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The structure of few-body Hamiltonian matrices is studied in the semiclassical regime. Cxiven

( A &(q, p), A &(q, p) ), a pair of operators, it can be shown that, under quite general conditions, 3 2

takes the form of a banded matrix in the ordered eigenrepresentation of A, . Moreover, the band-
width depends only on A and certain generalized microcanonical averages. In particular, if
H =HQ+ @V, this implies that the perturbed Hamiltonian is banded in the appropriately ordered
unperturbed basis.

I. INTRODUCTION AND THEORETICAL
PREDICTIONS

Many of the predictions of semiclassical mechanics are
limited to systems with an integrable classical analog.
However, an expression for the density of states p(E) has
been derived which applies to both classically integrable
and chaotic systems. ' For the two-degrees-of-freedom
case (d =2)

p(E) =g&(E —E„)=po(E)+p„,(E),

where to lowest order in A

po(E)= z f d q f d p 5(E —H(q, p)),1
(2a)

p„,(E)=—g A exp i —i v—
J

(2b)

=F[p(E)], (3)

where yo=h(BS0/BE) ' and So is the action corre-
sponding to the shortest periodic orbit.

The summation in Eq. (2b) runs over all the periodic or-
bits. S and v are the action and number of conjugated
points corresponding to the jth periodic orbit. The
smooth part of p(E),po(E) can alternatively be obtained
by convoluting the high-energy part of p(E) with a
smoothing function fr (E) of width yo,PQ

po(E) = lim f dE'f (E E')p(E')—3 0

fi~O 7T |Q

(E„IAIE„), E=E„
O, E~E„ (4)

a similar smoothing procedure as the one in Eq. (3) leads
to a function which is identically zero. As a consequence,
from the smoothing viewpoint one needs to distinguish
between the class of functions with a finite integral, as
p(E) for example, and those with a vanishing integral. In
the first case, it is natural to use the F transformation
which is described in Eq. (3). For functions of the second
type, however, a discrete averaging over an energy inter-

The purpose of this paper is to derive a relation similar
to that in Eqs. (2a) and (3) for diagonal matrix elements
of operators " and to study some of its implications to
the global structure of the corresponding matrices. In
particular, we find that Hamiltonian matrices are quite
often banded. In other words, the off-diagonal matrix
elements decay in absolute value as a function of the dis-
tance from the diagonal. Our theoretical predictions are
the subject of the present section. In order to illustrate
our results, we proceed in Sec. II with a detailed study of
some examples. Next, in Sec. III, we show that certain
convergence properties of eigenvalues can be better un-
derstood by means of banded random matrices rather
than the usual Gaussian orthogonal ensemble (GOE).
We finally conclude our discussion in Sec. IV.

To start with, we discuss the expectation values
A (E)= ( E

l
A

l
E ) of an operator A (g,P ) with respect to

the eigenstates of A=(q, P), HlE) =ElE ). Our aim is
to relate the smoothed diagonal elements function to
some phase-space integral involving the classical analogs
of 3 and H. Since
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val of length yp is appropriate. We shall refer to this as a
F transformation

E„&E+(y0/2)

F[ A (E)]= lim-
e-.o p(E)yo z E ~ &2I

& E„l A IE„)

lim f f (E E')(—E'I A E')
poE e o

where we have chosen

Xp(E')dF',

F[ A (E)]= [ A I~

f dq f dp A(q, p)5(E —H(q, p))
(7)f dq f dp 5(E —H(q, p))

Next, we need to specify the nature of the classical ana-
logs of the A and 8 operators. This task is straightfor-
ward if the explicit dependence of A (q, p) on R can be ex-
pressed in the form of a Laurent series but has no essen-
tial singularity at A=O. We shall confine our studies to
this case. Then A (q, p) has the same functional depen-
dence on (q, p) as the dependence on (q, p) of the lowest
order in this expansion. A similar statement defines
H(q, p). Littlejohn' refers to A (q, p) as the principal
symbol of A (q, p). In this' notation

