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A Riemannian metrical structure of the parameter space has been introduced and investigated for
magnetic systems described in the framework of quantum statistics. The introduced metric is based
on the conception of the relative information. Two contrasting models have been investigated in de-
tail: the one-dimensional Ising model, with short-range interactions, and the mean-field model of
Kac, with long-range interactions. In the second case the metric tensor degenerates. The degenera-
tion has been removed by adding the lattice energy to the original magnetic Hamiltonian. It turns
out that in both cases the scalar curvature of parameter space tends toward plus infinity while ap-
proaching the critical points. The inverse of the scalar curvature, given by the second and third mo-
ments of stochastic variables, has been interpreted as a measure of the stability of the considered
magnetic systems. The scalar curvature represents a joint part of fluctuations caused by the interac-

tions of spins.

I. INTRODUCTION

Recently many authors! ~> have investigated the struc-
ture of the state space of thermodynamic parameters in
the framework of Riemannian geometry. In our previous
papers®’ we investigated from this point of view various
classical and quantum-fluid systems. It has turned out
that the Riemannian scalar curvature R of the parameter
space is especially important. Statistically, R depends on
the second and third moments of fluctuations or on the
second and third derivatives of the partition function.
Phenomenologically R is expressed through the second
and third derivatives of an appropriate thermodynamic
potential function. The behavior of R is very interesting
in the vicinity of the critical point and singular at this
point. That is why we proposed to interpret R as a mea-
sure of the stability of thermodynamic systems.

In this paper we extend these geometrical methods to
simple magnetic systems. We start with the one-
dimensional (1D) Ising model, for which it is possible to
calculate all quantities exactly. Next, we investigate the
mean-molecular-field approximation and its extension by
taking also into account the thermal energy of the lattice.
We show that such extension is necessary because of
some requirements of a geometrical nature.

II. RIEMANNIAN GEOMETRY
OF THE PARAMETER SPACE

In order to introduce a Riemannian structure into the
space of thermodynamic parameters, we start from an
equilibrium density operator

pzz_l(B)evB‘F"

(the summation over repeated indices is assumed). As
usual the series F|,F,,...,F, stands for a set of self-
adjoint linearly independent (but not, in general, statisti-
cally independent) operators which describe our system
and B=(B.,82, ...,BN are classical real parameters (sta-

, I=1,2,...,r (2.1
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tistical temperatures) which characterize the environ-
ment of the system. Z(f3) is the partition function, i.e.,

BF,

Z(B)=Tre (2.2)
Physically, F; represents quantities whose numerical
values may fluctuate around their mean values

m;=(F;)=Tr(pF,). On the contrary, 8’ do not fluctuate
and their numerical values are fixed according to the
state environment. Any change in the state of environ-
ment invokes changes of p and m;. Therefore we will
treat p in (2.1) as an r-parameter family of the density
operators.

For quantum systems, F; do not necessarily commute.
This causes some inconvenience in defining metric struc-
tures on the parameter space. Some quantities which are
equivalent for commuting F; may be different for non-
commuting F;. For classical systems, we defined the
metric tensor in the following way. At first we took the
microscopic entropy as operator

s =—Inp=pBF,+InZ(B) , (2.3)

which was treated as a vector in (7 +1)-dimensional
space with axes labeled by F; and F,=1, and with ' and
InZ(B) as components of the vector. Then the distance
in the parameter space was defined as

dI’={(ds)*)={(d Inp)?*)

= Mﬂgﬂ)d id B/ 2.4)
<an B b 2

where dl is the line element and { --- )=Trp(---)
denotes the mean value. Consequently, the metric tensor
was

dlnp dln,
ey p)—( 2 2ng)

op’  op’
The present approach to the metrization in quantum-
statistical mechanics is more physically justified than the

(2.5)
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metric introduced by Wootters.® In the Wootters work
were accepted all probability distributions. We consider
only physically interesting distributions given by (2.1), so
that we have an r-dimensional space. Definition (2.5) is
unacceptable in the case of noncommuting operators F;
because 81np/8[3’" and alnp/BBj do not commute. The
simplest solution seems to be in the symmetrical form of
(2.4), when for g;; we put

<81np alnp>+<alnp 81np> 2.6)

