have the following form

lg(t), k ), =e xp[i@(t)]lg(t), k ) .

(2.12}

(2. 13)

For consistency, the phase @(t) may be fixed as a con-
stant by removing the arbitrariness of P(t) in Eq. (2.5), if
we set"

lg, k & =S(a)lo, k &,

where

(2.3) +5f3(t)=k ~, (Fg*+F'g) A(t—)
2(1 —Igl')

(2.14)

S(a)= exp(aK+ —a'K ), (2.4)

a= —
—,'Oe '~, and g= —tanh(0/2)e '~. The group pa-

rameters 9 and P have the ranges —oo & 0 & oo and
0&$&2rr.

The most general form for a Hamiltonian which
preserves the coherence of an arbitrary initial SU(1, 1) CS
has been shown to be'

H(t)= A (t)KO+F(t)K +F*(t)K +p(t), (2.5)

where A (t) and P(t) are arbitrary real functions of time
and F(t) is an arbitrary complex function of time. The
"classical" equations of motion are'

(2.6)

III. APPLICATION TO THE DAMPED
HARMONIC OSCILLATOR

As is well known, the SU(1,1) Lie algebra may be real-
ized in terms of annihilation and creation operators,
a =(q+ia)/i/2 and a =(q —iver)/i/2, respectively, as
follows:

Ko =
—,
'

( aa +a "a ) = —,
'

( a a + —,
' ),

+ 2 ' —
2

(3.1)

It is always possible to add the P(t) function to any Ham-
iltonian, since the dynamics is not affected. In what fol-
lows we assume that Eq. (2.14) is satisfied.

where. && = (g, k lH lg, k ) and

(1 —
lgl ) aA aB

2ik ag

aB
ay* ag

(2.7)

Setting

K, =
—,'(K++K ), (3.2)

defines a generalized Poisson bracket. The classical
motion described by these equations takes place on a
Lobachevski plane where lgl &1. For the Hamiltonians
of Eq. (2.5) one arrives at the evolution equation'

i A (t)g —iF*(t)g i—F(t) . — (2.8)

(Note that this equation, as it appears in the above-cited
reference, is incorrect. )

Associated with the Hamiltonian of Eq. (2.5) is a time-
dependent invariant operator'" I(t} which satisfies the
equation

dI aI +i[H, I]=0 .
dt at

This invariant has the form

I (t) =KocoshH+ —,'K+ e '~sinhg+ —,'K e'~sinhg+y,

(2.9)

(2.10)

where 0!t) and P(t) are determined from the solutions of
Eq. (2.8) and y is an arbitrary real constant. The SU(1, 1)
CS's are eigenstates of this operator, with real eigenvalues
according to the relation

I(t)lg, k) =(k+y)lg, k & (2. 1 1)

In order for the SU(1, 1) CS's to be solutions of the time-
dependent Schrodinger equation

we have

~ =2(KO+K, ), q =2(KO —K, ) . (3.3)

The Casimir operator, Eq. (2.2), is evaluated as C = —
—,'„

so that k =
—,', —,'. The k =

—,
' solution corresponds to states

with even numbers of quanta (or photons). If we define
the quadrature operators as

X, =
—,'(a +a ), X2= —(a —a ),l

1

their respective variances may be written as

V(X, ~)=(K„)+—,'[(K+ )+(K )] .

(3.4)

(3.5)

For an SU(1, 1) CS they are given by [cf. Eqs. (2.23) in
Ref. 10 for the relevant matrix elements]

1+ lgl' (3.6)

For the squeezed vacuum, we take k =
—,'. (A squeezed

state exists when one of the variances obeys the inequali-
ty V(X, z ) & —,

' ). The squeezing is in the X, quadrature
when the phase /=0, and in the X2 quadrature when

For P = vr/2 there is no squeezing. ' ' '

Using Eq. (3.3), the Kanai-Caldirola Hamiltonian of
Eq. (1.1) may now be written in terms of the SU(1, 1) gen-
erators as
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—2 T+ kt 2)~

+ —'(e ' —co e ')(K++K )+/3(t), (3.7)

g= —2i cosh(At)/+i sinh(At)g +i sinh(kt),

subject to the initial condition

(3.10)

where an arbitrary /3(t) has been added. A comparison
with Eq. (2.5) then gives the association

Oo
g(0) =go= —tanh e (3.1 1)

—kt+eiL! 2 F(t)—
T

(
—iLT 2 kt)

Without loss of generality we let co = 1 so that

A (t) =2 c osh(kt), F(t) = —sinh(At) .

