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We analyze the effect of finite memory on the Lyapunov exponent of products of random matrices
by considering Markov trials. We study three different cases of physical interest: the one-
dimensional Anderson model with correlated random potentials, light propagation in media with
correlated random optical indices, and a mimic of the deterministic chaos appearing in dynamical
systems with few degrees of freedom. In general the Lyapunov exponent is found to have the same
qualitative shape as the inverse of the correlation length of the Markov process. We, however, ob-
serve that this rough proportionality fails in some relevant situations. We explain this unexpected
behavior in the localization problem by using simple arguments.

I. INTRODUCTION

Chaotic and disordered systems can often be described
by means of products of random matrices. For example,
in the statistical mechanics of disordered chains, one ob-
tains all the thermodynamic properties from the eigenval-
ues of the product of suitable transform matrices. ' Ran-
dom matrices have also been used to mimic strongly
chaotic behavior arising in deterministic dynamics.
These matrices are usually assumed uncorrelated. This is
a reasonable assumption in extreme cases of strong disor-
der or chaoticity, but in typical situations correlations are
often present and may play an important role. The ques-
tion arises of whether finite memory effects are relevant
for the properties of products of random matrices. There
are only a few studies on this subject, mainly dedicated to
localization and electronic transport in media with corre-
lated random potentials. Naively, one could expect
that the increasing of correlations leads to more coherent
behaviors. In the electronic transport, e.g, this should
mean that the localization length should be roughly pro-
portional to the correlation length of the random poten-
tial ~ This is not always true. Indeed, it was found that
the presence of correlation between impurities in the An-
derson model leads to an enhancement of localization.
The introduction of a small amount of short-range disor-
der might thus be sufficient to switch the system from a
metallic to an insulating regime.

The main purpose of this paper is the study of disor-
dered and dynamical systems by means of product of ran-
dom matrices, taking into account the memory effects by
using Markovian processes. We shall focus our attention
on the behavior of the maximal Lyapunov exponent of a
product of Markovian random matrices involved in three
different problems. In Sec. II we study the one-

dimensional Anderson model with various correlated ran-
dom potentials. We find that the naive scenario (i.e., lo-
calization length roughly proportional to the correlation
length of the potential) does not hold near the band
center and near the band edge of the pure system. In Sec.
III we discuss the problem of light propagation in media
with random optical indices. Section IV is dedicated to
deterministic dynamical systems. We show that the max-
imum Lyapunov exponent of the Lozi map cannot be es-
timated by using a product of independent random ma-
trices, while a Markovian product gives an excellent ap-
proximation. Section V is devoted to conclusions.

II. LOCALIZATION IN CORRELATED
RANDOM POTENTIALS

Let us consider the one-dimensional discrete
Schrodinger or nearest-neighbor tight-binding model,

0.+ i+4.—i+ v. 0.=E4. (2. l)

where P„ is the wave function on the nth site of a one-
dimensional lattice, F. is the energy, and V„ is the diago-
nal random potential. Equation (2.1) has been usually
studied with uncorrelated potentials, i.e. ,

4n+1
7 n

(2.2)

We want to consider here the effects of spatial correla-
tions on the localization length of P„. For this reason we
will use a Markovian rule to generate the random poten-
tial.

By defining
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Eq. (2.1) can be written in matrix form as z„=A„z„
The characteristic localization length g is then defined as
the inverse of the Lyapunov exponent A, of the product of
the transfer matrices A„,

0.010

0.008

I 1 I

l
I 5 I I

l

I I I I

l

'f I I I

l

I I 7 I

lim —ln with z~= g A„zo .
Iz, l

(2.3) 0.006

The Oseledec's theorem, applied to random matrices, en-
sures the existence and the uniqueness of the limit A, . 0.004

A. Two-state Markov process 0.002

As a first example, let us consider the case where the
potential can take only two values, i.e., V„=+V. For
sake of simplicity we assume that the two values occur
with the same probability, i.e., p+ =p =

—,'. With this
assumption the Markov process is described by the 2 X 2
transition matrix,

~+,+ ~+,—
8';

+ g (2.4)

It is thus possible to introduce a correlation length 1(e)
for the potential as

1

)n —m) ~ 11 m

= —lnl2~ —1
I

.

where 8' is the probability of jumping from the ith
state to the jth (with "+"corresponding to V„=+V and
and "—"to V„=—V, respectively), and 0&a&1. We
will not consider the case of p+ Wp, although the exten-
sion is straightforward.

