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Raman free-electron laser with transverse density gradients

Amnon Fruchtman
Department of Nuclear Physics, Weizmann Institute ofScience, Rehovot 76100, Israel

Harold Weitzner
Courant Institute ofMathematica1 Sciences, New York University, New York, New York 10012

(Received 28 March 1988)

The inAuence of the electron density gradients on the free-electron laser in the Raman regime is

considered. Since in the Raman regime the electron density appears in the resonance parameter,
the density gradients prevent the beam from being wholly resonant. The transverse gradients can
then substantially reduce the gain even if the total current is kept constant. We solve a model prob-
lem of a free-electron laser, which employs a sheet electron beam in a planar wiggler, and which
operates in the small-signal, high-gain regime. We study two cases, a density profile of uniform den-

sity gradient and a general density profile. For a uniform density gradient we write a dispersion re-
lation explicitly in terms of Whittaker functions. For general density profiles, providing the current
or the wiggler field is small, we derive an approximate dispersion relation through a solvability con-
dition of the perturbed equations. In both cases, when the density gradient is large, the gain is ex-
pressed as a sum of contributions from the individual resonant layers, where each such contribution
is inversely proportional to the density gradient at the respective resonant layer. A sufficient condi-
tion in order for the gain not to be substantially reduced by the density gradients is formulated.

I. INTRODUCTION

The effects of the finite transverse dimensions on the
free electron laser' (FEL) interaction have been studied
extensively. ' In a previous paper' we studied one of
these effects, that of transverse density gradients on a
small-signal, high-gain FEL which operates in the
strong-pump regime. We solveci a model problem of a
sheet beam FEL in a planar wiggler and calculated the
growth rate of the instability and the wave profile. We
showed that when diffraction is large the solution is not
sensitive to the density profile and depends on the total
current only. When diffraction is small, density gradients
change the growth rate of the instability but not in a sub-
stantial way. In the present article we explore the depen-
dence of the interaction on the density gradients in a
small-signal, high-gain FEL that operates in the Raman
regime. In the Raman regime the inAuence of the density
gradients is expected to be more dramatic since the densi-
ty appears in the resonance denominator. A large trans-
verse gradient causes this resonance denominator to vary
transversely and prevents it from being small everywhere
but at a particular layer, the resonant layer. Therefore,
enlarging the transverse gradient would substantially
reduce the gain in the FEL even if the total current were
kept constant. We examine this issue by solving a model
problem with a geometry similar to that of the model
problem we studied earlier. '

In our model problem a rectangular, or sheet, electron
beam propagates along a planar wiggler. Experiments
with such a sheet-beam FEL in a planar wiggler have re-
cently been reported. ' The electron beam propagates in
the z direction and is thin in the y direction, the direction
of both the wiggler field and the transverse gradient of

the wiggler field. The electron beam is much thicker in
the x direction, which is possible practically because the
planar wiggler has weak x dependence. We assume the
sheet beam to be infinite in the x dimension and finite in
the y dimension. We assume further that all the quanti-
ties are x independent and that al1 the transverse depen-
dence is on y only. We write the linearized Maxwell and
cold-Quid equations which are y and z dependent. We
then simplify the equations near the FEL resonance in
the Raman regime to be y dependent only. Finally, the
governing equation is a second-order ordinary differential
equation with an eigenvalue. The growth rate of the FEL
instability is given by the imaginary part of the eigenval-
ue. For simplicity we assume that a conducting plate is
located on each side of the sheet beam.

We find that in addition to the beam transverse density
profile there are three characteristic parameters. Two of
them appeared also in the strong-pump regime FEL: '
a coupling parameter, which is a combination of the
wiggler intensity and the electron current, and a detuning
parameter. The third parameter measures the density
gradient across the beam. In the Raman regime even if
the density is constant to lowest order, this gradient pa-
rameter can be large and affect the interaction substan-
tially. Our purpose here is to study the behavior of the
solutions, the eigenvalues, and the eigenfunctions for
large values of the gradient parameter.

