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Extension of Landau-Ginzburg free-energy functionals to high-gradient domains
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The Landau-Ginzburg (LG) free-energy-gradient theory is extended to account for domains of
intermediate wavelengths. The extension is nonlocal but preserves the universa1 features of the
LG theory, has the same level of complexity, and reduces to it in the small-gradient limit. It also
enables one to gain a meaningful insight into the microstructure of a system.

This Rapid Communication extends the Landau-
Ginzburg (LG) theory of free-energy functionals' to
domains of larger gradients than accounted for in the LG
theory. These are expected away from the critical point
where the divergence of the correlation length arrests the
spatial variations. Though it may appear surprising at
first, this extension cannot be achieved with higher-order
perturbation in gradients, because such an expansion al
ways diverges. In what follows, I shall demonstrate that
the proper extension has to be a nonlocal one and I will
show how to construct it.

To describe the essence of my approach, take p to be a
scalar order parameter in one spatial dimension (1D).
Let F(p) be the functional of free energy and f(p) its
density

F(y) -„f(y)dx,
then the Landau-Ginzburg theory states that

f(y) -fp(tt)+ —(y„)', a & 0;

fp(p) is the energy density of the system in a local homo-
geneous equilibrium and its inhomogeneity, explicitly as-
sumed to be small, is measured via the gradients. Expres-
sion (1) is the essence of the LG theory in its maximal
siinplicity. My work extends (1) to higher gradients by
replacing it with

chaos in the deterministic time-dependent LG equation
of motion. Since these phenomena are intimately related
to the behavior at the ultraviolet end, this side of the spec-
trum must be treated even if only approximately. The
point which will repeat itself throughout this work is that
any extension of the LG theory necessitates taming the
growth at the ultraviolet end. Though detailed microscop-
ic information is unknown, the minimal requirement is
that of boundedness of the total interaction energy. Im-
posing this condition will suffice to extend the LG theory
to higher gradients. It is worth reiterating that it is im-
possib1e to achieve a correct extension of a low-k theory to
intermediate wavelengths without removing the ultravio-
let divergences.

To introduce my extension pertinent to solids, I start
with an equally spaced 1D lattice. Its energy of interac-
tion is given by the Hamiltonian

N

H~ - g (y„+& —y„) /I, dp-const,
do

n
(2)

where l is the interlattice distance assumed to be large on
the atomic scale by very small on the macroscopic scale
and N [I '], the integer part of I '. The continuum,
final coarse-graining limit, corresponds to setting l s0
(N e ~), dp-al. Rather than to take this limit, I shall
show how the continuum can be gradually approached.
To this end I rewrite (2) as

where L~ is a Lorentzian [see Eqs. (7b) and (11)l. The
new expression reduces to the classical one in the small-
gradient limit, but for large gradients, as expected on
physical grounds, it softens and finally saturates as the
gradients grow unbounded. I shall demonstrate that
whether the system is a solid lattice or liquidlike, the in-
troduced form interpolates properly between the micro-
scopic and macroscopic descriptions. Stated differently,
the LG theory calls explicitly for both the order parameter
and its gradient to be small. I shall relax the second con-
straint, which is to say that while the order parameter is
still assumed to be small, it may undergo faster spatial
change than accounted for in the LG theory. This work
was partially motivated by the observed formation of com-
plex patterns and by the appearance of spatiotemporal

where

dp 2 (y. +~ 2y.y. +i+yn)/I
n 1

dp Z yn~Dyn &

n

~Dyn = (y„+ ~ 2y„+y„—I )/I

2
[cosh(ID) —1]y„-LDD y„,

2

where D=tl, and

cosh(ID) —1 ~ 2 (ID) ztn —» (3)IzD' .-( (2n)!
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Thus

dp dp
Hp Z ynLDynxx X ynxLpynx ~

n n ]
(4)

Away from the infrared limit, we can use the usual inter-
pretation of the link between the free energy and the un-
derlying Hamiltonian and write the extended free-energy
functional as

Representation (4) is crucial for further development. Lp
is a pseudodifferential operator represented in the Fourier
space by (D ik)

F dx [fp(y ) + —,
' a (y„L&y„)l,

where, in 1D,

(io)

4sin (kl/2)
12k 2

(3') fe oo

L~y~ —= e
—

I
x —

C I/~y (g)dg e2 ( &/12 (11)
2e 8x"

The continuum corresponds to taking LD=1. However,
meaningful extension of this limit cannot be obtained via
truncation of the Taylor expansion at any finite level. For
instance, up to a second term, the expansion of
Lp =1 —I k /12 and leads to the exploding Hamiltonian

r

do IHp=+ Q (y..)' — (y...)'
The third-order approximation, while positive as k

ILp=l — k + k
12 360

still has a band of unstable k's. It predicts artificial ener-
getically lower states absent in the discrete predecessor.
This situation prevails no matter how accurately we may
try to approximate LD with polynomials.