B op B 3p

We will, however, abandon the definition (2.6) because it
does not have any clear thermodynamic interpretation; in
particular, g;; given by (2.6), does not have an obvious
link with the thermodynamic theory of fluctuations.°

In this paper we will adopt another definition of the
metric tensor in the form discussed by Ingarden et al.'®
Let us consider two close statistical states: p=p(f3) and
o=p(B+dp). According to Umegaki,'! we define the in-

gij(ﬁ):%
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cates the averaging with p. As may be treated as a
difference of two vectors of the type (2.3). Because
I(plo) is, in general, different from I(o|p), we will take
further the symmetrical information distance I:

I,;=I(plo)+1(olp)=(As),—(As),>0. (2.8)

The Riemannian structure of the space of parameters
B, ..., B we define now by means of the formula'®

di’=I,=1(p(B+dB)|p(B)+I(p(B)lp(B+dB)) .

Next we expand (2.9) into a power series in the neighbor-
hood of 3, up to second-order terms in df3. In this ap-
proximation, first and second terms of (2.9) lead to the
same result. In order to calculate information distance,
one has to use the well-known Wilcox'? formula for the
parameter differentiation of an exponential operator

(2.9)

drtw 1 _yadA 1 dA4 -
= [arnet-0484 2a_ 2484 (1-na
dp fo e d,ue fodle a’,ue

formation distance between these two states (information (2.10)
gain, relative entropy) as One can easily show that

I(plo)=Tr[p(lnp—1Ino)]=Tr[p(—s +5')] oI,

I.(plp)=0, -| =0, i=12,..., 2.11
=(As),>0, 2.7 s(ple Bl v eI
where s’=—Ino, As =s’'—s, and the subscript p indi-  while for p given by
]
oI ! g ! gl
L 25 o [lante |pe 1 0me  A0 pepePEp, — (F e TR~ (R )T 2.12)
2 9pp Yo B B 0

This may be further written in the form
1 9L Pz < 3np )
2 3p'op apap apap |
Finally the (local) square distance in the parameter space
is given by
2 2

For classical systems, i.e., for commuting F;, both

(2.13)

(2.14)

! —nl
cov(F,,Fj)Zfola’kTr[pemF’(F,-—(F,-))e ML

This definition of covariances makes sense because, for
commuting F;, it reduces to the classical expression for
the covariances

cov(F,, F;)={(F,—(F))(F;—{F;))) . (2.16)

Phenomenologically, g;; are expressed through the
second derivatives of an appropriate potential function,
and thus they agree conceptually with the metric con-
sidered by Ruppeiner.? Therefore the metric geometry of

(F,—(F; )] .

[
definitions (2.6) and (2.14) are equivalent. This is, howev-
er, not the case for quantum systems. Some insight into
the differences of these two metrics gives a comparison of
those parts of (2.4) and (2.9) which are expressed through
s.
Our choice of the metric (2.14) is motivated by physical
arguments, statistical and phenomenological. Statistical-
ly, the components of (2.14) are given by the covariances
of two operators F; and F;, where by the covariance of F,
and F; we mean

(2.15)

f

thermodynamics based on (2.14) may be interpreted in
terms of the thermodynamical fluctuation theory.®* ! It is
also important that g;;, given by (2.14), have good proper-
ties with respect to the Legendre or, more generally, with
respect to the contact transformations.® A glance at (2.1)
and (2.3) or (2.14) makes it clear that the canonical distri-
bution with its single stochastic variable F;=%f—the
Hamiltonian operator, and the only one statistical tem-
perature B'=T ! does not lead to the satisfactory
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geometrical picture. (Throughout this paper we set the
Boltzmann constant k equal to 1.) The inner geometry of
a one-dimensional manifold is trivial. One has therefore
to take the grand canonical or the Boguslavski'*
distribution—or their counterparts for magnetic
systems —for two-dimensional geometries, and their gen-
eralizations for higher dimensions.

III. CURVATURE OF THE PARAMETER SPACE

Our metric tensor (2.14) has a very special form be-
cause it is given by the matrix of second partial deriva-
tives of the function InZ. Therefore one may expect that
the formulas for the Christoffel symbols I';, the curva-
ture tensor R, and the scalar curvature R will assume
simplified forms. Indeed, the Christoffel symbols'?