In this paper we give results for an FEL in a slab
geometry. We believe, however, that some of these re-
sults (such as the scaling of the gain for large density gra-
dients) are not an artifact of the geometry, but apply
more generally. This generalization of results is under
current study.

In Sec. II we derive the governing equation and identi-
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fy the three characteristic parameters. In Sec. III we
study the case of a density profile with a uniform gra-
dient. A dispersion relation is written in terms of Whit-
taker functions. Analytic expressions for the eigenvalue
of the fundamental mode and for the wave field near the
resonant layer are derived for large values of the gradient
parameter, using the asymptotic forms of the Whittaker
functions. The growth rate is shown to be inversely pro-
portional to the gradient parameter. In Sec. IV we allow
for a general density profile but limit ourselves to small
values of the coupling parameter. In this case we expand
the differential equation and write the dispersion relation
in terms of a solvability condition. For large values of
the gradient parameter we derive simple expressions for
the eigenvalues and recover the results of Sec. III for the
density profile with a uniform gradient. We emphasize
that the change of the scaling of the growth rate may
occur even for a beam of a density uniform to lowest or-
der, since sometimes even a small relative density nonuni-
formity corresponds to a large gradient parameter. In
Sec. V we examine the domain of validity of our asymp-
totic results. We also formulate a sufficient condition for
the gain not to be reduced by density gradients. We then
verify numerically our asymptotic results.

II. THE GOVERNING EQUATIONS

The derivation of the governing equation for the FEL
interaction in the Raman regime is similar to the deriva-
tion for FEL interaction in the strong-pump regime. '

We therefore present the derivation here in a condensed
form.

A sheet electron beam, which is assumed to be
infinitely wide in the x direction and of width 2a in the y
direction, propagates in the z direction along a planar
magnetic wiggler field of the approximated form

+Re e'"' ""' g 5f (y)e

where f (y, z) is a zeroth-order time-independent term
and 5f„(y) is the amplitude of the Fourier component of
the first-order time-dependent term. The time-
independent solutions of the cold-fluid equations for the
time-independent energy 1 (y, z), momentum p(y, z), and
density h (y, z) are

I (y, z)=l =const,
B

p= —e cos(koz)+e, (I —1)'~
0

h(y, z)=h(y) .

(8a)

(8b)

(8c)

We assumed that B /ko is much smaller than (I —1),
and being interested in the fundamental resonance only,
we neglected the small z modulation of p, and h. We also
neglected static self-fields of the beam.

We look for k close to co and assume that the largest
Fourier components of the wave fields are 6E0 and 6B0.
We assume that the density h is high enough so that we
cannot neglect 6E, . Linearizing the continuity equation
[Eq. (2)], the z component of the momentum equation
[Eq. (3)] and Poisson's equation [Eq. (6)], we obtain the
following coupled equations for 5E, „5p, „and 5h, :

VXE= ——1 8
c at

V-E= —yH .

In order to perform a linear stability analysis we write
each quantity as

F(y, z, t)=f(y, z)

Bo=e B sin(koz) . p, h5h, =h(cop, /I —k —ko)5p, , (9a)

(yH)+V (PH)=0,1 a
c at

and the momentum equation

(2)

v ap +P.VP= —yE —PXB .
c at

(3)

The Maxwell equations are

VXB=— —PH,i as
c at

We assume that k0a is much smaller than 1 and neglect
the transverse variations of the wiggler field. We look for
the solutions of the cold-fluid equations for the electron
normalized density H [the density multiplied by
4me /(mc y)] and normalized momentum P (the
momentum divided by mc). Here e and m are the elec-
tron charge and mass, c is the velocity of light in vacuum,
and y is (1+P.P)' . The normalized electric and mag-
netic fields 8 and B [the fields multiplied by e /(mc )] are
described by solutions of the Maxwell equations. The
cold-fluid equations are the continuity equation

B 6B0
jp, +6p,

&

= + I 6p
2 0

—1"6E, , (9b)

hp,
i (k + k )5E, ,

= — 5p, ,
—I 5h, , (9c)

where

b,:——co I /p, + ( k + k ) . (9d)

2iS B,6E 0
6h, =

(Q2 g2)

where

(10)

S =(h /p, )(1+B /2k0) .

