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Quantum dissipation for the kicked particle
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The evolution of the density matrix is calculated in the Wigner representation for the periodically
kicked particle [W= —,'p + —,'Kx-'+„halt —nT )] in the presence of dissipation. The dissipation is in-

troduced via a linear coupling to a bath of harmonic oscillators, The behavior in various regions of
the parameter space for the problem is analyzed in detail and compared with the Markovian ap-

proximation. The degree of agreement with the Markovian approximation is classified. In various

regions in parameter space the model reduces to various examples that were studied in the past
(damped particle, harmonic oscillator). Most regions of the parameter space were not explored in

the past and are of potential interest. One of these regions exhibits a limit cycle.

I. INTRODUCTION

Chaotic systems were investigated extensively in recent
years. Hamiltonian systems are characterized by
diffusion in phase space while dissipative systems are
characterized by strange attractors. ' ' For both types of
systems simple distributions of initial conditions develop
complicated structures in phase space in the course of the
evolution. Introduction of external noise into such sys-
tems strongly affects their behavior. '

In quantum mechanics, dissipation results inevitably
from the coupling of the system to many degrees of free-
dom. The coupling introduces noise into the system in
addition to dissipation of energy. This noise can have a
crucial effect on quantum interference. Some aspects of
the coupling to the external bath were modeled by incom-
plete treatment of the quantum correlations.

A prototype system for the investigation of the quantal
behavior of classically chaotic systems is the periodically
kicked rotor. In the absence of any coupling to external
systems it exhibits localization in momentum that is simi-
lar to Anderson localization in disordered solids. '

External noise destroys this localization in the same way
that it is destroyed by phonons in real solids. ' ''' For this
system, however, if noise arises from the coupling to an
external bath, it leads to dissipation that finally
suppresses the diffusion in momentum. ' Hence the cou-
pling to the bath has two competing effects.

A common assumption in most of the earlier work is
that one may use the Markovian approximation for the
calculation of the time evolution of such systems, i.e., it is
assumed that one may use the same evolution law to
propagate the system iteratively over and over again. "'
Physically dissipation arises from coupling of the system
to degrees of freedom of some bath, thus the Markovian
approximation is not self-evident, and one may expect
manifestation of some memory effects.

It seems that the most elegant way to introduce dissi-
pation into a system is by the formalism of Feynman and
Vernon' which was followed by work of Cardeira and
Leggett. ' The formalism has been applied to investigate
the relaxation problem of a damped harmonic oscilla-

tor, ' the diffusion of a Brownian particle, " and the tun-
neling problem.

' The formalism has not been applied
yet, as far as we know, to time-dependent problems, in
particular, to such that are chaotic. An attractive way to
investigate the time evolution of a particle is by the
Wigner representation. ' It emerges, that for an isolated
particle which is described by a quadratic Hamiltonian,
the quantum propagator of Wigner's function is identical
to the Liouville propagator of a classical distribution in
phase space. For nonquadratic potentials the structure of
the propagator is more complicated. This was demon-
strated for a particle that is periodically kicked by a
quartic potential, which is a chaotic system.

In the present paper we will investigate the quantal be-
havior of a free particle that is periodically kicked by a
quadratic potential, in the presence of dissipation.
Without dissipation it is an exactly solvable problem. ' ''

It exhibits a transition between stable and unstable
motion. When the system is embedded in a box the
motion in the unstable regime becomes chaotic with the
Lyapunov exponent of the unbounded system. There-
fore, the solution of this problem will hopefully enable us
to make progress in the understanding of dissipation for
simple quantum systems that are chaotic in the classical
limit.

The outline of the paper is as follows: In Sec. II the
general formalism is presented in the Wigner representa-
tion. The Markovian approximation and its implications
are outlined in Sec. III ~ The formalism is applied to some

simple examples in Sec. IV, namely the damped particle
and the damped oscillator. The periodically kicked parti-
cle that is the main subject of the paper is investigated in
Sec. V. Finally, the results are summarized and discussed
in Sec. VI.