The validity of this expression is further restricted to
Hamiltonians with discrete spectra and operators for
which the integrals on the right hand side are finite. It is
important to realize that these restrictions are not per-
tinent only to pathological situations. For example, the
evolution operator U= exp[ —(i /fi)tH] is excluded due
to its essential singularity at A=O. Likewise, projection
operators are inadequate because they cannot be ex-
pressed as functions of canonical variables. When valid,
Eq. (7) [like Eq. (3)] relates a quantum-mechanical ob-
ject, namely, the smoothed expectation values, to a pure-
ly classical quantity, the microcanonical average.

In order to establish Eq. (7) we shall use the properties
of the corresponding Weyl symbols A ~(q, p). These
have been introduced as a representation independent,
symplectic invariant association between operators on
Hilbert space and functions on phase space. ' On one
hand, this association is not unique; other phase-space
functions can be defined, e.g. , the coherent-state symbol.
On the other hand, whenever the various symbols have at
most pole singularities at R=O, the corresponding lowest
order is identical to the principal symbol,
lim„oA~(q, p)= A(q, p). One can show that it is

sufhcient that 3 have a no-essential-singularity Laurent
expansion in A in order for the corresponding symbols to
also have one. Accordingly, this requirement does not
represent an additional constraint on the class of opera-
tors for which Eq. (7) holds. Although the Wigner-Weyl
formalism has been reviewed several times in the
past, ' '' ' we have included a summary of the relevant
formulas in the Appendix. Applying the F transforma-
tion to the left-hand side of Eq. (A13) and replacing A

with A5(E H) we obta—in

F[Tr[A5(E H)]]=F g—(E„IA IE„)5(E E„)—
= lim f f&,

(E E') g (E„I
A—IE„)5(E' E„)dE'—

p oc 0
n

= lim E —E' 3 Ep EdE'=F 3 E ppE

Next we notice that in the Pi~0 limit f,, tends to a 5)0
function and the Weyl symbol becomes the principal
symbol ~ Thus, under the F transformation the corre-
sponding right-hand side of Eq. (A13) reduces to the
phase-space integral of the principal symbol. Equating
the two sides and using Eq. (2a) for po, one immediately
obtains Eq. (7).

In order to illustrate the behavior of the individual ma-
trix elements and how it leads to Eq. (7), it is useful to
consider Eq. (A15). It has been conjectured long ago, ' ''
that the semiclassical Wigner function corresponding to
an eigenstate is concentrated on the region explored by a
typical trajectory over infinite times. At present, the ex-
act interpretation of this conjecture is subject to contro-

versy mainly due to the scaring in the stadium eigenfunc-
tions found by Heller. ' While it is certainly not clear
whether deviations from the conjectured Wigner func-
tions vanish in the semiclassical limit, for the sake of the
argument, we shall assume this to be the case. The re-
gion explored by a classical trajectory over infinite times
is the entire energy shell for a strongly chaotic (ergodic)
system and a torus for an integrable system. As a conse-
quence, the semiclassical Wigner function for the former
is a homogeneous distribution over the energy shell and
Eq. (A15) leads to a version of Eq. (7) which holds for in
diuidual matrix elements. At finite values of A, the Auc-
tuations of the individual matrix elements around the mi-
crocanonical average are obviously related to the devia-
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tions of the Wigner functions from the homogeneous
form. On the other hand, in the case of integrable sys-
tems the energy surface is represented by a curve in ac-
tion space. A finite number of tori in the neighborhood
of this curve N satisfy the quantization conditions. At
fixed energy, N is 0 (iri ) and therefore, these tori divide
the energy shell into N segments of length O(A') each.
Moreover, the tori are homogeneously covering the angle
directions and thus the associated Wigner functions are
characterized by an O(iii) spread in the actions. Under
these circumstances, the only way to simulate a Wigner
function which is homogeneous over the energy shell is to
average over all the N tori. Inserting this averaged
Wigner function into Eq. (A15) one immediately retrieves
Eq. (7). It should be stressed, however, that at fixed ener-

gy, the deviations of the individual matrix elements from
the microcanonical average do not decay as A~O.