Note that in Poisson's equation we neglected the deriva-
tive of 6Ey &

with respect to y since we assumed that the
derivative of 6E, , with respect to z is larger. We also re-
quired that (/2I koa) be much larger than 1. If this re-
quirement is not satisfied, the form of the equations is
modified due to a transverse dependence of space-charge
eff'ects. ' ' Solving this set of equations [9(a)—9(c)], we
obtain for the perturbed density
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We require ~b —S~ to be much smaller than S and

Im(k) «S . (r/p, —1)

1/2

ko —(h()/p, )' 1+
2k,'

(21)

These are conditions for operating in the Raman regime.
To lowest order the perturbed current is

For a relativistic beam and when S is much smaller than
k0, the resonant frequency becomes

5j= —e p 6h, , (12) co=2k I (22)

and thus Maxwell's equations (4) and (5) become

B 6E, 0 2 2 2
B,~Sa 6E„0

+(co —k )a 6E, 0=
r)y

~ ' 2k (ob.
—S)

(13) P—:—2' va (23)

We approximate (co+k) as 2', define a nondimensional
eigenvalue

We defined a new independent variable y =—y/a and used
inequality (11).

Equation (13) governs the FEL interaction in the Ra-
man regime with a nonuniform beam density. The only
equilibrium y-dependent quantity in Eq. (13) is the densi-
ty h and consequently S. With appropriate boundary
conditions this governing equation could be solved for
the eigenvalue k (which appears also in b, ) and for the
eigenfunction 6E 0. We will first reduce the number of
parameters through a change of variables and through
the introduction of nondimensional parameters. In its
final form the governing equation will have three charac-
teristic parameters only.

We are mainly interested in the influence of the density
gradients on the interaction, and write the density as

B 6E 0.6E
+P 6E, + =0.

ay ' ' [y' g+vf—(y )]
(24)

The governing equation now contains three characteristic
parameters only; a coupling parameter

B2 2
tl&

k.

1/2

', 1+
p 2k

a4, (25a)

a detuning parameter

g:—2cua g, (25b)

and write Eq. (13) in a form equivalent to the form of the
equation in the strong-pump regime ' with similar nota-
tions,

h(y)=ho+Pf(y) . (14) and a gradient parameter

We require that f (y ) satisfies

J,dyf(y)=0 (15a)

min
=1 (15b)

and that the difference between the maximal and the
minimal values of f(y ) is 1,

p—:2coa p (25c)

which measures the rate of the density nonuniformity. In
the expression for a we approximated the density with
h0, and thus 0; is constant. For notational convenience
we suppressed the subscript 0 in 6E 0. When the relation
(13b) is used, a may be approximated as

The average density is h 0. We also require that a =4koB„,I [h (1+B /2ko )]' a (26)

P ((h0 . (16)

v:—k co (17)

and thus

6 —S =v+ g
—Pf (y ),

where

Thus the density is constant to lowest order. We define
the eigenvalue v

All the y dependence of the equilibrium enters in the
denominator of the third term of Eq. (24). Note that we
could neglect the density gradients in the numerator be-
cause of inequality (16) but not in the resonant denomina-
tor which may take small values. Note also from the ex-
pressions (19) and (25b), that the gradient parameter p,

can be large even if the relative density nonuniformity
(p/h„) is small.

We turn now to the boundary conditions. We will
study density profiles symmetric across the midplane so
that

1/2

p—= (Iu/2)(hop, )
' 1+ (19) f(y)=f( —y) . {27)

and g, the mismatch parameter, is
Assuming also symmetric boundary conditions we will
look for symmetric solutions which satisfy

1/2

/=i'(1 —I /p, )+ko —(ho/p, )' 1+
0

(20)

B6E—=0 at y=O
By

or antisymmetric solutions which obey

{28)

We assume that g is zero to lowest order, in which case
the frequency is the resonant frequency 6E =0 at y=O . {29)
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For simplicity we limit ourselves to solutions which satis-
fy

6E =0 at y=1, (30)

which follows a perfectly conducting waveguide located
aty =1.

