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We show how to build atomic states that mimic the classical Bohr-Sommerfeld elliptic orbits with
minimum quantum fluctuations. These elliptic states are uniquely defined from symmetry con-
siderations. They are the coherent states of the SO(4) symmetry group of the Coulomb interaction
in three dimensions and are superpositions of the usual spherical states with well-defined weights
and phases. They can be experimentally produced from laser excitation of Rydberg atoms in
crossed electric and magnetic fields. We finally indicate how to build Coulomb wave packets local-
ized both in space and time.

In spite of early interest, a still elusive question in
quantum mechanics is the one of building quantum wave
packets that mimic the familiar classical behavior of the
electron on Bohr-Sommerfeld ellipses. We give here
part of the answer, namely the general solution leading to
a perfect geometrical localization of the quantum elec-
tronic motion along a classical ellipse. This solution,
which builds a set of stationary states of the Coulomb
Hamiltonian, is perfect in the sense that the states are
coherent states of some rotation group in four dimen-
sions, thus leading to minimum quantum fluctuations, in-
dependent of time. We then briefly indicate how to gen-
eralize this analysis in order to create time-dependent
Bohr-Sommerfeld atomic wave packets. We finally de-
scribe a practical way of building these elliptic states us-
ing a crossed electric and magnetic fields arrangement.
This has already been experimentally demonstrated. '

Recent studies on Rydberg atoms in external fields
have revealed the importance of symmetry considerations
for understanding their dynamics. ' In a given n shell,
the SO(4) symmetry group is such a key notion which
also applies quite successfully to the problem of quantum
elliptic states. Let us recall that a classical Kepler ellipse
can be defined through the set of constants of the motion,
the angular momentum I, and the Runge-Lenz vector a,

a = ( —2E) ' ~ [—,
'

( p x I —I x p ) —r /r],
which fulfill the conditions I.a=0 and I +a = —1/2E
where E is the energy. I is perpendicular to the plane of
the ellipse and a is directed along the major axis and mea-
sures the eccentricity e.

In the quantum picture, I and a build the six com-

X =I +a = —1/2E —1 =n —1, I a=0 (3)

is the generator of four-dimensional rotations that
leave the n Coulomb shell invariant. These rotations do
not have a simple geometrical interpretation. They allow
us to transform a Kepler trajectory into another one with
the same energy but different eccentricity as demonstrat-
ed hereafter.

The solutions to the Coulomb problem having semi-
classical behaviors and minimizing quantum fluctuations
are readily deduced from this SO(4) symmetry. They are
the states for which the fluctuations of X are the
minimum ones compatible with the commutation rela-
tions (2) and constraints (3), hence the coherent states of
SO(4). They can be built from the coherent states of
SO(3},' '" those of the angular momentum in three di-
mensions, as SO(4}=SO(3)I3|SO(3). The two operators

j, ~= —,'(I+a)
fulfill the standard commutation relations of two com-
muting three-dimensional (3D) angular momenta, ' with,
from Eq. (3), ji =j2 =(n —1)/2.

The coherent state
~ ju ) of a 3D angular momentum j

is the eigenstate of j.u with maximum eigenvalue j. It

ponents of an angular momentum X in a fictitious four-
dimensional space. That is X (X;J =e;,k lk', i,j,k
=1,2, 3 and X;4= —L4; =a;; i =1,2, 3) satisfies the fol-
lowing commutation relations (hatt = 1):

[X X k]=iX,k

otherwise 0 (if the four indices are diFerent). The classi-
cal relations extend as
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verifies (j)=ju, where (j) denotes the average value
(juIjIju). The fiuctuation b j =((j ) —(j) )' is the
minimum one b,j=v' j compatible with quantum
mechanics. Classically, this means that j points in the u
direction. The coherent states are deduced from the one
I jz ) =

Ijj,=j ) (quantized along the z axis) through a
rotation R =e " with axis z X u and the angle
a=I(z, u). For SO(3), the Heisenberg uncertainty rela-
tion expresses as

(a„)=(n —1)sina,

(I, ) =(n —1)cosa,

The associated classical trajectory is thus an ellipse in
the (x,y) plane, with major axis along x and eccentricity

For the
Iju ) state, the fiuctuations of the transverse com-

ponents of j fulfill bj„=bj =&j /2 (where j„and j are
the rotated components of j: j„=Rj, R + ). The
Heisenberg relation holds with the equality sign. Fluc-
tuations are minimum for these states which are thus
"semiclassical. "

From SO(4) = [SO(3)],. [SO(3)], the coherent states

of SO(4) are generated through the direct product
Ij,u, )cgI Ij2uz) of coherent states for each SO(3) sub-
group. For these states, X takes its maximum average
value ( I (L ) I

= n —1) with minimum fiuctuations,

~ =b, l +b,a =2(bj, +Aj2)=2(n —1) .