Various global properties of the operator matrix
A„l, = &E„~ A Ei, ) can be studied employing the formal-
ism we have just developed. For example, we can define a
bandwidth for operator 3, AE„, at energy E„

y(E„—E„)'~ A„„~'
(&E„„)'—=

k&n

& E„~([iH, A ])'~E„&

& E„/ A" '/E„& —
& E„/ A" /E„&'

Replacing the quantum commutator with the corre-
sponding Poisson bracket [ ]pii and using Eq. (7) we ob-
tain

=F[(~a1,( 3, A ) )

a ]k )'I & Ui. I
A i I Uik & I'

=F
& I&vs. lA"2~Ulk&l'

k(wn)

po(a, „)=h fdqf dp5(a, „—A, (q, p)) . (13)

Evidently, in our original discussion pairs of the type
(ff, Az) were treated. However, for understanding the
semiclassical structure of Hamiltonians we need to study
(A „8) pairs. Fortunately, all these cases are equally
well described by Eqs. (11)—(13). One can alternatively
interpret the ( A „H ) pairs as specifying the representa-
tion in which 8 is banded. In Sec. II we present several
examples in order to support our heuristic arguments.

II. EXAMPLES

We open the series of examples with the study of cou-
pled harmonic oscillators

[[Al A2]PB]—g2

I A h. ,„—[ Ai I., „

and similarly AM„~ „„~=pa(a,„)ha,„~„„~.Here

f dq f d p Ai(q, p)fi(ai„—A i(q, p))
[ Azj. (12)f dq f dp5(a, „—A, (q, p))

and

[[H, A]PBIz
(bE„~ ) :=F[(bE„~) ]=Pi

I A'1 E„IA 5„—(10)
2 2

H= g Ho;+EV= —,
' g(p; +x; )+eV(xitxi) . (14)

For a given value of A, the bandwidth AE„~ is finite and
therefore the A„k matrix elements must be a decaying
function of ~Ek E„~. This is—the origin of a quasidiago-
nal (banded) structure. The width of this band can be
easily translated to the number of states it includes,
b,M„~ =po(E„)b,E„~. Remarkably, b,M„& =O(A ')
and therefore diverges as A~O. It is, however, important
to mention that if only a fixed range of energy is con-
sidered, the size of the A matrix is M =O(iii ). As a
consequence, for an operator matrix which has been trun-
cated according to a classical criterion the bandwidth
diverges in the A~O limit slower than the matrix size.
We shall return to this point in Sec. II.

We now turn to the last part of this section in which it
is shown that our conclusions concerning the structure of
operators apply to Hamiltonians as well. This is true
simply because any operator can play the role of a Hamil-
tonian. Let us first stress that the statements in Eqs. (7)
and (10) generalize in a straightforward manner to a pair
of operators ( A i, A z ) subject to the same restrictions as
in the case of (H, A ) pairs. The first member of the pair
A i fixes the basis (its eigenvectors, Ui„) and its appropri-
ate arrangement (in increasing order of the eigenvalues
a,„). Consequently, the second member A~ will have a
smoothed band-width

This degeneracy is irrelevant to our argument and there-
fore we suppose that it is removed by an infinitesimal per-
turbation such that Eo +, & Eo +, . The order-

ing appropriate to this setting is indicated in Fig. 1(a).
Suppose now e is made finite and V is a p-order polyno-

mial. Writing the potential in terms of raising and lower-
ing operators it is easy to see that given a site on the
square lattice,

~

m „m 2 )

finite or 0,
&m, , milHlm, +j,m~ &= ' Ijl p

Ijl &p .