III. A DENSITY PROFILE WITH UNIFORM
GRADIENT

We look for nonreal eigenvalues P with a positive
imaginary part corresponding to growing waves. We
focus on the dependence of the eigenfunction 6E and the
eigenvalue P on various values of the gradient parameter
p.

We start with the case of uniform density. When

p=0,
the symmetric solution is

5E =cos(yy),

and the antisymmetric solution is

6E„=sin(yy ),
where

x'=—0'+

Following (30) the sets of allowed y satisfy
'2

(g')„= — (2n +1), n =0, 1,2, . . .

(31)

(32a)

(32b)

(33)

(34a)

l

0.5

5E, =0 . (39)

This equation is transformed into the Whittaker equation

()~6E + ——+—6E=0,
A(2 4

where

(40)

FIG. 1. Two density profiles: (1) constant gradient, (2) para-
bolic profile.

for the symmetric solution, and

(y )„=(em), n =1,2, 3, . . . (34b)

lA

2A

(=2i(h(y ——2+/) —2ig p

(41a)

(41b)

for the antisymmetric solution. Two eigenvalues P cor-
respond to each value of y, following Eq. (33). If the
mismatch parameter is such that

and

6E(g)—:6E (y ) .

(41c)

(41d)
[0—(X'). l' & 4~ (35)

The general solution of Eq. (40) is
the two eigenvalues become nonreal and complex conju-
gates. In particular, when 6E = A W„,)2(()+BW,)q(

—g) . (42)

g=(y')„ (36) The boundary conditions are now

Imp =a' (37)

the imaginary part of the eigenvalue is, as in the 1D case,
~W» ized(k) dW, , ~2(

—g)+B
dg

=0,

We turn now to the case of nonzero p. In most of this
paper we examine a particularly simple density profile
which enables us to derive analytic results. Let us as-
sume that

or

A W &~ (2g' )o+B W &~2( go)=0

(43a)

(43b)

(38) and

The corresponding density profile is described by curve 1

in Fig. 1. By varying p we do not vary the total current
of the beam and the average density remains hp ~ The
governing equation (24) becomes now

A W, , q~(g, )+BW, , q~(
—g))=0 .

Here g'o and g, are

g'o =—2i P( —
—,
' + g )

—2i P /p,

{44)

{45a)



662 AMNON FRUCHTMAN AND HAROLD WEITZNER 39

$]=2ig( —,)+g) —2itt) /p . (45b)

The dispersion relation for the symmetric solution, fol-
lowing (43a) and (44), is

dW ]/2(g)
plane

dW, ]/2( —g) =0.
5O

(46)

0
For the antisymmetric solution, following (43b) and (44),
the dispersion relation is

, 1 /2 ( 01 ) W, 1/2 ( (0 )

W, ]/2(k]) W—,1/2( 4)=0 . (47)

We turn now to study the eAects of density gradients
on the interaction. Since arg(P ) is smaller than tr, (t) is
located in the first quadrant in the complex plane. When

p is large so that
FIG. 2. Path of integration in the complex g plane for large

«1, (48)
p

and if ~g~ & —,, the line of integration starts in the fourth
quadrant of the complex g plane, passes through the first
quadrant, and ends in the second quadrant as shown in
Fig. 2. The line crosses the real axis at

Thus ~arg( —(0) ~
is greater than rr, and we use the identi-

16

41@1'y,

and the imaginary axis at

4lel'm,

(49a)

(49b)

, 1/2( 40 W —k, 1/2 40

2~ie ' "W, ]/2($0)
1 ()r)I ( I+)r) (52)

When p is large, )r is small. For g not near the origin we
may approximate

The line that connects $0 and g] in the g plane is shown in

Fig. 2. We chose the Riemann surfaces such that
W, ]/2(g) =e -' [I+)r ln(g)+)rF(g)],

where

(53)

——&arg((0) &0, —&arg(g]) &tr,

and we pick

(50)
F(g) f e(g —g') (54)

arg( —g) =arg(g) —rr . (51)
The dispersion relation (46) becomes, when use is made of
Eqs. (52) —(53),

e '
I
—I+)r[ln(g]/(0) —iw+F($0)+F( —g])]I —

I I+)r[ln(g]/(0)+itr+F( —(0)+F(g'])]I —2rri)re '=0 . (55)