The parameter e gives the amount of "memory" in the
process. It is, in fact, easy to see that

( V V ) V2(2+ j ))n —m)
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FIG. 1. A, vs e for the two-state Markov process with E = 1.8
and V=0. 1.

At the center and at the edge of the band of the pure
system a different behavior appears. In Fig. 2 we can ob-
serve that for E=+2, k increases with e. This implies
that for e) —,

' the localization length A.
' decreases as the

correlation length I of the potential increases. A similar
surprising behavior appears also for E =0 and E & —,

' (see
Fig. 3). The behavior near the center of the band has
been analyzed by Johnston and Kramer by means of a
perturbative approach. Here, we want to give a simple
argument for it. Let us now discuss first the case of ener-
gies close to the band edge and e close to 1. For small
values of 1 —e, a typical sequence of V„ is made by many
subsequent + Vs [for = 1/(1 e) subsequent s—ites on the
chain] followed by approximately the same number of—Vs, and so on, in an almost periodic way. Thus a
rough estimate of the Lyapunov exponent can be ob-
tained by considering the product

The canonical measure of the degree of memory is, how-
ever, given by the Shannon extropy,

( g ))/() —
E)( g )

I/(I —e) (2.6a)

H= —g p~ g 8';~ in@; (2.5)
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In our case, since the probabilities of the + and —states
are equal to —,', from Eq. (2.4) one gets

H(e) = —[zine+( I —e) ln(1 —e)] .

We stress that the behaviors of l(e) and H '(e) as func-
tion of e are qualitatively the same. In particular, they
have a minimum at e= —,

' (corresponding to a uncorrelat-
ed situation) and a divergence as a~0, l.

Naively one would expect that the Lyapunov exponent
A.(e) and the Shannon entropy H(F. ) behave, as function
of e, in a similar way. This expectation is actually
confirmed by numerical simulations, see Fig. 1, but only
for energies "far" from the band edge (E =+2) and the
band center (E =0) of the pure system. It is worth noting
that the Lyapunov exponent does not reach its maximum
value (maximal localization) at e= —,', but at a value which
depends on E.
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FIG. 2. A. vs e for the two-state Markov process wi th
E = 1.99 and V =0.2.



39 LYAPUNOV EXPONENT FOR PRODUCTS OF MARKOVIAN. . . 6493

0.0125

0.0100

0.0075

0.0050

r s t

I

e i ~ r I I I

I

1 l I start to appear in the product g„A„. For lE l
& V, both

matrices 3+ and A have complex conjugate eigenval-
ues of module one. We can thus argue that for lEl & V
each block do not contribute to the Lyapunov exponent
of the product. Since the length of these blocks increases
as e grows to one, we have that dk(e)/de&0, for
lEl & v.

Note that an argument similar to that used to explain
the behavior near the band edge and e close to 1, shows
that Eq. (2.9) is a good estimation of A. also for

l
E l

= V.

0,0025 B. Markovian process with a continuum of states

0.0000
0.2 0.4 0.6 0.8

Similar behaviors have been observed also for the
Gaussian Markovian process,

FIG. 3. k vs e for the two-state Markov process with
E =0.12 and V=0. 1.