Therefore, at most 2p + 1 rows in each direction m; are
connected by nonvanishing matrix elements and as a

The actions for a =0 are just J; =Ho; and semiclassically
these assume only a countable number of values
J, =Pi(m, + —,

' ). Therefore, in the quantum number space
the eigenstates of Ho form a square lattice. In the
language of Sec. I, we shall study the band properties of
H as the second member of the (Ho, H) pair. There is
some freedom in arranging the

~ m, , m i ) basis due to the
degeneracy in the eigenvalues of Ho,

2

EOM =ED =iii g (m;+ —,') .
i =1
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~ ~&~

and therefore limM EM=&2M. As a consequence,
M=0(R ) which is in agreement with our predictions.

In order of increasing complexity, after studying a pair
where both members are integrable, we proceed to an ex-
ample where the first pair member H,

H=Li, +L2, +L)„L2 (17)

is nonintegrable. Specifically, the corresponding classical
motion changes gradually from regular to strongly chaot-
ic as the energy of the system is lowered. The second
member of this pair

A2 =Ho =L]z+L2z (18)

is once again exactly integrable. The angular momenta in
Eqs. (17) and (18) satisfy L; =(L;„+L; +L;, )

' ~ and
therefore the energy is bounded. When L, =L2 =L,

2L,
L)1 (19)

The equations of motion for this system

O.B

0.6—

20 40 60 80 )00
DE„H

OA

FIG. 1. Properties of the system in Eq. (14) with
e V(x

~
xp ) =ax, + bx2 (a) Qua. ntum number lattice for Ho.

The solid arrows depict the nonvanishing matrix elements at a
lattice point. The dashed arrows describe the way in which the
basis is ordered. Notice that at the end of a diagonal we return
to the beginning of the next one when arranging the basis. (b)
Bandwidth AM vs M (solid). The dashed curves correspond to
the bounds on AM given in Eq. (16).

0.2—

0'

0.8

I2

consequence, H is banded. Let us restrict our attention
to the case p =1 which is obviously the easiest to study.
It corresponds to a potential ev(x„x2)=ax, +bx~ for
which H is exactly integrable. Since tH Iz =Eo, Eq. (7)

is immediately satisfied. Moreover, due to the quadratic
form of the Hamiltonian the fluctuations vanish and the

transformation is unnecessary. Using the quantum-
mechanical definition in the left-hand side of Eq. (11) one
obtains AEp=—EEpM (& H~

=A'. Exactly the same result is

obtained from the classical calculation corresponding to
the right-hand side of Eq. (11). Since po(Eo)=R Eo, we
obtain AM —=AMM (H H~

=A' 'Ep. As is shown in Fig.
1(b), AM is a steplike function of the row number M.
However, at fixed AM

AM —AM+2 AM +5M&M&
2 2

0.6—

&En, Ho'0.4—

0.2—

l2

FIG. 2. Semiclassical value for b,E„H as given by the right-

hand side of Eq. (10) vs energy (solid) for the (H, HO) pair [see
also Eqs. (17) and (18)] is compared with (a) the exact quantum-
mechanical values of AE„& as defined in Eq. (9) (crosses). (b)
AE„„values obtained from smoothing b.E„„with the fr of
Eq. (6) (crosses).
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L, =[L,,H]ps (20)

III. RANDOM MATRICES

Instead of pursuing more examples, in the following we
bring indirect but generic support to the proposed semi-
classical structure of Hamiltonian matrices. For this pur-
pose Gaussian orthogonal ensemble (GOE) random ma-
trices are used. ' We claim that if the Hamiltonian ma-
trices of strongly chaotic systems were typical members
of the GOE, then, one could never obtain converged ei-
genvalues using truncated approximations to the full
Hamiltonian. However, this method is frequently used in
numerical calculations of eigenvalues and the lower
bounds on the corresponding errors are only due to limit-
ed computational power. We shall show that the two
facts can be at least partially reconciled if a band is super-
imposed on the GOE matrices.