Fijk:%(gij,k+gik,j_gjk,i) (3.1
reduce in our case to

Ui =38k =+ ijk » (3.2)
where for simplicity we have put

f=Iz, f= a;;’_z . fy= g;lg; )
As a consequence the curvature tensor is

Rk =58 jk,it — 8k, jt T8t jk —8jiik)

+8™ (T iy Tojke =Tk Tjp) (3.4)
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and reduces to

Rij= +8 mn(fmilfnjk _fmikfnjl )

because the fourth derivatives cancel each other.

In this paper we will consider only systems with two
thermodynamical degrees of freedom. For a two-
dimensional Riemann manifold there is only one indepen-
dent nonvanishing component of the curvature tensor,
namely, R |,;,. Hence the scalar curvature

(3.5)

R =g""R i (3.6)

simplifies to'>

R =§Rmz , g =det(g,) . (3.7)

It is interesting to note that R may be expressed by means
of a determinant, namely,

. Su fu fa
R:ng S fie fin
S fiz [

From (3.5) or (3.8), one can see that R is given in terms of
the second and third derivatives of InZ. Physically, it
means that R depends on the second and third moments
of the variables F;. Indeed, applying once more (2.10) to
(2.12), one receives [cf. also (2.13)]

e HAE, — (F et A1E,—(F) | | (3.9

where J is the coupling constant for the nearest-neighbor
pairs in the lattice and H is the external magnetic field
(multiplied by the magnetic dipole moment of one spin).
Ff may be rewritten in the form

¥z _ 1 1 —pAp A, —AA(f _ M —
m——fonTr [p[fodue BA(F, — (F, ))etAe “M(F,—(F,))e*(F,— (F,))
A —rd rd
F,—(F; ,
+ [ dule ME = (F)e
[
where 4 =—p/F, and [, ] is the commutator. If F; com-
mute then this complicated expression reduces to
3’InZ
—— = —((F,—~(F))NF; —(F))F,—(F ) .
aBIaB]aBk J J k k

(3.10)

That is why we name (3.9) the third moments of the
quantum variables F;.

IV. ONE-DIMENSIONAL ISING MODEL

A model of a magnetic system is typically composed of
a set of N spins s;, i =1,2,...,N. We shall consider the
simplest case when s;=+1 or s;= — 1, corresponding to
spin up or down, respectively. We shall also assume the
S! topology of the spin chain, i.e., sy ;=s;. The Hamil-
tonian of the 1D Ising model is

N N
‘7‘[:—]2 Sksk+1"‘Hsz,
k=1 k=1

4.1)

H=F,+F, , 4.2)

which indicates that we have two random variables:
Fi=—J>;st5,+,and F,=—HY,s;. F, represents the
interaction energy between spins, and, phenomenological-
ly, it corresponds to the internal energy U, F,=U. F,
represents the interaction energy between the individual
spins and the external field. Phenomenologically, F, cor-
responds to the global energy of interaction systems with
external magnetic field (F, )=—MH; M is the magneti-
zation of the chain. From this point of view the distribu-
tion function

BF, —BF,

p=Z B,BH)e P"=Z"\B,BH)e , B=T"'

4.3

should not be treated as the canonical distribution, but
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rather as a magnetic counterpart of the Boguslavski dis-
tribution for gases. The reason is that for (4.3)
TInZ =—G (G is the Gibbs function) whereas for the
canonical distribution one has 7T InZ = —F (F is the free

Z(B,BH)=e P {cosh(BH)+ [cosh®(BH)—2e ~*#’sinh(287)]' 2}V .

In order to simplify the notation and calculations we will
use the abbreviations

x=BJ, y=BH, A(x,y)=(e *+sinh%)"?, (4.5)
and then
f(x,y)=7b—an =x +In[coshy + 4 (x,y)] . (4.6)

The components of the metric tensor we shall compute
by means of f(x,y), and therefore they will have an in-
tensive character. According to the general rules
developed in Sec. II, we have

2
gn =L -4 “3( A +coshy) " [84% “**( A +coshy)

dx?
—4e (24 +coshy)],
2
gn= ai gy =24 e *sinhy , 4.7)
2
gn= ——g jzr = A e *coshy ,
y
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energy'¥). An extensive discussion of these problems can

be found in the textbooks by Stanley,16 Kittel,'” Callen,?
and many others.