V„=aV„)+by„, (2.10)

where a and b are constants (with la l
& 1), and g„Gauss-

ian uncorrelated variables,

where

E —V —1

1 0
E+V —1

1 0

(q„)=0, (q„q. )=S„
It is straightforward to show that

are the transfer matrices for V„=+V and V„=—V, re-
spectively. This leads to

a —Im I

i'I (2.11)

where o. and l are related to a and b by
(2.7)

b 2
~2 — l—

1 —a
1

inlal
(2.12)

Our numerical results show a behavior similar to the one
observed for the two-state process, see, e.g. , Figs. 4 and 5.
In particular for energies far from the band edge, one has

' ~ l. On the contrary, for energies close to the band
edge and positive a, we see again a decreasing and even-
tually a saturation of the localization length as l in-
creases. The anomalous behavior observed near the band
center for the two-state process is exhibited, in this case,
in the limit a —+ —1, b ~0 with o. finite, where the poten-
tial V„becomes periodic. The origin of these behaviors is
the same discussed in Sec. IIA. The estimation of the

30000 —' ' '
I I

20000

(2.8)

where l' is the largest eigenvalue of the matrix A, if
E=2, or of the matrix 3+, if E= —2. The Lyapunov
exponent is thus determined by the positive contribution
of the eigenvalues of matrices "outside the band. " We
note that the density of states is nonzero, being related to
the imaginary part' of the eigenvalues of the matrices
"inside the band. " One sees that as e decreases below
one, A,(e) should decrease because the "typical" form of
Q„A„will contain more and more matrices inside the
band. We then conclude that in the range
2 —V& lEl &2+ V dA, (e)/de&0.

A similar argument can be used to understand the be-
havior near the band center. In the limit @=0 the poten-
tial becomes periodic (e.g. , V; = + V, V;+, = —V,

V, +&=+V ). From the Bloch's theorem we know
that for periodic potentials all the states are extended and
organized in a band structure. Using the transfer matrix
method, it is easy to realize that for our potential, the lo-
calization length and the density of states are related to
the eigenvalue of product

A straightforward calculation shows that there are
indeed two bands of extended states for
V& lEl &(4+ V )' . Therefore, since lEl & Vis outside
the bands, we have a positive Lyapunov exponent given
by

(2.9)

10000

10
a I ( j I

154
where l is the largest eigenvalue of the matrix (2.8).

As e becomes nonzero, blocks of matrices A+ (A ) FIG. 4. A.
' vs l for the process (2.10) with E =0 and o =0.1.
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ko is the wave number of the light beam in the embed-
ding medium, and
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k, = — [n, —no sin (8O)] (3.3)
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FIG. 5. A,
' vs 1 for the process (2.10) with E =1.9 and

o. =0.1.

is the wave number in the ith layer. Here co is the light
beam frequency, c the light speed in vacuum, and Oo the
incidence angle (which is assumed to be in the interval
[0,77/2] ).

We are interested in studying how the penetration
length g, defined as

limit values of k needs a more accurate calculation to
handle the limits N~~ and a~+1, since in general
they do not commute. In the limit a~1, A, (a) goes to
( lnI I( V)

I ), where I ( V) is the largest eigenvalues of

1 0

and the average is taken over a Gaussian distribution of
V with zero mean and variance o. . A similar form can be
obtained in the limit a~ —1. Note that this result is
equivalent to the (2.7), where there are only two possible
choices for the potential, one of which gives an eigenval-
ue of modulus one. The numerical results are in excellent
agreement with these theoretical estimations.

III. A PROBLEM OF OPTICS

In Sec. II we have seen how the use of products of ran-
dom matrices yields a quite simple way of understanding
some properties of the one-dimensional Schrodinger
equation with random correlated potentials. However,
their use is not limited to these problems but can be ex-
tended to any problem which may be described by prod-
ucts of suitable transfer matrices. Here we consider the
problem of the propagation of a light beam in a succes-
sion of N )) 1 layers of thickness a with random correlat-
ed optical indices. The case of uncorrelated optical index
has been studied by Bouchaud and Le Doussal. '

Let us consider a light beam, sent from an embedding
medium with optical index n o, falling on a "one-
dimensional random medium" made by N ))1 layers of
thickness a and optical index n;. It is a straightforward
exercise to show that the (complex) transmission and
reflection coefficients tN and rN of the N layers are related
by

lim —ln
I tzN

(3.4)

is modified by introducing a spatial correlation among
the optical indices of the layers, i.e., assuming
( n; n, )W ( n; ) . Here, as in Sec. II ( . ) indicates the
average over the spatial disorder.