The quantity considered Ao is the error induced in the
eigenvalue closest to zero eo by Auctuations of matrix ele-
ments which are outside an M XM block. Accordingly,
we shall study the behavior of Ao as a function of M.
Since the eigenvalue distribution for the GOE is given by
the Wigner semicircle law '

(4Sa' —e') '"
e ~ 4Scr

P(e) = 2vrSo

0, e~ )4+o.2 (21)

where S is the matrix size and is assumed to be large,
there are on average (S —1}/2 eigenvalues greater than

can be obtained using the standard angular-momentum
algebra. Apparently, the operators in Eqs. (17) and (18)
are not functions of canonical variables and therefore do
not satisfy one of the basic requirements of our forrnal-
ism. However, one can find a transformation from
angular-momentum variables to canonical ones' and
consequently avoid this inconsistency. When L

&

=L2=3.5 most trajectories are chaotic if ~Ej (6.6 and
regular for

~
E

~

~ 9. 1. For energies in the range
6.6( ~E~ (9.1 regular and chaotic trajectories coexist.
Quantum mechanically, H is represented in the Ho eigen-
basis by a matrix of finite size M. Since L; =A 1;(1;+1),
M =(21& + 1 )(2lz+ 1), and therefore M =O(fi ) as
A~O. This again coincides with our conclusions from
Sec. II.

In previous work, Eq. (7) was numerically checked for
the (H, HO) pair (see Fig. 4 in Ref. 5 and Figs. 5 and 6 in
Ref. 9) and good agreement with theory was found in all
regimes: chaotic, regular and mixed. Presently, in Fig.
2(a) we compare the quantum-mechanical bandwidth for
individual rows as defined in Eq. (9) with the semiclassi-
cal bandwidth [see the right-hand side of Eq. (10)] for this
pair. As before, we set l, = 1'2 =20 and therefore
%=0.1707825. Notice that the fluctuations around the
semiclassical curve are apparently random in the chaotic
regime while for the regular case these form a slightly
distorted square lattice. ' Next, in Fig. 2(b) we show that
the two sides of Eq. (10) nicely agree with each other even
though X—=ypo was rather arbitrarily set to 10.

the one we focus on. In this sense, eo is the eigenvalue
which is farthest from the fluctuating elements. The
latter correspond to the matrix elements which are arbi-
trarily set to zero in the truncation approximation to
Hamiltonian matrices.

Four different settings are studied. In the first (scheme
I) to a fixed MXM random matrix B, a frame of fiuc-
tuating elements F is added. The frame consists of two
columns of Gaussian distributed elements one on each
side of the original matrix and similarly two rows such
that the resulting matrix B~ is symmetric. The distribu-
tion of eo, P(eo) is obtained by numerically diagonalizing
BF for qz different realizations of the frame. ho is defined
as the standard deviation of P(eo) and is averaged over

q~ different realizations of B. In all our numerical exper-
iments, qua=25 and qua=10. Here, the size of B~,S is
M+2. In Fig. 3(a), b,o(M) is compared with the corre-—aI
sponding power-law best fit Ao =cM ', where
a&=0.550+0.034. One might be tempted to conclude
that the eigenvalues do converge as the size of B is in-
creased. However, this convergence is the consequence
of a rather artificial effect. Namely, for ~eo~ ((2cr&S
there is an O(M' ) increase in the density of states fol-
lowing from the change in the size of BF. The number of
eigenvalues n in a given interval (e„e2 ) is

n =M f P(e)de .
e&

(22)

Using Eq. (21) and setting e&
= —he/2, e2=be/2, and

n =1 in Eq. (22) we obtain that b,e ccM '~ for large
enough M. In other words, the Auctuations of eo are re-
stricted to lie within Ae. As a consequence, we expect
that bo(M} behaves similarly to Ae. This prediction is in
good agreement with the numerical result for n, .