For (4.1) in the limit of large N one obtains!®

(4.4)

f

detg=44 *e ¥ (coshy + 4)" 2. (4.8)

One can readily see that for 7#0, H— «, all com-
ponents g;;—0, which means that all these fluctuations
disappear (the magnetic saturation). However, for H =0,
T —0, one has g,; —0, g,, =0, but g,, — o for J >0 and
8., —0 for J <0. The behavior of g,, for ferromagnetics,
in this case, reflects the fact that the magnetic susceptibil-
ity X tends to plus infinity in that limit.

We are working here in the coordinates x,y, i.e., in the
coordinates T and H. Ruppeiner'® used another system
of coordinates, namely, 7"and M. His metric was diago-
nal and seemed to be much simpler than (4.7). However,
the component g;+=T 43S /38T)y, =T %cp(T,M) in-
volved the specific heat, which is such a complicated
function of T and M that he was unable to perform all the
calculations analytically. Therefore, he was forced to
perform numerical computer calculations. With our
metric tensor (4.7), though it is not diagonal, we are able
to find the scalar curvature in a closed form. Of course,
we do not have to calculate the fourth partial derivatives
of InZ because they cancel each other (cf. Sec. III). The
third derivatives of f(x,y) have the form

3
S —g4 T3¢ "*( A +coshy) "3 | —4A4% A +coshy)*+3e **(A4 +coshy ) (24 +coshy)(242—e #)—24% ¥ | |

ax3
3
/s =—84 3¢ *sinhy +124 e ¥sinhy ,
dx 29y
3
O _y 3¢ “%*coshy(6e " —447),
dx dy?

3
%{. = A e *sinhy( 4%*—3cosh?y) .
y

Due to (4.7)-(4.9) and (3.8), after rather lengthy and tedi-
ous computations, we have received an amazingly simple
expression for the scalar curvature R,

R = A " 'coshy +1=coshy(sinh?y +e 4*)" /241 .
(4.10)

R is a positive function of x and y. Moreover, it is a sym-
metric function of y, and this means that the scalar cur-
vature is independent of the orientation of the external
magnetic field, R(—H)=R (H). On the other hand, R
behaves differently for positive x (J >0, ferromagnetism)
and negative x (J <0, antiferromagnetism). For finite T
and H-— «, we have R -—cothy +1=2, whereas for

finite T but H—0, we have R »e>+1=e¥/T+1. In
Figs. 1 and 2 we present the dependence of R on H for a
fixed value of T (for J >0 and J <0, respectively).

More interesting is the dependence of R on T. For
H=0 and T=0, one has R =e>+1=e*/T+1. Fur-
ther, in the limit 7— oo, one has R —2 independently of
the sign of J. On the other hand, if T—0, then R — + o
for J >0 and R—1 for J <0. Figures 3 and 4 depict
qualitatively the dependence of R on 7. Similar behavior
of R was found numerically by Ruppeiner.'®

From (4.10) we see that R —2 for J—0. Therefore
R —2 may be treated as a joint measure of fluctuations
caused by mutual interaction of spins. In other words,
R —2 is a measure of deviation of the system from ideal
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FIG. 1. Dependence of curvature R on magnetic field H by
constant temperature 7. Ferromagnetic case.
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FIG. 3. Dependence of curvature R on temperature T by
H =0. Ferromagnetic case.
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FIG. 2. Dependence of curvature R on magnetic field H by
constant temperature 7. Antiferromagnetic case.
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FIG. 4. Dependence of curvature R on temperature 7 by

H =0. Antiferromagnetic case.
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paramagnetism for which J =0.

The behavior of a system in the vicinity of the critical
point is characterized mainly by the fluctuations of mag-
netization which is, in our case, given by
€2 ={(3;5;—(3:5;))*). Phenomenologically, it is con-
nected with the magnetic susceptibility =T ~%g,,. For
H =0, g,, reduces to g,, =e>*=e?/T, For the (1D) Ising
model of ferromagnetics, the critical point is H, =0,
T.=0. If H=0 and T—0, then g,,— + . Also for
T =const and for increasing J, g,, increases.