From the theory of products of random matrices we
have that

It~ I —e, N»1 (3.5)

(n)
sinO, =

no
(3.6)

which plays a role similar to O, of the pure system.
We will consider n, of the form

n, =(n )(I+ox;), (3.7)

where xi is a Gaussian variable with zero mean and

&xx )=expJ (3.&)

where A, is the maximal Lyapunov exponent of the prod-
uct g,. Q, , so that g = I/A, .

Let us assume for the moment that n, does not Auctu-
ate, namely, n; =n & no. It is well known that in this case
there exists a critical incidence angle, given by
sinO, =n/no, such that the transmission coefficient, as
function of the penetration depth, changes from an osci1-
latory behavior (g '=A, =O) for Ho(0„ to an exponen-
tial decay (g ' = A, )0) for 9o) 0, .

When n, is a random variable, it is useful to define an
"average critical incidence angle" O, as

ikoaN
tNe

ikoaN
rkotNe

N+ 1

nn
i = I

iko(1 —r, )
(3.1)

The random process x, has been generated according to
the discretized Langevin equation (2.10). For simplicity,
and without losing in generality, we may assume that
o. ((1.
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We study g as function of the optical index correla-
tion length 1. The two cases of interest are [case (1)]

where rl;= —2o(ak) x, , k=(n )cole.
hand, Eq. (2.1) can be written as

On the other

sin 0, —sin 0o )) 1
tT sin 0,

and [case (2)]

(3.9)

1+—,
' v,

1+—,'v; 1+—,'v, —,'(P, +P,

(3.12)

sin 0 —sin 00 &1.
o. sin 0,

(3.10)

1+—,
' g;

1+—,
' g;

(3.1 1)

In case (1) k, defined by Eq. (3.3), is almost always pos-
itive. This implies that the matrices Q; have complex
conjugate eigenvalues with modulus one. This is a situa-
tion similar to that found in Sec. II for the Schrodinger
equation with the energy "well" inside the band. We
thus expect an increasing of g as function of l. In Fig. 6
we show g versus 1 obtained from numerical simulations
for the case (1). From this figure we see that g increases
almost linearly with l.

Case (2) corresponds to the case of positive and nega-
tive k,-. Therefore, there is a succession of transmission,
in the layers where k, & 0, and suppression, where k; (0,
of the light beam. In terms of matrices Q; this means
that there is a succession of matrices with complex conju-
gate eigenvalues with modulus one, and matrices with
real eigenvalues with the largest one of modulus larger
than one. This is similar to the one-dimensional
Schrodinger equation near the band edge, so that one ex-
pects that g~ goes to a limit value and does not increase
with the correlation length t'.

In the special case 00=0„ the problem becomes for-
mally equivalent to one-dimensional localization. In fact,
for small o. , we can expand the elements of Q;. Taking
only the erst terms in o. one gets

where v, = V,
—E —2. However, in order to have a com-

plete correspondence we have to have ( v, ) =0, i.e. ,
E = —2 (remember that ( V; ) =0). In other words, this
means that the propagation of a light beam at 0O=0, is
formally equivalent to the one-dimensional Schrodinger
equation at the band edge E = —2. In Fig. 7, we show g
obtained from numerical simulations for the case (2). Let
us stress that the different features of A, as function of I
are not sensitive to the details of the probabilistic rules
used to generate x;. Indeed, the same qualitative results
have been obtained by a two-state Markov process.