The essence of the difficulty in bridging the gap be-
tween the discrete system and the continuum is the inabil-
ity of polynomial approximants induced by the Taylor ex-
pansion to reproduce the global boundedness of LD for all
k's. To recover this crucial property instead of (6) we
adopt

Lp Lg+O(l ),
where

(7a)

(7b)

N

Hp ——,
' g doy Lpynxx - Z h„l+O(l ),

n I n ]

where a dp/I and h„ is the Hamiltonian density, i.e.,

1

~n 2 +ynLAynxx 2 +ynxLAynx ~

Since I is small on a macroscopic scale, we change yn y
and

[i -'I
Hp g h„l

&
—,
' a(y„L~y„)dx.

1

1+k I /12
A

which closely approximates Lp for k & 1/I and preserves
its boundedness for all k's. Preservation of boundedness
(both from below and above) will appear as a crucial
theme in our work. It is achieved by introduction of a
nonlocal approximant L~. [Clearly the choice of L~ is
nonunique; exp( —k I i/12) is another possibility; howev-
er, both are equivalent up to O(l )]. In addition to its
simplicity, the usefulness of our choice lies in the ease in
which the act of L~, a Lorentzian, can be reexpressed by
locai means (see below). In Eq. (4) we thus write

, BF
ry, —( —8„)", r const,

By
' (i 3)

and v 0, 1, depending whether y is (v=1) or is not
(v 0) a conserved quantity (model 8 and A, respectively,
in the terminology of Ref. S). In a localized form, Eq.
(13) reads

ry M y„„+( —8„)"[fo(y) —[ay —e fp(y)] „]. (14)

Equation (14) is the extended, time-dependent, Landau-
Ginzburg equation. The conserved, v 1, case in the con-
tinuum limit is also known as the (1D) Cahn-Hilliard
equation which describes the spinodal decomposition of
binary mixture. In the latter case, however, the meaning
of e changes as will be explained shortly. The impact of
finite t. on the linear phase of evolution is given via[i- —~ fo(y)-fo, oy]

k '[fo,o+ k '(a —e'fo, o) ]
1+a k

showing that the dilt'usion of short wavelengths is slowed
down. Note that for fpp &0 there is a band of unstable
wavelengths which leads to formation of spatiotemporal
patterns. The time-dependent Landau-Ginzburg equation
in its various generalizations is known to exhibit a variety
of complex patterns and even a chaotic behavior. Its ex-
tended version with its prototype given by (14) will also
exhibit a complex behavior. But while the appearance of
time-dependent, high-gradient domains contradicts the
basic assumptions of the Landau-Ginzburg theory, it is
consistent with the presented extension.

Extension to multidimensional lattices is straightfor-
ward. For instance, for a 2D rectangular lattice

N

Hp Z [ 2 (yn, m+1 yn, m) + 2 (yn 1+ymn, m),
m, n

(i6)

Expression (10) contains in its maximum simplification
the essence of our extension; a generalized quadratic form
replaces the classical one. Its main impact is to soften the
high-k content of the free-energy functional. Since Lz
contains I, a trace of its microscopic origin, (10) is not a
genuine continuum but rather a quasicontinuum. To con-
vert the effect of L~ into local terms, minimize F and hit it
with 1 —e' 8„

2

(1 —e'8„') -—,[ay —efp(y)]+ fo(y) -0. (12)
&y Bx'

The same applies in the dynamic approach to equilibrium
via
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We obtain

f(3 ) -fo(3')+ (—VJ ~L, V.»
where now

a~ 0
0 a2

L

Lg ai (I+e k )

with the specific form of P s and y s being dependent on
the particular lattice chosen. Note that with L~&I an-
isotropy enters explicitly into the system which thus loses
its rotational invariance. This is an essential anisotropy
that cannot be scaled out (as opposed to a nonessential an-
isotropy introduced into gradients via say ap„+pp, ).

A related topic is that of strain energy which is often in-
troduced via second-neighbor interactions. In 1D, in ad-
dition to the right-hand side of (2), one has

L~, -a2-(1+e k, )

In a nonrectangular 2D lattice, a s take the form

a~
' 1+Pok„+P&k, , a2 ' 1+yak„+y~k, , (2O)

g (3 „+~

—23 „+y„-~ ) /I
n 1

which in terms of L~ is rewritten as

(21)

(3 nLDyn»x~ ) - g (y«xLDy«x ) = (y L~y )dx + O(l "), p d )/l . (22)

The continuum level provides the strain energy (density) py„„/2 which ineasures the rigidity (resistance to bending) of a
1D lattice. In higher dimensions care must be taken to ensure that the continuum reduction is invariant under rotation.
In 2D we have (P and y are constants)

[p(y„,Lw y»)+2py(L~, y»)(L& y„)+y(y„L~,y„)]dx dz .