For antiferromagnetics (J <0), g,, =exp(—2J|/T)
and an increase of |J| causes a decrease of g,,. However,
g, is connected with the behavior of the correlation
function'® and not only with the correlation length, and
at some point may be viewed as a measure of the stability
of a system. Any description of a system by means of g,,
or xr is far from being complete because it does not take
into account fluctuations of energy in the system. The
scalar curvature R takes into account all the relevant
fluctuations, and R ~! may be taken as a new joint mea-
sure of the thermodynamical stability. One can readily
see that for ferromagnetics any increase of J is accom-
panied by an appropriate increase of R, and the system
becomes less stable. For antiferromagnetics, R decreases
with increasing |J| and the stability increases. Our re-
sults are in agreement with the result obtained by Rup-
peiner. The interpretation of R as the quantity propor-
tional to the correlation length seems to be much too
strong. In the case of antiferromagnetics, R does not give
the range of the envelope of the correlation function.' In
our paper we treat R as a new quantity describing the
thermodynamical system, especially nearby critical
points. Besides correlation length, correlation function,
and isothermical susceptibility, R describes also the be-
havior of thermodynamical system. R is expressed not
only by the second momenta, but also depends on the
third momenta.

V. MEAN-FIELD METHOD

The phenomenological theory of ferromagnetism pro-
posed by Weiss'®?0 is based on the assumption that the
interaction of spins can be described by means of a mean
molecular field which is proportional to the magnetiza-
tion M. The essence of this assumption is that each spin
interacts effectively with a mean field produced by all the
other spins. It also means that the range of interaction is
very long, and in fact each spin has an effective constant
interaction with all the other spins (the situation is there-
fore opposite to that described by the Ising model). Such
microscopic interpretation of the phenomenological
theory of Weiss resulted because of Kac,?! who con-
sidered a one-dimensional case, and Lebowitz and Pen-
rose,”? who generalized the results of Kac to higher di-
mensions.

Let us start therefore from the Hamiltonian

N
H= 3 @r,—rl)sis;—HYs; . (5.1
ij i=1
1<i <stzv
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If each spin interacts with the same strength with all oth-
er spins, we may put®®

> (I>(|r,»—rj})sisj:—% S ssps (5.2)
15,'<'Jj5N ]SI’:IJSAV
where
a=— [@(r)dr>0. (5.3)
Then # simplifies to
(5.4)

a
H= N zs,-sj—HZS,- ,
1) 1]
i<j

but it still has the structure #=F, +F,, which is similar
to (4.2). Therefore we have two stochastic variables

F1:_%25isj R F2=—H2s[ s (5.5)
L) i
i<j
with the mean values
m=(F)=U, my=(F,)=—HM . (5.6)

The partition function for (5.4) can be written in the form

Z (B,BH)=exp 2exp

(s}

_aB
2

oz |
(5.7)

where {s} denotes a configuration of spins.

We shall, however, not need the explicit form of Z. In-
stead, we shall use some phenomenological formulas for
components of the metric tensor. These components are
expressed through thermodynamical response functions
such as the heat capacities ¢y, and cy and the magnetic
susceptibility Y, which are known from (5.7), computed
in the thermodynamical limit. The metric tensor, as it is
defined by (2.14), is given in the coordinates 8'=p=T "

and B?=HT~'. We want to have it in the coordinates T
and M. In our previous paper® we showed that
d12=gijdﬁidﬁj=g‘jdm,dmj , (5.8)
where
. a’s
= ——— (5.9)
& am,am,

(where S is the entropy) is inverse to g;; =3’InZ /3[3'3/3/,
and m; are given by (5.6). One may notice that (5.8) is
the metric considered by Ruppeiner in his first paper?
referring to the Riemannian geometry in thermodynam-
ics. After two more transformations d/> may be rewrit-
ten in the form

2
L _3U mdm

dl*=— dm;
T 3m,dm; /
1 azF 2 1 azF 2
== oI S (aM (5.10)