IV. MIMIC OF DYNAMICAL SYSTEMS
WITH FEW DEGREES OF FREEDOM

The chaotic behavior of deterministic dynamical sys-
tems can be often analyzed in terms of suitable random
processes. In particular, products of independent ran-
dom matrices have been used to mimic some features of
chaotic mappings. Such an approach is, in fact, quite
effective to estimate the maximum Lyapunov exponent of
a map by simple calculations. Chirikov" has used it in
the standard map, when the nonlinear parameter K is
large enough, and Benettin has found the scaling of the
maximum Lyapunov exponent in terms of a perturbation
parameter in billiards. Moreover, we have shown that
the product of independent random matrices are able to
provide a satisfactory result for the whole spectrum of
Lyapunov exponents in Hamiltonian systems made of N
nearest-neighbor coupled oscillators. '

Time correlations are known to be small in all these
cases. In general, however, the mimic of a system with
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FIG. 6. 1, ' vs l with 0, —610=0.2 rad, o.=0.1, no= 1.2, and
(n) =1.
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non-negligible correlation effects requires a Markovian
product of random matrices. To be explicit, let us con-
sider the case of a two-dimensional map

x(i + 1)=F(x(i) ) with x E IR (4.1)

with an F-invariant set A. The maximum Lyapunov ex-
ponent A. can be computed in terms of the linearized map,

BF;(x(n) )
A; (x(n))=

X~.
(4.2)

Following the dynamics on 0, one defines

IIII~( ( )) II

1
lim —lnx- (4.3)

x (n +1)=y, x(n)
if y(n) &a,

y(n +1)= y(n)—
(4.4a)

x(n +1)=y„x(n)

where z is a generic tangent vector HR and x(i) belongs
to 0, for all i' s. In general, the invariant set 0, is called
strange if A, is positive. Assuming good ergodic proper-
ties of the systems, the limit k exists and is the same for
almost all initial conditions x(1).

In order to illustrate the role of the correlations, we
will consider the two following maps.

(i) The Baker*s transformation of the square
[0, 1]X [0, 1] into itself,

ink(n )
h, = 1(m

n~ oo Pl
(4.8)

A, = —[p+ln(a)+p ln(1 —a)]
= —[a ln(a)+(1 —a) ln(1 —a)] . (4.9)

On the other hand, the linearized matrices of the Lozi
map do not commute and the Bernoulli trials of matrices
has to be done numerically, even if, in principle, good
analytical approximations are available. ' We have com-
puted the probability p+ from the frequency of A+ in

the dynamics of the Lozi map, as function of the parame-
ter a, at fixed dissipation rate b =0.5. In Fig. 8, one sees

where N(n) is the number of possible sequences of + and
—states of length n, generated by the map.

For the Baker's transformation N(n) =2" (all the possi-
ble sequences are admissible) and h, =ln2. On the con-
trary, it is well known that the Lozi map has h, smaller
than ln2. This means that for n large enough, some se-
quences of + and —are now allowed. For instance,
when b =0.5 and a =1.7 in (4.5), we have estimated
h, =0.502+0.002. Indeed, already for n =5, there are 5
forbidden sequences among the 32 possible ones (e.g. , the
five-minus sequence) which do not appear in the actual
dynamics. Indeed, the smaller the topological entropy,
the larger the expected correlation effects.

It has been proven that the Baker's transformation can
be described by a Bernoulli trial where the probability of
extracting a matrix A + is p+ =a. Moreover, since the
matrices A+ and A commute, it is easy to see that the
Lyapunov exponent of the Baker's transformation is

y(n +1)= 1
[y (n) —a]

if y(n)) a, (4.4b)
r I s s

I
s t t t

t
~ t I r

I

r e v y

~

r v i r

I
~ e+

where 0 & x ( n ), y ( n ) & 1, y, & y „&0.5, and a & 0. 5.
(ii) The Lozi map, '