(3.8)

(3.9)

From Eq. (2.8), the time evolution of the SU(1, 1) CS asso-
ciated with the Hamiltonian in Eq. (3.7) is then given by
the nonlinear equation y = —3 (t)x F(t—)(x —y +1),

(3.12)

We now proceed with an analysis of the qualitative be-
havior of the solutions to Eq. (3.10) in the phase plane
defined by their real and imaginary parts. By letting
g(t) =x (t)+iy(t), Eq. (3.10) is equivalent to the nonlinear
nonautonomous first-order system

x = A (t)y+2F(t)xy,

(0.1, 0) (0.3, 0)
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0 50—

-1 00 -0 50
T

0 50
, X

-0 50

X

-050- -0 50-

-1 00— -100-

(c)

(o.s, o)

0 50—

-0 50
X

-0 50-

FICs. l. Evolution of the complex SU(1,1) CS parameter g(t)=x(t)+iy(t) as given by Eq. (3.10), corresponding to the following
initial conditions (x(0),y (0)), (a) (0.1,0),(b) (0.3,0), (c) (0.5,0), (d) (0.99,0). In all cases, the g(t) spiral asymptotically toward the point
(1,0).
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licit, we have resubstituted for the hy-
f o 1bolic functions according to Eq.

R (t) =x(t) +y(t), then from q.E . (3.12)

R —1) (3.13)xx +yy =RR =F (t)y (R

a closedr an A t and F(t) the curve R =1 is a closThus for any A t an
e from within the unitnd no solutions can escape rom worbit, and n

ith the requirement thatcirc e, w1 which is consistent wit

rstandin of the qualitative nature of s. solutions
h d f onsider sepa-in E . (3.12) can be a i we cto the system in q.

fields associated withrately the - ptime-de endent vector e s a
n the ri ht-hand sides of eachthe first and second terms on the rig - an

t =O, the resultingFor example, setting

about the origin. Furthermore, since t incr
without bou nd sodo t eosci a ion

set A (t)=0, and note that
ctor field generates a family of

tra ectories. If we now set
F(t)(0, the resulting vector e ge

which emanate from the point 0, — antrajectories w ic
de" toward the pointward along "lines of longitu e ow

as . in (3.12) is a superposition of
e ', f which we conclude the

1 as t ~ ~. The system in . is a
these two phas pe ortraits, rom w ic
followmg quahtative features: y )0 or x

ward, (ii) x )0 for y ), xio poi p ward,y(, an x—(0 and x =0 for y =0. Thus, in the le t a - is,

(0.

0 75 075-

0 50- 0 50-

025- 0 25-
&'(xi)

0 00
0 00 2 00

0 00
0 00 2 00

(c)
100 00— W f'or (O.QQ, 0)
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50 00—
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25 00—

0 00
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0 00
4 00 i

2 00
1

6 004 00t

c d in Fi s. 1(a)—1(d). Initial conditions~1 1) coherent states depicted in Figs. a-and V(X2) associated with the SU, c
the ross scales the Heisenberg uncertain y p99 0) Alth h 'd f h

V(X ) ~ —' Variances are calculated from Eq.
x , : . b) (0.3,0), (c) (0.5,0), (d) (0.9 ,

. (3.6).ciple is always obeyed, i.e., V(X& ) V(X2 ) ~
—, . Variances are
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solution curves travel in a clockwise manner. Note also
that the unit circle R = 1 cannot be an attractive limit cy-
cle for any trajectories where

~ g( t )
~

& 1 since, from Eq.
(3.13), R & 0 for y & 0 and R )0 for y )0.

In the Appendix, we show that all trajectories starting
inside the unit circle asymptotically approach the point
(x,y) =(1,0) in the limit t ~ ~. However, this approach
is somewhat different from the usual approach of a trajec-
tory to an equilibrium point, since (i) the point (1,0) is not
an equilibrium point and (ii) solution curves can not cross
the unit circle. Solution curves spiral arbitrarily closely
to this point from within the unit circle. As a result, the
distance from the point (x(t),y(t)) to (1,0) exhibits a

damped oscillatory behavior, rather than the usual mono-
tonic exponential decrease as the equilibrium point is ap-
proached. The behavior described above is corroborated
by numerical calculations of the phase-plane trajectories
(Runge-Kutta fourth-order integrations), some results of
which are presented in Fig. 1, corresponding to various
initial conditions, x (0)=xo, y(0) =0, with co= 1 and
A, = l. The "classical" motion of the g(t) trajectories is, in
a sense, quite analogous to that of generalized oscillator
states discussed in Refs. 3 and 6. The latter follow the
true motion of a damped oscillator, and approach a point
attractor as t ~~. For purposes of comparison, the evo-
lution of the SU(1, 1) CS with the initial condition of Fig.