39 RIEMANNIAN GEOMETRY AND THE THERMODYNAMICS OF . ..

where /| =S, M, =M, and F is the free energy. The first
equality of (5.10) has been received after a conformal
transformation® from (5.9) and the second after subse-
quent Legendre transformation. Thus the metric tensor
in the coordinates 7 and M is diagonal. Its components
have very simple thermodynamic interpretation given by
the following formulas:

_ 1 |d*F | _ _2
81T T | 572 M—CMT ,
, (5.11)
_ 1| OF | _f-1 -1
gMM—7 aM?2 T‘T Xr -
]
1 3*F
T 371 0
re_ L |a[1@r| a1 &F | 8
262 |dT | T 312 | oT |T 3TaM | aT
o [1@F] 8 [1 @F | 8
oM | T 3T1? oM | T oToM oM

It is, however, well known that in the mean-field model
the specific heat c¢,, becomes 0, ¢, =0 (cf. Appendix).
Hence g;+=0 and g =g;rg8mum =0, i.e., metric (5.11) de-
generates in that model. This degeneration is caused by a
constant interaction between arbitrary two spins. If we
rewrite (5.4) in the form

H=— LSS > 14
== S 's.—H - 5.

N igls, jgl 5 igls, ( )
where the prime indicates that j#i, and if we put

a Y ,
—-27\[‘21 s;=Hgyg , (5.15)
i=

then # reduces to

H=—(Hpy+H)Ss;=—Hy3s, . (5.16)

H_ ., and H_ denote the mean-magnetic field pro-
duced by all spins but one, and the effective magnetic
field H.;=H_,+ H, respectively. As a matter of fact,
the mean-field method is based on two assumptions, (5.2)
and (5.15). The second of these replaces a stochastic vari-
able

N
2's)
ji=1

by its mean value ~H . As a result the Hamiltonian %
has lost its structure F,+F, because two linearly in-
dependent stochastic variables F| and F, have become
linearly dependent due to (5.15). The new structure of
(5.16) is #=H 4F. Consequently, we have only one sta-
tistical temperature BH . in the distribution function and

T dM?
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For the diagonal metric tensor (5.11) the scalar curvature
R reduces to

1 987
oM

1
R=——r
Vg

(5.12)

R may also be rewritten in appropriately adapted form
(3.8), namely, as

d’°F

1 3*F

T oM?

(5.13)

1 9°F

T am?

the Riemannian structure has been lost.

In order to regain a Riemannian structure of the pa-
rameter space, we modify the Hamiltonian (5.4) by add-
ing an additional term ¥, corresponding to the mechani-
cal energy of the spin lattice, i.e.,

H=H,+H,, (5.17)

where #,, is the magnetic Hamiltonian (5.4). Then g+
is no longer zero, but we have

grr=c(NT %, guy=T 'x7', (5.18)
where c(T) is the specific heat of the lattice. Because grr

does not depend on M, the scalar curvature (5.12) reduces
to

1 OZmm
\/E aT

_ 1 9
Vg aT

(5.19)

We shall evaluate R in the vicinity of the critical Curie
point. From (A16) in the Appendix we have

gMM=T'IXTI=%+172 , (5.20)
where €=(T —T,)/T,, T.=a is the critical tempera-
ture?® and T=T/T.. Moreover, from (A16), we have

for T—T,. Rewriting R in the form

azg MM

2
——T (5.21)

9g %8mm _
oT T
R =
28
and taking into account that g,,,—0, g—0 but
0ga /9T#0 for T— T, we see that the only nonvanish-
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ing term in the numerator is equal to g;7(3gn /3T)>.
Therefore, for T— T, one has

2
08 nm
oT
r=<D — (5.22)
T 2g
and it is obvious that
R—+w, for T>T,, (5.23)

i.e., for the system approaching the critical point. As one
can see from (5.21), the behavior of R for T— T, does not
depend on the unknown lattice specific heat ¢ (7).
Analogous calculations have been done for the van der
Waals model of a real gas described by the Boguslavski or
grand canonical distributions (results will be published
later). It has turned out that all formulas are qualitative-
ly identical with those given in this section, if one makes
the obvious changes ¢ (T)—>¢y, aar — & vy, and so on.