We limit ourselves to the fundamental mode. To zeroth
order in 1/p the dispersion relation yields

P'''=2 cos —(g —
—,
'

) +—cos(sr')+
p 2 p 77

y")=~/2,
g(0) (

) g)
—i rr/2

(S6a)

(56b)

and

g(0) (
) +g)

iver/2

2 (56c)

Expanding the dispersion relation to first order in 1/p,
we obtain

where

G (g)—:sin(wg)Re[E( (irr( —,
' —g) ) —E](i rr(,' +g) )]

+cos(~g)[7r —S, (~( —,
' —g) )

—S, (tr( —,
) +g))]—In(t)) . (S8a)
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Here

E)(z)=f dt e '/t
Z

is the exponential integral, and

S,(a)= f dt sint/t
0

is the sine integral. Also

1+2(
7l=—

1 —2

(58b)

(58c)

(58d)

as does the imaginary part of the eigenvalue.
We turn now to the behavior of the solution near the

resonant layer. From Eq. (43b) we find that to lowest or-
der

—i m( g
—1/2) (61)

From Eqs. (41a), (49b), (56a), and (57) we note that near
the resonant layer ~g is much smaller than ~i(~. Using
the approximate form of the Whittaker function with
small argument'

Finally, the imaginary part of the normalized eigenvalue
1s

ging 1

I (
—

) 1(1— )
(62)

Img = 2' Q p 7Tcos —(g —
—,
'

)
p 2 2

and is proportional to a and not to cz' as it is in the case
of uniform density. Note also that

(60)

is the approximate location of the resonant layer, so that
when y equals yi(, g is zero to lowest order in 1/(Lt. When

yz is zero, the eigenvalue has its maximum imaginary
part. On the other hand, when y~ is one, the resonant
layer is at the beam boundary where the wave vanishes,

and the smallness of ~, we obtain the field near the origin

5E=(1+e ' '~ ' ')(1 —icglng) . (63)

The electric field is smooth near the resonant layer. The
magnetic component of the wave 68„which is propor-
tional to the derivative of 5E, has logarithmic singularity
near the resonant layer. However, at a given y, when p is
increased, the magnetic field remains bounded since a in(
goes to zero.

For completeness we repeat the analysis for the an-
tisymmetric solution. The dispersion relation for the an-
tisymmetric soltuion (47), becomes, when Eqs. (52) and
(53) are used,

e '
l 1+v[—In(g)/(o)+im+F((0) F( —g))]]——I 1+a[in(g)/( )+oivr F( —(0)+—F(g))]I 2miwe =—0 . (64)

To zeroth order, the eigenvalue of the fundamental an-
tisymmetric mode is

I

stead of cos (n. /2y„) [Eq. (59)]. The solution near the
resonant layer is found here to be

(65) 5E=[1—e (~ '/ '](1—i(ging) . (70)

and

g(0) 2 (
) g)

—iver/2

g(0) 2 ( ) +g) in'/2

(66a)

Expanding the dispersion relation (64) to first order in
I /p, we now obtain

sin [m(g' ——,')]+
p 2p

—sin(2n. g) + R( )

2'
(67)

where

R (g) =F(go)+F( —go) F(g) ) F( —
g) ) ——21n21 .—

(68)

The imaginary part of the normalized eigenvalue is

27TCX

p
sin [~(g—

—,')] . (69)

The growth rate of the instability is the same as that of
the symmetric solution, except for the factor sin (myi() in-

In summary, in this section we derived expressions for
the eigenfunctions and dispersion relations for the eigen-
values in the case of a beam with a uniform density gra-
dient. For a large gradient parameter, we gave an analyt-
ic expression for the imaginary part of the eigenvalue,
which is different from the expression given in the case of
a uniform density beam. The growth rate of the instabili-
ty in the nonuniform density case is proportional to the
ratio of the coupling parameter to the gradient parame-
ter, in contrast to the case of a uniform density where it is
proportional to the square root of the coupling parame-
ter. We emphasize that the change of the scaling of the
growth r@te may occur even for a beam of a density uni-
form to lowest order, since sometimes even a small densi-
ty nonuniformity corresponds to a large gradient parame-
ter.

