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Fractal dimensionality for the g model
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We present simulation results for the fractal dimensionality of the g model for a wide range of
values of q. We check the theoretical predictions for the curve df(t)) proposed by Halsey [Phys.
Rev. Lett. 59, 2067 (1987)l against the values we get from calculated quantities and find good
agreement between theory and the computer experiments.

In spite of the enormous amount of attention received in
the past few years, diff'usive models for growth phenomena
are still far from being completely understood. Since
1981, when Witten and Sander introduced the "diff'usion-
limited aggregation" model' (DLA), many sophisticated
numerical studies have been devoted to identifying and
characterizing the properties of the structures generated
by diff'usive processes. The theoretical developments have
not been quite as good: Although the essential physics un-
derlying these phenomena has been discussed starting
with the earliest papers, ' in the following years there has
been little analytical progress. Quite recently, Halsey
has proposed an interesting relation between the fractal
dimensionality and the corresponding "multifractal" spec-
trum of exponents for the t7 model; in this Rapid Com-
munication we present computer simulation results for the
fractal dimensionality of the rl model for a wide range of
values of ri, and check the theoretical predictions against
the values we measure in the simulations.

The r) model is a growth model introduced by Nie-
meyer, Pietronero, and Wiesmann" in 1984 to account for
the patterns formed in the dielectric breakdown of insulat-
ing media in a planar geometry. It is defined by a growth
rule that assigns at any point I of the surface S of the
cluster a growth probability P„(x)proportional to the lo-
cal normal electric field raised to the power g

P„tL.[n Ve(x)] ", x e S,

(2)

For g 1, one recovers the Wit ten-Sander model, whose
fractal dimensionality in a 2D space is df =1.7; for g 0
the model is equivalent to the Eden model and therefore
generates compact clusters, for which df d 2; in gen-
eral, df appears to monotonically decrease as g in-
creases. ' ' From the study of the growth probability dis-
tribution [P (x)j,c s one finds a multifractal spectrum of
exponents, i.e., the different moments of the growth

where we have indicated by @(x) the electric potential at
the point x; the cluster itself is assumed to be at potential

1, and far from it there is an enclosing circular elec-
trode kept at potential @ 0. This rule defines a diff'erent
model for every value of ri, and in all these models it is ob-
served that the radius of gyration R and the number of
particles in the cluster N are related through a power law
with a nontrivial exponent df(ri), known as fractal dimen-
sionality of the cluster

Rdf(g)

,[P(x)]&dS-~ "', (s)

from the definitions, taking into account the normaliza-
tion, we find

r„(q)-ri(rlq) qri(rl) .—

However, from a numerical point of view, it is simpler to
study the harmonic measure, since it only involves the ex-
ponentiation to powers q, and not to powers gq like the
growth probability distribution.

In a recent article Halsey proposed an equation of
motion for the surface harmonic measure of the g model,
from which, assuming for the moments of the harmonic
measure the scaling form (5) in R (apart from possible
logarithmic corrections), he derives the following relation:

df(rl) ri(q) i ~-„+z—z|(q) i ~-„. (7)

Relation (7) for any tl connects the fractal dimensionality
df(rl) to the scaling exponents of the (rl+2)th and the
gth moments of its harmonic measure; in its derivation it
is assumed that the multifractal spectrum rl(q) does not
vary too widely between different realizations of the ag-
gregates.

An alternative expression for df (r) ) is given by

df(ri) -1+

r)tran'"(ri)

—ri(q) I

probability distribution scale with independent exponents
r„(q)

,[P„(x)]&dS-Z ""'. (3)

Besides the growth probability distribution, it is possible
to consider the "harmonic measure" of the surface of the
rt-model clusters. The harmonic measure is the set
[P(x)}„qwhere

P ~ [n Ve(x)], x e S, (4)
and coincides with the growth probability distribution for
r) 1. Therefore, if we are interested in the spectrum of
the harmonic measure of a generic g model, we still have
to grow the clusters with rule (1), but at each stage of the
growth we study the distribution of probabilities given by
(4). Quite clearly the results obtained by studying the
growth probability distribution and the harmonic measure
are analytically related by simple transformations. In
fact, if for the harmonic measure we define the scaling of
the moments through r& (q)
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where, for any g, a] '" is the exponent that gives the scal-
ing of the harmonic measure at the tips of the aggregateP,„with the linear dimension of the aggregate R

df(ii) -1+a„'"(g), (io)

where a„'"is defined in terms of the growth probability
distribution

Equation (10) tells us that the fractal dimensionality of
an aggregate grown with rule (1) is determined by the
scaling exponent a„'"of the tips, the portion of it that
grows with the fastest rate, as first proposed by Turkevich
and Scher.