(0.3, 0)

100 &'

(a)
(o.3, o)

0 50- 075-

I

-0 50
1

0 50
, X

1 00

0 50-

-050- 025-

-100- 0 00
0 00 2 00

T

4 00

(0.3, 0) (c)

075-

0 50-

025-

0 00
0 00 4 00

FIG. 3. Evolution of an SU(1,1) CS state in the case of no interaction with the damped harmonic oscillator, i.e., X=O, with initial
condition (x(0),y(0))=(0.3, 0.0). (a) Plot of s(t)=x(t)+!y(t) (b) Varian. ces V(X, ) and V(X!) corresponding to trajectory in (a).
(c) Evolution of the expectation value (E ) for the non!nteracting state in (a).
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l(b), but with no damping interaction, i.e., A, =O, is shown
in Fig. 3(a). The actual trajectory is given by
g( t) =$0 exp( 2—i cot) T. he angular frequency X=co is
constant, as is the radius, p=(0. The variances and ener-

gy associated with this case of noninteraction are plotted
in Figs. 3(b) and 3(c) and will be discussed below.

We now focus on the variances V(X, z) associated
with the SU(1,1) coherent states, as given by Eq. (3.5). It
is again assumed that a function P(t) of the form in Eq.
(2.14) is chosen so that Eq. (2.13) is satisfied with a con-
stant phase @(t)=4&. The variances in the x and y coor-
dinates for the trajectories of Fig. 1 are plotted in Fig. 2.
There are some noteworthy features. In Figs. 2(a) —2(c)
the variance of the initially squeezed quadrature in-

creases, attains a maximum, and then tends asymptotical-
ly to zero as t~oc. The greater the degree of initial
squeezing, the greater the value of the variance at the
hump maximum, so that, for sufficient initial squeezing,
the quadrature may be unsqueezed for a definite time in-
terval, before the eventual decay to zero. During this
time interval, the other (initially unsqueezed) quadrature
becomes squeezed, before its variance eventually tends to
infinity. In all cases, although not immediately evident
from the graphs, the Heisenberg uncertainty principle is
obeyed, i.e., V(X, ) V(X2) ~

—,', . In Fig 2(d)., with initial
condition x0 =0.99, we see that there can exist more than
one time interval in which squeezing-nonsqueezing
characteristics are exchanged. Presumably, with ap-
propriate initial conditions, such exchanging could be in-
duced over an arbitrary number of time intervals. [A lit-
tle investigation shows that these periods of exchange
occur when the trajectory g(t) is farthest from the point
(1,0).] Figure 3(b) shows the variances in the case of no
interaction, i.e., A, =O for the trajectory of Fig. 3(a). A
comparison of the plots in Figs. 3(b) and 2(b) shows that
the interaction between the squeezed SU(1,1) CS's and
the damped harmonic oscillator produces even greater
squeezing than for the undamped case, in other words
enhanced squeezing.

Finally, we consider the expectation value of the
mechanical energy, given by the operator

—2Ati 2+ l 2 2
2 2

gous to the situation for ordinary coherent states de-
scribed in Refs. 3 and 6. The oscillatory behavior of (E )
in the undamped case, i.e., X=O, for the trajectory of Fig.
3(a), is shown in Fig. 3(c).

IV. CONCLUSIONS
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APPENDIX

Here we sketch the ideas behind a derivation of the
asymptotic behavior exhibited by solutions to the system
in Eq. (3.12). This nonautonomous system may be con-
sidered as the limit a~1 of the following family of sys-
tems:

x = A (t)y+2aF(t)xy,

y = —A (t)x —aF(t)(x —y +1), 0 a 1 .
(A 1 )

In this work, we have considered the interaction of a
dissipative system, namely, the damped harmonic oscilla-
tor, with SU(1,1) coherent states which exhibit the non-
classical property of squeezing. Furthermore, the Hamil-
tonian in Eq. (1.1) describing the damped oscillator be-
longs to the general class of Hamiltonians which
preserves SU(1,1) CS under time evolution. All trajec-
tories approach the limit point (=1 in an oscillatory
fashion. Also, the variances of the initially squeezed
quadratures, as well as the expectation values of the
mechanical energy, become damped to zero as t ~ ~. It
is of natural interest to study the interaction of these
states with other energy nonconserving systems to see
whether a similar behavior is obtained. Work in that
direction is in progress and will be reported elsewhere.
We have also been studying the nonlinear aspects of the
time evolution equation (2.8) for g( t ), in particular,
Poincare-type discrete evolution mappings associated
with periodic and quasiperiodic "kicking. " The results of
these studies will be reported elsewhere.