IV. GENERAL DENSITY PROFILE

It is possible to obtain some analytic results for an elec-
tron beam of a general density profile when the density
gradient is large, if a is small. We obtain these results by
solving the governing equation by a perturbation method.
We derive a solvability condition for the perturbed equa-
tion which comprises a dispersion relation. We used a
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similar method previously in the study of thick beam
FEI..'4

We go back to Eq. (24), and assuming that the third
term is small, we write it to lowest order as

(71)

nE„( )=sin(y( )y),
y(0) —~

respectively. We now write Eq. (24) to first order

5E
+y' sz.")=Q

2

(72b)

The fundamental symmetric and antisymmetric solutions
are

y2
)

gE (0)

5F.,' '=cos(P' 'y},
y")=~/2,

(72a)

USE"'
X

(o)[4' +4' 0+p—f(y}]
This is an inhomogeneous equation for 5E'" and its gen-
eral solution is

5E'')= —,, f dy'si n(P ()y')cos(P( 'y}Q(y')+ f dy'sin((i)( 'y}cos(P( 'y')Q(y') +Pecos(()I)( )y)+B sin(P( 'y) .

(74)

First we look at the symmetric solution. Since we want the solution to vanish at y =1, we require 8 =0. For the sym-
metric solution the derivative has to vanish at y =0 and thus

dy'cos ' 'y' y' =0 . (75)
0

The antisymmetric solution vanishes at the origin and thus A =0. The requirement that the antisymmetric solution
also vanish at y = 1 yields

f dy'sin((I)' 'y')Q(y')=0 . (76)
0

The solvability conditions (75) and (76) comprise the dispersion relations. These are

f dy' cos —y' P +
0 2

=0
[( /2)'+P' (+pf(y')]— (77)

a
[m. +P g+pf(y')]—

for the symmetric solution, and

f dy'sin (~y') P +
0

=0

for the antisymmetric solution.
2(1)Further analytic progress is possible when the density gradient is large. When p is large, (Img )/p becomes small,

and Eq. (77}becomes

2(() isa +p

2cos
].+P Gory cos

l f'(yg, , )l 2 [(m/2)'+Re((I)' ) —g+pf(y')]
=0.

Here y~ - are the roots of

(~/2) +Re(P ) g+pf (y~ J ) =0, — (80)

which satisfy 0 (yz . ( 1. If Re((I) ) is smaller than [(m /2) —g], and when f (y ) takes the form in Eq. (38), Eq. (59) is
recovered. The real part of the eigenvalue then becomes

Re((t ) = —f dy'[1+cos(my')]
0 [(m/2) —g —p(y' —

—,
' )]

(81)

which can be shown to be identical to the form of the real part in Eqs. (57) and (58a). Similarly, for the antisymmetric
solution we obtain

sin (~yz . )

p J If'(yI( J }I 0 [n +Re(p ) g+pf(y')]— (82)
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where y~ are here the roots of satisfied automatically. For the validity of our asymptot-
ic results, it is sufficient that

7r'+ Re(P' ) g—+pf (y R, )=0, (83) 2~a' &&p&&G . (88)
which satisfy 0&yz ~

& 1. Again these expressions could
be shown to agree with (67) and (68). One should note
that Eqs. (79) and (82) are correct only if f'(y~ . ) is not
too small.