(nx+1)=aI (nx)I+y ( )+n1,
y(n+1)=bx(n) . (4.5)

e.6—

a.+—
In both cases, there are just two possible forms for the

linearized tangent maps, respectively,

1 1
0 0

1 —a
0-2—

A + 0 Ar. ' 0 yb
(4.6)

for the Baker's transformation and

—a
6 0 (4.7)

for the Lozi map. We can thus try to estimate the
Lyapunov exponent by describing the dynamics of the
system in terms of a sequence of the two symbols + and

To have a measure of the degree of randomness of F
one can compute the topological entropy, ' h, lF) which
gives the estimate of the number of different trajectories
of the map F,

o l l I l I l i I t I l I I I I t I l I I t t I l t l I I I

1.5 1.55 1.6 1.65 1.7 1.75 a

FIG. 8. Numerical computation of the Lyapunov exponent
of the Lozi map (4.5) (solid line), compared with the Lyapunov
exponent of a product of the two matrices A+ and 3 given by
(4.7) extracted according to a Bernoulli distribution (dot-dashed
line) and according to a one-step Markov rule (dashed line) vs

parameter a. The dotted line is the Shannon entropy of the
one-step Markov process. The top of the vertical axis is given

by ln2, the entropy of a Bernoulian process with two states of
equal probability.
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that the Lyapunov exponent of the product of indepen-
dent random matrices cannot give an acceptable approxi-
mation of the Lyapunov exponent of the Lozi map. This
di8'erence becomes very significant for a close to the
lower threshold a = 1.51, below which there is no strange
attractor, since in this case the number of forbidden sym-
bol sequences increases, e.g. , for a = 1.51 one has
h, =0.16. To reproduce by a random process the time
correlations, we have numerically computed the transi-
tion matrix

matrix to each element of the partition. The numerical
calculation of the transition matrix 8' thus becomes
rather complicated and tedious, even if feasible. More-
over, the choice of the "good" partition can become cru-
cial. In fact, it is necessary to find a suitable partition
which gives a good description with a reasonable number
of elements so that the implementation of the Markovian
random process is not impossible.

V. CONCLUSIONS

~+, + ~+,—
8';

+
(4.10)

where 8'+ + is the probability that A+ follows A+ and
8 + is the probability that A+ follows A . It is
worth stressing that for a + 1.54 one has 8' =0.
Indeed, Fig. 8 shows that the Lyapunov exponent of the
Markovian random product is an excellent approxima-
tion of the Lyapunov exponent of the Lozi map. Note
that the Shannon entropy of the corresponding one-step
Markov process has the same qualitative shape of the
Lyapunov exponent, as found for localization inside the
band (see Fig. 1).

It is remarkable that one needs just a one-step Markov
process to obtain the main features of the deterministic
chaos exhibited by the Lozi map on the whole range of
the permitted a values. The Bernoulli trial is practically
equivalent to the Markov trial only for values of a where
the Shannon entropy is close to ln2, i.e., where the ele-
ments of the one-step transition matrix 8'; - become close
to p . Unfortunately, it is not trivial to extend this ap-
proach to systems where the tangent map does not as-
sume a finite number of possibilities, as, e.g. , the Henon
map. In these cases, one has to find a suitable partition of
the attractor of the map and assign a particular tangent

We have studied the behavior of the maximum
Lyapunov exponent of products of Markovian random
matrices as function of the memory of the process, e.g. ,
the correlation length or the Shannon entropy. Usually
the Lyapunov exponent is proportional of to the inverse
of the correlation length, as naively expected. However,
in some relevant cases an opposite behavior is observed.
The Lyapunov exponent increases with the correlation
length of the process, and eventually saturates to an
asymptotic value. These results, in general, do not de-
pend on the details of the probabilistic rule used.

We stress that it is possible to build a suitable process
such that A. =O. For example, in one-dimensional locali-
zation, one can construct a correlated random potential
with X=O for a particular value of energy. ' However,
this is a very peculiar case which disappears under slight
modifications either of the energy values or of the proba-
bility rule used to generate the potential.
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