Choosing, without loss of generality, the z axis as the first
bisector of (u„u2) and x along the second bisector, one
obtains

In &a=Ij, u, &(8 Ij,u, &

The angle a is half the angle between u, and u2. The gen-
erator of the rotation thus coincides with a =j2 —j, .
The state Ij,z) Ijzz) for which I, =j„+jz, =n —1 and
a, =j2, —j„=0is the so-called circular state. ' It is well
known to be a minimum uncertainty state for which the
spatial representation of the wave function is localized on
a thin torus. Transformed through the nongeometrical—iaa
e ' rotation, it is still a state localized with minimum
Auctuations but the localization is on some elliptic trajec-
tory. We will name this

I
n a ) state "elliptic. "

The operator a„ is one of the components of the 3D an-
gular momentum A, (a„,a, l, ). ' ' Hence the operator—iaa
e ' is a rotation operator for this angular momentum

The circular state is an eigenvector of (A. , l, =l, )

with respective eigenvalues A, (A, +1) and A., =A, =n —l.
Hence the elliptic state [Eq. (7)] is a coherent state of the
angular momentum A, , i.e., an eigenstate of A. and A. u2
with maximum eigenvalue k=n —1,

We show now that the elliptic state presents the best
possible localization, within quantum-mechanical con-
straints, on the classical Kepler trajectory. The average
values of l and a on such a state can be evaluated from
conventional 3D angular momentum algebra. This
yields

FIG. 1. Electronic density plots for the stationary elliptic
state Ina) defined through Eqs. (7) and (8) (n =50; eccentricity
e =0.6; coordinates range +2n'ao). (a) Distribution in the
z =0 plane showing the elliptic localization; (b) distribution in
the y =0 plane showing the localization near the z =0 plane
and the focusing role of the nucleus at perihelion; (c) distribu-
tion averaged over z. The maximum at perihelion has been
smoothed out. The one at aphelion is expected from semiclassi-
cal arguments. The quantum state is thus fairly localized on a
Kepler orbit with eccentricity e =sinu and angular momentum
I=(n —1)cosa. The quantum fluctuations from the construc-
tion of the elliptic state are minimum and scale as n' . The
size of the elliptic orbit scales as n .



39 BRIEF REPORTS 6589

sina. The fluctuations are

bl„=ha, =[(n —1)/2]'~ cosa,

b, l =b,a =[(n —1)/2]'

b, l, =ha, = [(n —1)/2]' sina .

(10)

They fulfill the minimum fluctuations criteria of Eq. (6).
The electronic density plots of the elliptic state are

displayed in Fig. 1 for e =0.6 (a=0.6435) and n =50.
Figure 1(a) is a plot of the electronic density in the (x,y)
plane showing localization on the Bohr-Sommerfeld el-
lipse. Figure 1(b) is a cut in the (z,x) plane showing that
the elliptic state is strongly localized near the z =0 plane.

Figure l(c) represents the electronic density in the (x,y)
plane after averaging over z motion. It is still localized
on the ellipse and the distribution is peaked at aphelion
(minimum velocity) as expected from semiclassical argu-
ments. The peaking at the perihelion (maximum velocity)
which Fig. 1(a) exhibits is smoothed out. This manifests
the focusing effect of the nucleus leading to smaller z
dispersion at the perihelion [see Fig. 1(b)]. Finally,
geometrical fluctuations are on the order of n ao while
the dimensions scale as n ao.

For various applications, the expansion of the elliptic
state ~na & in terms of the usual spherical states ~nlm & is
needed. We first expand it on the ~A, A,, & basis (quantized
along z axis) using the Wigner formula and Eq. (8). This
yields

2kt
~!na& =

(A, —m)!(A, +m)!