=e '(KD+K, )+co (KD —K, ) . (3.14) Note that, in the limit t ~ ~, the point

The calculation of the expectation value (E ) is straight-
forward using (KD) and (K& ): the relevant matrix ele-
ments are given by Eqs. (2.23) in Ref. 10. Rather than
being concerned with the actual calculation of (E) in
time, we focus on its fundamental asymptotic behavior.
Note that, from Eqs. (3.2) and (3.14), we may write

(E ) = (K0)(1+e ')+ —,'[(K+ ) + (K ) ]( ' —1)

(3.15)

From Eq. (3.6), it then follows that (E ) ~ V(X2) as
t~ ~. From the behavior of V(X2) observed above, it is
seen that the expectation values of the mechanical energy
follows a classical damping to zero. Again, this is analo-

x, =a ' —(a —1)' (A2)

is an equilibrium point. (The nature of this point is un-
determined from a linearization analysis, since the eigen-
values of the Jacobian matrix evaluated at this point are
purely imaginary. ) Note also, that in the limit a~ 1,
x, ~1.

For u (1, each system possesses an attractive limit cy-
cle O. with center on the positive real axis. Substituting
co(t)=x(t) —X, ~x ~

& 1, into Eq. (Al) to obtain, after
some manipulation,

ww+yy =aF(t)y[w +y —1 —x ]—A (t)x y .

[The fact that y =0 follows from the symmetry in Eq.
(Al).] Setting p(t) =co(t) +y(t) and noting that
3 (t)/F(t)~ —2 as t ~ ~, we have
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pp —ctF(t)y[p —(1+x —2a 'x )), t ~ &x

The circle 0 given by

N +g =x —2' x + =p

(A4)

(A5)
(o.s, o)

100 &

is seen to be an invariant closed orbit, in the limit t ~~.
The condition 0 ~ p ~ 1, coupled with the restriction
~X

~

& 1, implies that

050-

O~x &x, . (A6)
-1 00 -0 50 1 00

j=2F (t) t I —a[to (t)+x ) I . (A7)

For o. &1, the term in curly brackets is strictly positive
for all time. Since F(t) = —sinh(At), it follows that f &0
and y~ —~ as t~ac, i.e., as g(t)~A The sp. ecial

The strict inequality on the right follows from the fact
that x, is a root of the quadratic equation in x in Eq.
(A5). The equality would imply that p =0, i.e., that x
is an asymptotic equilibrium point, which is not possible
for a & 1, from Eq. (Al). Thus, there exists a limit cycle0, of nonzero radius p, centered on the x interval [0,1].
In a fashion analogous to the Poincare-Bendixon theorem
for autonomous systems, the limit cycle must contain the
asymptotic equilibrium point x, . The parameters x and

p are not fixed, and depend upon the initial conditions of
the trajectory. A sample trajectory, with important
features labeled, is presented in Fig. 4.

We now show that for e & 1, the angular velocity of the
trajectory g(t), as it approaches the circular limit cycle

is unbounded as t ~ ~. Assuming that t is
sufficientl large so that g(t) is "asymptotically close" to
II (see Ref. 17), we let w(t)—:pcosg and y(t)=psiny,
so that toy —wy=p j' (angular momentum). From Eq.
(Al), a small calculation shows that, for p) 0,

-0 50-

-100-

FIG. 4. Trajectory of a solution curve to the system in Eq.
(A1), for the particular case a=0.5, with initial condition
x (0)=0.5, y (0)=0. Labeled are the limit cycle 0, with radius

p and center x, and the asymptotic equilibrium point x, .

case a=1 deserves special attention, however, and the
angular frequency remains bounded as t ~~. This effect
is also seen in numerical calculations.

Recall that the asymptotic equilibrium point x„which
lies in the interior region bounded by 0, travels to the
point (x,y) =(1,0) as a~ l. In this limit, there is no lim-
it cycle fL, and trajectories spiral arbitrarily closely to
the point (1,0) as t ~ ~.
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