In summary, in this section we showed that when the
coupling parameter is small, the eigenvalue can be found
from the solution of an integral equation [Eq. (65) or (66)]
in which the eigenvalue is the only unknown. Moreover,
if, in addition, the gradient parameter is large, the imagi-
nary part of the eigenvalue is expressed analytically as a
sum of contributions from the resonant layers [Eq. (79) or
(82)].

and

p «h0,
which are Eqs. (11) and (16), respectively. We now re-
quire that inequality (11) be satisfied even for the uniform
density beam, when the imaginary part of the eigenvalue
is maximal and equals a' . Using the definition of S and
the expression (26) for a, we express inequality (11) in this
case as

] /2

where

«G,
2

(84)

V. DISCUSSION AND NUMERICAL EXAMPLES

Let us start by discussing the domain of validity of our
results. Throughout the derivation we required the fol-

lowing inequalities to be satisfied:

Im(k) «S

For operation in the Rarnan regime, G must be much
larger than a' /2, (84). However, for the validity of our
model, there is a stronger requirement, that G be much
larger than 2~a' . If G is much larger than 2~a', in-
equality (88) determines the values of the gradient param-
eter for which the asymptotic results hold. Note that

p=G(p/h0), (89)

and therefore G is the maximal possible value of p. Thus,
if G is not much larger than 2ma', the density gradient
of the beam could not cause the drastic reduction of the
gain which was described by the asymptotic results of
Sec. III. We conclude from (84) and (88) that if

1«2G/a' '&4~, (90)

4~ «2G/a'",
any density gradient which satisfies

4~ && 2p/a'/

(91)

(92)

as well will cause gain reduction as described by our
asymptotic results.

It is useful to write these conditions in terms of the
physical parameters of the problem. Our asymptotic re-
sults hold if the following inequalities are satisfied:

the FEL operates in the Raman regime and the gain
reduction due to density gradients cannot be drastic. We
regard inequality (90) as a sufficient condition in order for
the gain not to be substantially reduced by density gra-
dients. If, however,

ho B„
G —=2I (kDa) 1+

k 2k

4m U «p/h0 «1,
(85) where

(93)

Inequality (84), if satisfied, assures us that the FEL
operates in the Raman regime. We now use the
definitions (19) and (25b), as well as Eq. (22), and write in-

equality (16) as

p«G . (86)

When inequalities (11) and (16), or equivalently (84) and
(86), are satisfied, Eq. (24) governs the interaction. Thus,
for any pair of dimensionless parameters a and p, we
may choose physical parameters such that the quantity G
satisfies (84) and (86), and consequently the governing
equation (24) holds. Note also that we assume that the
FEL resonance condition is satisfied.

In order that the gain be described by the asymptotic
results of Sec. III, it must be reduced substantially by the
density gradient. The gain, when the gradient parameter
is large, 2~a/p, must be much smaller than the gain
when the density is uniform, a' . We thus require

h0 B
U=——,'(8 /k0) 1+

—1/4

(94)

Equation (93) is obtained by substituting into (88) the
definitions of a, p, and G. The sufficient condition for
operation in the Raman regime with no drastic gain
reduction due to the density gradients [Eq. (90)] becomes,
in terms of the physical parameters,

I/(47r) & U «1 . (95)

If, however,

U « I /(477), (96)

a=4G U (97)

the density gradient which satisfies inequality (93) will
cause drastic reduction in the gain.

For completeness we write here also the relations

2aa «p . (87)

If both (86) and (87) are satisfied, inequality (84) is p=G(p/h0) .
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For a given set of physical parameters one may calculate
U and find whether one of the inequalities (95) or (96) is
satisfied. One could then calculate G and p/ho and find

the characteristic parameters a and p using (97) and (98).
We turn now to numerical examples. Figure 3 shows

Img as a function of the gradient parameters p for
g(—:gp) equals (ir/2) (curve 1) and for g equals 0.5
(curve 2). In this figure a is 0.5. The dashed line shows
the asymptotic behavior [Eq. (59)]. There is good agree-
ment between the analytic and computed values. When p
is small the maximum of Img occurs for g close to
(ir/2), while for large p, the maximum of Img is for g
close to 0.5. In both curves the results are for the funda-
mental symmetric solution.