To perform the simulation we exploit the electrostatic
formulation of diffusive growth in a form suited for the
lattice version of the model. If we regard the surface of
the cluster as the surface of a conductor kept at potential

cost, the potential in the space will be given by

e(x) -J o(x')G(x, x')da', (i2)

where o(x') is the electric charge at point x', G(x,x') is
the Green's function appropriate to the boundary condi-
tions of the problem, and the integration is performed on
a11 the points belonging to the surface S. Applying the
operator n V to both sides of (12), we find that

o(x) -n„V„e(x)- o(x)n„V„G(x,x')da'.

Equation (13) is an integral relation that immediately
gives us o(x) [a:P(x)] once we know G(x, x'). The
discretized version of (13) is

(i3)

(i4)

where

The meaning of the relation (8) becomes more evident if
we recast it in the form

1000 different realizations of the aggregate; then we per-
form normal scaling analysis to find the exponents

(q). "
The procedure just described allows us to measure all

the quantities involved in relations (7) and (8). We esti-
mate the statistical error on most of our measures to be
—2%-3%. It should be pointed out that a; '" is systemati-
cally low if compared to the value obtained by using the
scaling relation

isa '" a„'"+r (g) [df(rr) —I]+z (ii),

and the measured values for df(q) and r~(ii); we do not
know if this is a consequence of an error in the scaling re-
lation, or of systematic errors in the computation. For
q 0 the small probabilities count more and more in the
calculation of the q moments and therefore in the deter-
mination of the q —0 part of the r~(q) spectrum: since no
matter how precisely we determine the growth probabili-
ties we still have to cut the ones smaller than the smallest
value we consider to be accurately calculated, we expect
that the error bars in ri(q) for q (O.S will be somewhat
larger than the ones on the rest of the curve and become
worse as q 0.

It is also important to notice that the underlying lattice
might introduce anisotropy effects. While these effects
should be irrelevant at such small sizes for g ~ 2, they
might become more important at large values of g. On
the other hand, the smallness of the clusters used in our
analysis does not seem to introduce systematic errors, as
can be seen by comparing our results with the ones found
in Refs. 7 and 11 for g 1, and in Ref. 7, for @=2, ob-
tained by completely different methods for much larger
aggregates.

In Fig. 1 we present our numerical results for the curve

df (ii): as expected for ii =0, df =2; then df monotonical-
ly decreases, touching the DLA value df =1.7 when g =1.
For g) 1, the slope of the curve decreases and df ap-
proaches more slowly the limiting value df 1.

In Fig. 2 we compare the experimental curve df(ii)
with the theoretical predictions (7) and (8), for which the

A;,1 -G(r;, r, ) —G(r„„r)). (is)

G(r;, r~) -G(~ r; —rj ~
) is the lattice Green's function for

the square lattice, ' r; and rj are the position of the sites i
and j on the surface of the cluster, respectively, r„,is the
position of the site internal to the cluster on the normal to
the site i; the sum is over the Ng sites that constitute the
surface S of the cluster.

At each state of the growth, that starts from a single
seed site, we solve the system (14) of Nz equations in Ns
unknowns to get the harmonic measure and the growth
probability distribution for our cluster; the growth proba-
bility distribution is then used to add another particle to
the aggregate.

The precision in the determination of the probabilities
that we reach with this method is quite good (order e '');
but since at each step of the process we have to invert a
N~&Nq matrix, our clusters are rather small, N=150.
Typically we average the harmonic measure moments on

2 ~

1 5--

FIG. 1. df(g).
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FIG. 2. Comparison between df(rt) and the two theoretical
predictions (7) and (8).

values r1(q) ~~-„+2,r&(q) ~~-„,and a1 '"(ri) have been
determined by simulations. As one can directly see from
the graphs, the agreement is quite good on the entire
curve, always at most in a 5% error range; within the qual-
ity of the data we consider the two relations verified.

A different prediction for df(rl) was given by Turkevich
and Scher:

FIG. 3. Comparison between dt(tl) and the theoretical pre-
diction (16).

In conclusion, we have presented the curve df(rl) for a
large range of values of g; moreover, from the direct mea-
surements of the scaling exponents of the moments of the
growth probability distribution and the harmonic measure
taken in computer experiments, we have been able to com-
pare the experimental df(rl) with some theoretical predic-
tions, finding good agreement with those proposed by Hal-
sey.

(16)

the comparison with measured values is offered in Fig. 3,
and as forseen by Halsey, the curve (16) is not consistent
with the experimental df's for large values of g. In fact,
we observe a reasonable agreement for g & 1.5, but from
there on, the two graphs diverge more and more, and at
ri 2.5 the fractal dimensionality given by (16) crosses
the lower bound for df df l.
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