' 1/2
asin—
2

A. —m
CX

cos
2

A, +m

~A, k, =m &,

with A. =n —1.
The coeScients depend on the angle a and are simply related to the eccentricity e =sina of the ellipse. Similar ex-

pansion on the (ji„j2,) basis can be obtained from Eq. (7). The second step is to expand the ~A, A,, & states onto the
~nlm & spherical states (quantized along z). Using A, =e 'le " this yields

y ( 1)(1+m)/2

I, m

2n —i —
1(

[(I m)/2]![(I +—m)/2]!
(I +m)!(I —m)!(21+1)

(n I —1)!(n +—I)!

1/2

CK

X sin—
2

'n —m —1

CL
cos

2

n+m —1

~n ll, =m & . (12)

This summation involves n (n + 1)/2 terms, and every
I and m values such that I +m is even (the elliptic state
has well-defined even z parity). This strongly contrasts
with the expansion on the A, basis which involves only
(2n —1) values of A,

' In the limit of high n, the distri-
bution of l and m values are peaked at the classical values
lo =mo =(n 1). cosa with —a Gaussian dispersion on the
order of i/n.

These results find a simple interpretation in momentum
space. An explicit realization of the SO(4) symmetry
group is built by adding a fourth dimension to 3D
momentum space. Considering the hypersphere with ra-
dius po =1/n (the so-called Fock hypersphere) centered
at the origin, the stereographic projection of p space onto
the sphere, transforms the atomic wave functions of the n
Coulomb shell into the 4D spherical harmonics. This es-
tablishes the 4D rotational invariance. Classically, the
Kepler trajectory transforms into a "great" circle of the—iaa
Fock hypersphere. The operator e ' is just a geome-
trical rotation on the hypersphere and transforms any
great circle into another one which is still associated with
a solution to the Coulomb problem in the n shell.

Hence in 3D momentum space, the elliptic state is de-
duced from the circular state by the product of the three

transformations: stereographic projection, rotation on
the hypersphere, and inverse stereographic projection.
This yields simply the analytical expression of the wave
function of the elliptic state in momentum representation

FIG. 2. Electronic density of the elliptic state in momentum
space [conditions as in Fig. 1; coordinates range + 3/n a.u.].
The density is peaked on a circle, followed with minimum Auc-
tuations scaling as n ' . The radius of the circle scales as 1/n.
The distance between the center and the origin measures the ec-'
centricity.
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2V'2 n'
&pena&=

(1+n p )

2n [p„+t'(cosa)p ]+i (sina)(n p —1)

1+n p

which actually presents a localization on a circle (the
classical trajectory in p space is a circle) followed with
minimum ffuctuations scaling as n (see Fig. 2).

Previous sets of elliptic states [ ~
n a );0& a & tr I are sta-

tionary states of the Coulomb Hamiltonian which are lo-
calized on the classical Kepler trajectory, with minimum
Auctuations independent on time. In order to further 1o-
calize the electron on such an orbit, it is necessary to
build a wave packet by mixing several n values. Getting
the best localization with minimum spreading in time
along the orbit requires that the n mixing respects defined
rules. They can be obtained from our previous analysis
combined with the Coulomb dynamical group concept. '

Finally, the stationary elliptic states should have appli-
cations to spectroscopy. They can be simply produced by
the means of laser excitation of Rydberg atoms in a
crossed-fields arrangement. They key point lies in that
two-limiting cases of the elliptic state [Eqs. (7) and (8)]
are, respectively, the circular state (a=0) and the Stark
state (quantization along the x axis) with extremum para-
bolic quantum numbers (a=sr/2; I =0; a„=n —1; the
ellipse is a straight line). Optical excitation of the latter
is thus possible in the Stark limit. Subsequent adiabatic

switching off of the electric field to some nonzero value
produces an elliptic state

~
n a ) with an eccentricity sina,

tunable through the fields strengths. ' This method has
been recently demonstrated to be eScient for the building
of circular states. Early spectroscopic investigations of
the crossed-field spectrum of rubidium also gave evidence
for these elliptic states (see the plot in Fig. 11 of refer-
ence; the points for k = —33 refer to elliptic states).

Among various applications, especially to fundamental
questions (chaos, wave packets, relativistic eff'ects, etc. ),
the quantum elliptic states may lead us to overcome some
of the limitations of conventional optical spectroscopy.
They are, from Eq. (12), coherent superpositions of all l
and m values, the weights of which can be conveniently
tuned through the eccentricity e. Combined with step-
wise excitation, this is likely to open new fields for the
studies of autoionization at high l and doubly excited sys-
tems.
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