In Fig. 4 we examine the growth rate of the instability
for a density profile whose function f (y ) [see Eq. (14)] is

f (y)= —,
' —4(y —

—,')' . (99)

This function is described by curve 2 in Fig. 1. The gra-
dient parameter p is 100 and a is 0.5 as before. Curve 2
in Fig. 4 shows the growth rate Im(P ) as a function of
the detuning parameter and as calculated by solving the
full differential equations (24). The solution is the funda-

mental symmetric solution. Curve 1 shows the value yz &

of the resonant plane as a function of the detuning pa-
rameter and as found from Eq. (83). The value of the real

part of the eigenvalue that was used for calculating y~ in

Eq. (83) was the value found by solving the differential
equation (24). There is a second resonant layer, the value

yz z of which is given by

y~, 2=1 (100)
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FIG. 3. Normalized growth rate Im(p ) as a function of the

gradient parameter p for the fundamental symmetric solution:
{curve 1) g=(7r/2); (curve 2) /=0. 5. The density profile is of a

uniform gradient. The curves were obtained by numerical solu-

tion of Eq. (24). The dashed curve denotes values of the analyti-

cal expression (59). Here o.=0.5.
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It is clear that by increasing g one moves the resonant
layers to the plane y =

—,', and the growth rate increases.
The reason becomes clear when one examines curve 3
which describes the value of Im(P ) as found by the ap-
proximate formula (82). Near the plane y =

—,
' the deriva-

tive of f becomes smaller, the resonant layer is thicker,
and the growth rate increases. Of course when the
derivative 1f'(yz )~ is too small, Eq. (82) is not valid any
more, and curves 2 and 3 do not coincide. The crosses
show the values of the growth rate calculated by solving
Eq. (78), and they agree with the solution of the
difFerential equation (24). Thus in Fig. 4 we show the
growth rate Im(P ) calculated by three methods. Curve 2
results from the solution of the differential equation (24)
and the crosses from solving Eq. (78). Since a is small the
two methods yield similar results. Curve 3 shows the
growth rate as calculated by the approximate formula
(82) and the values found agree with those found by the
two other methods as long as 1f'(yi, )1 is not too small.
Note also that when g is so large that there is no resonant
layer, no value of yz satisfies Eq. (83), the growth rate de-
creases abruptly to zero.

Cases in which the density inhomogeneity causes large
gain degradation are not frequent and condition (95) is

usually satisfied. We present here an example in which
the gain is reduced as a result of density inhomoganeity.
A sheet electron beam of thickness 0.2 cm (a =0. 1 cm)
and width 0.6 cm propagates along a wiggler of 500 G
and wave number ko =6 cm '. The electron beam
current is 240 A and the current density 2 kA/cm . The
beam energy is 360 kV. The resonant wavelength is
about 0.2 cm. The parameter a is 9.7X10, and the
gain for a uniform beam [see Eqs. (25a) and (37)] is 0.031
cm '. If p/ho is 1, the parameter p is 0.252 and the gain

FIG. 4. Normalized growth rate Im(p ) (solid lines) and the
coordinate yR l of the resonant layer (dashed lines) as a function
of the detuning parameter g for the fundamental antisymmetric
solution. The density profile is parabolic [Eq. (99)]. (Curve 1)

yR „' (curve 2) Im(P ) obtained by solving Eq. (24); (curve 3)
Im(P ) obtained from Eq. (82). The crosses denote values found

by solving numerically Eq. (78). Here +=0.5 and p= 100. A
second resonant layer is located at y&, =1—y~, .
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is reduced to [Eq. (69)] 0.024 cm '. If the wiggler inten-
sity is 250 G, the parameter a is 2.4X10 . The gain is
then reduced from 0.016 to 0.006 cm '. On the other
hand, for wiggler intensity of 1 kG the reduction is negli-
gible.

The Raman regime is characterized by relatively high
electron densities and low wiggler fields. The gain in the
Raman regime is not sensitive to density nonuniformities
if the parameters are such that the FEL is only mildly in
the Raman regime, as required by (9S). The wiggler in-
tensity has to be not too low and the electron density not
too high. The above numerical example illustrates this
fact. The gain reduction in that example was bigger for
lower wiggler fields. Even among FEL's which operate in

the Raman regime the wiggler field is usually not too low,
and condition (9S) is usually satisfied. The conclusion of
this study is, therefore, that density nonuniformities do
not usually severely degrade the gain.
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