Consider now a hyper-rectangular Bravais lattice S "i for which we define a set of spin variables y(x) (x z gtd~). If
p(x) is restricted to the values [+' ll, then the Hamiltonjan

H- i g J(x —x')y(x)y(x') —g W(y(x)),
Z, Z

(23)

describes an Ising system; 8'is generally assumed to be an even fourth-order polynomial. More generally, we allow the
spin to vary continuously over a real domain. Note that if S& is a lattice domain and S& its dual, then

J(x —x')y(x)y(x') =N ' g J(k) j(k)P( —k), N ' g j(k)j( —k) = g [y(x)]'.
x,x'( e SN) z(c s„*) k(~sN) x(es )

Next write the Fourier transform

J(k)- g J(x)e '" *= g J(x)+ g J(x)[cos(k x) —1] —i g J(x)sin(k x).
x(es ) x( e SN) x(cs ) x(es )

The first term will add to the self-interacting part, the impact of the last term will vanish if J is reAective through an axis
[J(x)-J(x)]. The second term in the low-k limit yields the Landau-Ginzburg approximation. My regularization
yields

J(k) g J(x) —
2 g J(x)L~,(k x)(k( x(+ +k x )+O(l ) .

x(eL ) X(e LN)

In the simplest case of an isotropic nearest-neighbor model J(x) =J if I x l
=l and zero otherwise and we have

l 'Jg J(x —x')p(x)p(x') dJQ [p(x)] — P (Vdp. ~L, Vdp) .
X, X x X

Incorporating [p(x)] into W'(p(x)) we have (Jn, —:l2J)

H= g (Vdp Lg Vdp) —W(p(x))
Jg (24)

x( e SN)

Genuine continuum corresponds to N e ~, L~ s I and P~ f. In the quasicontinuum extension, we rescale Wand Jn, by
lattices volume, and set g~ fd x.

We now turn to the extension of Landau-Ginzburg (and van der Waals) theory to liquids. I consider only the simplest
case of binary interactions and as a departing point follow Abraham that takes

f(p) -fo(p)+ —,
' p„[p(r+r') —p(r)]C(r', p(r))dr', (25)

here p, the Auid density, is the order parameter, C is essentially the binary correlation isotropic function of inhomogene-
ous fluid, and r' is the interaction distance, r&i. Equation (25) is typical. Similar forms are summarized in Ref. 9. In
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Ref. 8 the form (25) was the starting point for numerical studies. In contrast, expanding the integrand and integrating
over the solid angle I have

[p(r+r') p(—r))C(r', p)dr'- —A ~(p)V p+ —Aq(p)V p+4 3'f 51
(26)

where

A; —
(
r'~ ' C(r', p)dr', i 0, 1,2, . . . , (27)

Assume first that C is adequately shielded to ensure the
existence of at least the two first moments At and A2.
The classical van der Waals theory results if only A~ is
kept. As before, a direct addition of A2V p is disastrous.
To restore the boundedness of the integral expression
(27), I write

A)[p(r+r') —p(r)]C(r', p)dr' p+
31 1 p2V2

(28)

where p —=A2/A~ is the ratio of the fourth to second mo-
ments. If p is assumed to be constant (which is the case
in the low-density limit), the denominator can be under-
stood operatorically via Fourier space convolution. Thus

Lg (1 —P V ) 'I, Lg(k) -(1+P k ) 'I . (29)

In 3D this is a shielded Coulomb potential. Thus

f(p) -fo(p)+ (Vp L Vp)
12

generalizes in a simple and natural way the van der Waals
theory for Auids. In deriving the last result I have as-
sumed the existence of the fourth moment of C which
determines A2. However, if the potential entering into C
is unscreened (say the Lennard-Jones potential), the
fourth moment diverges and A2 does not exist. To cir-
cumvent this difhculty consider the behavior of the in-
tegral for large k. If p(r) pl, exp(ik r)+pp, then

[p(r+ r') p
—(r) f Cdr'

pl, [cos(k. r') —I )C(r', po(r ) )dr'= pk (R+Ap) .

If C is bounded, then by Riemann's theorem

lim R - lim cos(k r')C(r', p, (r))dr' 0. (31)
i[( ~ oo

p A i/Ao. (32)

Thus, in the leading approximation the low-k behavior of
the integral has been tied into its exact asymptotic value
as

~
k

~
e ee. Even when A 2 does exist, in the simplest reg-

ularization of high gradients, it seems preferable to calcu-
late precisely the high-k limit rather than to improve the
precision of the intermediate-k content via the use of Aq
that comes at the expense of the precise high-k limit. In
fact, with P Az/2 ~ the limit at infinity is A1/A2 which
usually differs from the exact limit Ap.

Last, consider the structure factor S(k). We have

S(k)- (~p& ~)- „, , (33)V ET
po po(f o',o+ 2&1k 'L~ )

where V is the volume and po is the linearized value of p.
For L~ =1 (i.e., p=0) we recover the classical result due
to Ornstein-Zernike theory. Note that at the critical point
(foo o, T T, po po )

~(k) &Tc 1+P k
2p g I 2

which diverges classically as k ~0 but saturates with k as
kazoo

In conclusion, we have sho~n that the LG theory may
be extended in a simple way to high-gradient zones, by re-
placing the gradient-dependent part of the free energy
with the quadratic form (Vp ~L Vp) that properly inter-
polates between the microscopic and the macroscopic
descriptions.

(34)
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I

Thus Ap, which is bounded, is the high-k limit. Clearly,
the classical gradient theory misses the saturation of the
high-k content. To achieve the uniform boundedness in k,
I redefine P in (29) as
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