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Pruning versus clipping in neural networks
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The number of interconnections in a neutral network is reduced by eliminating the "weakest"
bonds. The performance is then improved by reapplying the learning algorithm.

I. INTRODUCTION where one cuts back a tree and then allows it to grow
within that context.

The study of neural networks has gained a great deal of
attention in the physics literature as of late. ' While the
initial motivation behind the study of neural networks
was based on attempts to understand the functioning of
the brain, the analogy with spin glasses ' brought
physicists into the fold. Hopfield's work' revitalized in-
terest in the use of such networks as computation and
memory devices. Although neural networks have many
other uses, " here we will consider only the memory as-
pect of spin-glass-like neural networks.

The standard spin-glass neural network, where spins
take the values +1, is fully connected, with every neuron
connected to every other neuron. For almost all im-
plementations this becomes a problem as the number of
neurons grows, since the number of connections grows as
the number of neurons squared. This has provoked in-
vestigation of sparse networks, with lesser connectivi-
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There are several methods of reducing the connectivity
of a network. Of course one wants to find a way to
reduce the number of bonds without significantly degrad-
ing the performance of the network.

The simplest method of reducing the number of bonds
is to delete bonds at random. While seemingly crude, this
works reasonably well if the number of deleted bonds (or
the number of stored memories) is kept small. ' For ex-
ample, Sompolinsky shows that randomly removing half
of the bonds of the Hopfield model leaves it with the abil-
ity to store 60% of the memories of the undiluted model.

The problem with random dilution is that bonds are re-
moved without regard for their importance. In what we
call "clipping, " weaker bonds are removed prior to
strong bonds. This is similar to Morgenstern's "zero
model. "' So, for example, in a network that was clipped
at 50%%uo the smallest (in absolute value) half of the bonds
would all be set to zero.

Clipping gives us a means of choosing which bonds
should be deleted, but what about the remaining bonds?
There is no a priori reason why their initial values should
remain optimal after the clipping process. Perhaps more
learning could take place on the subset of unclipped
bonds, in a sense "tweaking" their values to perform
better.

We use the term "pruning" to describe this process of
relearning after clipping, in analogy with gardening

II. THE LEARNING ALGORITHM

We take as our neural network model an Ising model
undergoing zero-temperature parallel relaxation —at
each step in the recall process

S, (t+1)~sgn g J, S (t)
j=1

5J;= SS,"e 1 —S g J,„St, , i'
Here 5J, is the incremental change in the connection
matrix, S"=(S,, . . . , S~) is a pattern to be stored, and e
is the Heaviside function. Equation (2) is cycled through
for all patterns v until all the 5J, are zero. This leads to
the condition

N

S g J, S"~1
j=1

for all patterns, so that they are stable under the recall
process (1).

Our pruning algorithm begins with the iterative appli-,
cation of Eq. (2). When the algorithm converges, the ma-
trix is ready for clipping. The bonds I J, ] are sorted by
absolute value, and those with the smallest magnitudes
have their values set to zero. Then more bonds are set to
zero, in order of increasing magnitude, until a predeter-
mined fraction of the bonds have been clipped.

After clipping, we are ready for reapplication of the
learning algorithm. Bonds that are zero remain zero.
Nonzero bond strengths are incremented according to a

(3)

By "learning" we refer to an algorithm for determining
the matrix J such that the chosen memories are stable
point attractors of (1). We chose to use the algorithm of
Diederich and Opper, ' an iterative algorithm suitable for
the pruning process. This algorithm and other similar al-
gorithms' ' share certain features: they store correlat-
ed patterns; they are local, allowing parallel implementa-
tion, ' and they are iterative, allowing new memories to be
added (or in our case allowing old memories to be
relearned).

The Diederich and Opper algorithm can be summa-
rized by the following equation:
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it is necessary to condense the data from its form in Fig.
1. As a useful tool for comparison, we chose the amount
of noise required so that degraded patterns converge half
of the time —this noise level is easily determined with
high accuracy because of the near-linear behavior around
the 50% level (see Fig. I). In fact the slope increases as
the number of neurons increases (indicative of the onset
of a phase transition), so for large systems the exact con-
vergence fraction used is irrelevant. Each network (with
stored patterns) is now represented by a single point;
these points are graphed in Figs. 2 —4. It is clear from the
graphs that the pruned networks significantly outperform
the clipped ones.

In addition to comparing the algorithms qualitatively,
we can examine some quantitative indicators. From Figs.
2—4 we determine the "capacity" of each algorithm as
the number of patterns that can be stored so that a noise
level of 0.10 gives 50% convergence. There is nothing
special about the level 0.10; it is chosen for convenience.

Table I lists the capacities of the networks, as well as
the capacity per neuron and per bond. In terms of capa-
city per bond, pruning is up to 2.7 times more effective
than the fully connected system, and 1.5 times better than
the best clipped system. One remarkable observation is
how well the capacity scales with the number of neurons.
In fact, Figs. 2—4 are almost exact copies of each other.
The discrepancies at maximal density for the clipped sys-
tems appear to be artifacts of using 50% recognition as a
criterion for data point selection.

TABLE I. We compare the memory capacity of the different learning algorithms. Capacity is
defined as the number of memories that can be stored so that 50% can be properly recalled when 10%
of the bits are incorrect.

225 Neurons
fully connected

clipped 40%
clipped 60%
clipped 80%
pruned 40%
pruned 60%
pruned 80%

400 Neurons
fully connected

clipped 40%
clipped 60%%uo

clipped 80%
pruned 40%
pruned 60%
pruned 80%

900 Neurons
fully connected

clipped 40%%uo

clipped 60%
clipped 80%
pruned 40%
pruned 60%
pruned 80%

Memory
capacity

124

112
89
40

119
105
68

221

202
152
70

211
183
122

500

462
335
125

475
415
275

Capacity/neuron

0.55

0.50
0.40
0.18

0.53
0.47
0.30

0.55

0.51
0.38
0.18

0.53
0.46
0.31

0.56

0.51
0.37
0.14

0.53
0.46
0.31

10 ' (Capacity/bond)

2.46

3.70
4.41
3.97

3.94
5.21
6.75

1.38

2.11
2.38
2.19

2.20
2.87
3.82

0.62

0.95
1.04
0.77

0.98
1.28
1.70



39 BRIEF REPORTS 6603

IV. DISCUSSION

Almost any type of procedure designed to reduce the
number of interconnections within a neural network will
cause degradation of network performance. Minimizing
that degradation can be achieved in two ways: preven-
tion and repair.

Here we have used a combination of both methods.
We prevent excessive degradation by removing the
"smallest" bonds, and we repair the damage by reapply-
ing the learning algorithm. The computer simulations
show that this is effective for our choice of learning algo-
rithm. Such ideas, however, are not limited to this par-
ticular choice. For example, one could consider a net-
work where the number of bonds is fixed, but the topolo-

gy is variable. Small, unnecessary bonds would be re-
moved and replaced elsewhere. The learning algorithm
would be continually reapplied until an optimal
configuration was reached. We believe that iterative
learning algorithms that allow such adjustments to take
place deserve further investigation.
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