VI. CONCLUDING REMARKS

The scalar curvature R is a new function of the ther-
modynamic parameters not used in conventional thermo-
dynamics. Although it can be found on a purely phe-
nomenological level, the interpretation of R is connected
with the statistical approach. More precisely, R is a
function of the second and third moments of these sto-
chastic variables which occur in the density operator p.

The results of this and our previous paper indicate
some regularities in the behavior of R. First of all, R was
always positive with only one exception, namely, that of
the ideal fermionic gas for which R was negative. For
the ideal classical gas, R was zero, and in the limit of the
ideal paramagnetic, R was equal to 2. Thus R and R —2
measure deviations from the ideality of these two sys-
tems, respectively. Another point of interest is that R
tended to plus infinity at the critical points. This allowed
us to interpret R ~! as a new measure of the stability of
the system. Typically, the criteria of stability are ex-
pressed through the second derivatives of thermodynam-
ic potentials or (statistically) through the second mo-

ments of stochastic variables. Here R is a function of the
second and third moments and hence R ~! is a measure of
stability of higher order. The interpretation of R as the
quantity proportional to the correlation length is too has-
ty. For near critical points for a gas or for a magnetic
material this interpretation is, however, correct. We
treat R as a quite new quantity describing the stability of
the thermodynamical system. The correlation length is
connected with second moments of correlations; R de-
pends also on third moments.

It seems that R has a deeper meaning because of its re-
lation with statistics and geometry. The scalar curvature
R is the quantity constructed from tensor quantities. The
geometrical analysis of thermodynamical systems gives
deeper insight into the mathematical structure of statisti-
cal mechanics. We hope that R may be used as a verify-
ing test for various statistical models. This means that
only those models for which R behaves similarly to the
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considered standard models may be accepted. The open
question is the phenomenological interpretation of R.

APPENDIX

In this appendix we want to show that c¢;, =0 for a sys-
tem with Hamiltonian (5.4), i.e., in the mean field model.
For that we have to calculate the free energy F of the sys-
tem. Using the identity

ea/2=(2ﬂ_)*l/2fj'°ce*y2/2+\/2ydy , (A1)

we may rewrite (5.7) as
Z(N,T,H)
172
toer —v?n2 N
J Tle " *cosh(vy+B)1Vdn ,

—

vN

— , —v/29N
=e 2
2

(A2)

where v=af3, n=y(vN) /2, and B =pH (for details see
Thompson?’, Secs. 4 and 5). The integral in (A2) is of the
form

IN)=["Tentngy (A3)
with
2
f(n)z—lg—ﬂncosh(anrB) ) (A4)

and in the thermodynamic limit, N — o can be evaluated
by the Laplace method. As a result we receive

_%: lim N 'Z(N,T,H)=In2+maxf(7) ,

N —

—w<y<+o (A5

where G is the Gibbs function per spin. The maximum of
f(7) is determined by

n=tanh(vn+B) . (A6)

The magnetization per spin m(T,H) in the thermo-
dynamic limit is given by

m(T,H)= lim N“M(T,H>=—i

A7
N-— JB ( )

=7,

G
T

where 7 is the solution of (A6), which maximizes f (7).
Thus 7 is interpreted as the magnetization per spin. The
free energy per spin F is therefore given by the Legendre
transform

F(T,n)=G(T,H(n))+nH(T,7n) . (A8B)
Due to (A4) and (AS5), we have
2
G=—T1n2+i;’——T1ncosh(m+B), (A9)
where 7 fulfills (A6). From (A6) we have
vn+ B =arctanhn , (A10)

and hence
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2
G(T,n)=—T1n2+%7—+%ln(1—n2). (A11)
Moreover, from (A 10) we have
H =T arctanhn—an , (A12)

and, finally,

2
F(T,n)= —Tlnz—g—;]—+—27:1n(l—n2)+Tn arctanhy) .

(A13)

F(T,n) is a linear function of 7, and so

6523

J’F

w="T |52

=0. (A14)
7

We are also interested in the magnetic susceptibility x ;.
From (A6) we have

on

= —m2 _ a2y
3H Bl—n)[1—v(1—97)] ",

T

Xr= (A15)

and in the vicinity of the critical point, (A15) gives ap-
proximately

xr'=B'1+79})—a. (A16)
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