It is possible that the decay of b,o(M) is further
enhanced due to the decrease in the ratio between the
number of Auctuating elements in BF and the number of
fixed ones. This might be the reason for the fact that a, is
slightly bigger than —,. In order to distinguish between
the two effects a second scheme, II, is studied. Here, the
size of BF,S, is kept fixed while M grows. Therefore, the
frame consists of S —M columns and an equal number of
rows. All its elements are allowed to fluctuate according
to a Gaussian distribution. All other characteristics of
this scheme are the same as in the previous one. We ob-
tain a»=0. 193+0.112 [see Fig. 3(b)] suggesting that the
change in the density of states is not the only reason for
the decaying of b,o(M). In this case it is particularly ob-
vious that the power-law ansatz is not an appropriate
description to the behavior of 50(M) for an arbitrary con-
vergence scheme. Therefore, the a exponents should be,
in general, regarded merely as indicators for the decay
rate.

When truncating a matrix of infinite size to an M XM
block the fraction of erroneous elements is constant as M
is increased. Moreover, while in a random matrix the
density of states increases O(M' ), in a true Hamiltoni-
an system it is fixed by A and the classical volume of the
energy surface. Accordingly, we study a third scheme,
III, in which both effects leading to the decay of 60(M) in
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(b)

l
~

0

I

008
i00

I I I I I

50 100

I I I I I

(c)
0.(3 I I I I I

(d)

0.25—

0.09—

0. i5 I I I I I I

50 iQQ

0.08 I I I I I

50 i 00

FIG. 3. Ap vs M (error bars) are compared with the best fit Ap=cM (dashed). (a) Scheme I, (b) scheme II, (c) scheme III, and (d)
scheme IV (see text).

scheme I are eliminated. To the extent to which GOE
matrices are equivalent to the Hamiltonians of ergodic
systems, this is the correct configuration for simulating a
truncation approximation to the eigenvalue problem.
The same setting as in scheme II is used only that here a
fixed number, independent of M, of frame elements are al-
lowed to fluctuate. The fluctuating subset of the frame is
now random in both its positions in F and in the values it
assumes. As shown in Fig. 3(c), a,»=0.00g+0. 064 and
therefore agrees very well with the nonconverging situa-
tion a=0. Since the BF matrix is completely hornogene-
ous and there is no natural distance between its different
regions, this behavior is to be expected. In other words,
none of the average properties of BF change if two of its
rows (and accordingly two columns such as to preserve
BF =BF) are interchanged. As a consequence, the posi-

tions of the fluctuating elements have no influence on the
behavior of b,o(M). Since this result contradicts previous
experience concerning the influence of truncation on ei-
genvalue convergence, we conclude that GOE is not a
faithful representation of ergodic systems.

Finally, in the fourth scheme, IV, a band of width o.
b is

imposed on the matrices generated by scheme III,

(BF );, = (B~), exp[(i j) l2a b ] . —
Moreover, the diagonal elements which in the context of
Sec. II correspond to the spectrum of A &, are arranged in
increasing order. As we can see in Fig. 3(d), the decay of
b,o(M) reappears with an exponent a&v=0. 135+0.045 at
o.

b
= 10. This convergence suggests that banded random

matrices are more appropriate for modeling properties of
ergodic Hamiltonians than the usual GOE.
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IV. CONCLUDING REMARKS APPENDIX

Using standard methods from phase-space semiclassi-
cal theory, examples, and random matrices we have
shown that under certain conditions, given a pair of
operators ( 3 i, A z ), A z has a banded structure in the rep-
resentation determined by 3 &. The appropriate represen-
tation is determined by the eigenvectors of A, arranged
in increasing order of the corresponding eigenvalues. Ac-
cordingly, the bandwidth of Az is 0 (fi) in units of 3

&
ei-

genvalues and O(R ') in the number of states. All our
results can be easily extended to systems with an arbi-
trary number of degrees of freedom d by appropriately
adjusting Eq. (2a).

We sha11 end by pointing out some similarities between
the eigenvalue equation of a banded Hamiltonian and the
Anderson localization problem. Suppose that H —= Az.
Since in the ordered eigenrepresentation of A&, H„k are
very small whenever ~a, „—a, k ~

)bba, „ i „~i and

b ))1, it is an arbitrarily good approximation to set all
these matrix elements to zero. The larger b the better is
the approximation. In turn, the eigenvalue equation cor-
responding to this approximation can be converted into
transfer matrix form. The asymptotic properties of the
eigenvectors are determined by the smallest positive ei-
genvalue of infinite products of these transfer matrices.
On one hand, it is known that for random sequences of
transfer matrices almost all the eigenvectors are exponen-
tially localized. In the context of electronic states on ran-
dom lattices this is known as Anderson localization. On
the other hand, for the periodic case extended solutions
are obtained. In between the two extremes there is a
wide range of possibilities (pseudorandom, quasiperiod-
ic, etc.), which has recently received much attention.
The eigenvalue problem of banded matrices also lies in
this largely unknown territory.
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In the following we shall briefiy remind the reader of
the Wigner-Weyl formalism. First of all, we define the
Heisenberg operator

(i/A')(po q
—

qo p)
TqoPo =e (Al)

[1(qo,po)%](x)=e ' ' '%(x—qo) (A3)

and accordingly for the product of two Heisenberg opera-
tors we obtain

~(qo Po)~(qt P&) e ~(qo+qi Po+P&) .

(A4)

As a consequence, the Heisenberg operators do not form
a group. A slight extension of their definition as to in-
clude the phase factor

T(qo po n)=e'"'"&(qo po) (A5)

leads to the Heisenberg group with the following product
rule:

~(qoipo~'go)T(qi~p]~9] ) = ~(qo+qiipo+Pi~'Qo+r) t

+ 2(po'qi qo Pi))

(A6)

It is now easy to define the alternative Weyl symbol of
some operator 3 as its expansion coefficient in a linear
combination of Heisenberg operators

A =h f dq f dp A~(q, p)f'(q, p) .

Finally, the Weyl symbol itself is obtained

(A7)

A~(q, p)=h fdqf dp A~(q, p)e

(A8)

It can be also expressed as the Fourier transform of the
configuration-space off-diagonal matrix element of A

A~(q, p)= fdse 'P' "(q+—,'s~A ~q
—

—,'s) . (A9)

The Weyl symbol of a product of operators C' = Aft is re-
lated to the individual symbols

which represents the quantum analog of a displacement
in phase space

T (qo po)(q p)T(qo po)=(q+qo p+po) (A2)

Its action on the wave function is

C~(q p)=h "fdqo f d po f dqi f d pie
"'" """"&w(q+ lqo p+ 2po)&w(q —

2qi p —2pi) . (A 10)
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Alternatively, Eq. (Alo) can be formally written as a
power series in A

iA
Clv(q p) ~ w(q p)e"p L Bw(q p)

2
(Al 1)

(A12)

In the present formalism the trace of an operator takes a
simple form

TrA =h ~f dq f dp Att, (q, p) (A13)

where L is the Janus operator. Let z—:(q, p) and J be the
basic symplectic matrix, then

sponding to the projection operator P+=~%')('P~. It is
referred to as the Wigner function 8'(q, p) and it
represents the quantum-mechanical analog of a Liouville
distribution. Unlike the latter, however, the Wigner
function is normalized on phase space to h" instead of
unity and can take on negative values. If one of the
operators in Eq. (A14) is a projection, one obtains an ex-
pression for the expectation value

~l('l A lp~=h f dq f dp W(q, p)Au(q, p) . (A15)

One can easily retrieve the standard description of
quantum-mechanical behavior in terms of wave functions
from the Wigner function description

and so does the trace of a product

Tr(A "8)=h f dq f dp Att, (q, p)B~(q, p) . (A14)

~g(q)~ =h f dp W'(q, p) .

Likewise

(A16)

Probably the best known Weyl symbol is the one corre- ig(p)i =h f dq W(q, p) . (A17)

*On leave from Departamento de Fisica, Universidad Nacional
de La Plata, Casilla de Correo No. 67, (1900) La Plata, Ar-
gentina.
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