II. WIGNER REPRESENTATION
OF THE QUANTUM DISSIPATION FORMALISM

In this section the propagator of a particle that is cou-
pled to a bath of oscillators is calculated in the Wigner
representation, ' using results that were obtained by
Feynman and Vernon' and by Caldeira and Leggett. '
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We are interested in the evolution of a system whose un-
perturbed Hamiltonian is

&o= —,'p + Vo(x;r), (2.1)

where x and p are conjugate coordinates. The bath is
defined by the Hamiltonian

S,tt[R, r)—:So [x"
]—So [x ']

+ f f dr d7'2a(r r—')r (r)R {r'),
0 0

Sz[r, r]=——,
' f f drdr'P(r r'—)r(r)r(r'),

0 0

with

(2.13)

(2.14)

2

2m
(2.2)

and

a(r r')—= des —J(co) sin[co(r —r'}],
0 7T

(2.15)

The coupling of the system to the bath is assumed to be
linear, namely

P(r r')—= f de —J(co) coth( —,'Pcs) cos[co(r —r')] .
0 7T

(2. 16)
&t=x+C q (2.3) The distribution of the oscillators of the bath is chosen

such that

A=&o+At+ 8'tt . (2.4)

where C are coupling constants. The total Hamiltonian
which describes the system and the bath is C

J(co)=—g 5(co —cu ) .
2 m co

(2.17)

The state of the system whose unperturbed Hamiltonian
is (2.1) will be described by the reduced probability densi-
ty matrix

So[x]=f dr[ —,'x —Vo(x;r)] (2. 18)

The action of the unperturbed system defined by Ao is

p(R, r) =—p(x",x') = &x"lplx'&,

where we introduced the variables

(2.5)
finally, in the Wigner representation the propagator is

J(R,P;RO, PO)

R =
—,'(x"+x'), (2.6)

= f f dr droe ' "J(R,r;Ro, ro)e (2. 19)

r =x"—x' . (2.7)

In the Wigner representation the density matrix (2.5) is

p(R, P)—:f dr e ' "p(R, r) . (2.8)

Note that various functions are denoted by p„but they
will be distinguished in what follows by their arguments.

It is assumed that initially (at t =0) the density matrix
of the system and bath is factorized, namely

S~ F =S,tr+ f dr F(r)x (r),
0

(2.20)

In what follows it will be shown that S,.z determines
the classical trajectory in presence of dissipation. Feyn-
man and Vernon had shown that Sz of (2.14) can be in-

terpreted as a noise term. It may arise from introduction
of "Gaussian noise" with the correlation function
P(r —r') into the system. If S,tr is replaced by S~F, name-
ly

p, 0(x",q",x', q')=p, -„(x",x')p, (q",q'), where F(r) is a random force satisfying
(2.9)

where p, o(x",x') represents arbitrary preparation of
the system and

F(7.) =0,
F(r)F(r') =P(r —r'),

(2.21)

(2.22)

p,q(q", q')=(q" ~e ~q')/tr(e ) (2.10)

represents the bath in canonical thermal equilibriu&,
The reciprocal temperature of the bath is P. Units where
%=1 will be used in this work. Using the formalism of
Feynman and Vernon' the propagator J(R,P;RO, Po) of
the density matrix in the Wigner representation is com-
puted. Thus the evolution of the system is given by

p, (R,P)= f J(R,P;RO, PO)p, 0(RO, PO)dRodP„. (2.11)

In what follows the recipe for the calculation of the
propagator J (R,P;R o, Po ) is outlined. It is based on
work by Feynman and Vernon that was followed by Cal-
deira and Leggett. ' Note that the notations are closer to
those of the later reference (Eq. 3.18 there). The expres-
sion for the propagator is

J(R r Ro ro)= f f DR Dre ' ' ~ ', (2 12)
0 0

where

J (co) =71coe (2.23)

It will become evident that this distribution results in a
classical friction with the coefticient g. With this distri-
bution one finds

1 ~c
u(~) = —g (2.24)

then the average of the propagator over realizations of
this force is identical to (2.12). We shall see that in terms
of the Wigner representation Sz is responsible for the
diffusion of a wave packet in phase space, thus establish-
ing correspondence with the Langevin formalism.

In order to make further progress, one has to specify
the distribution (2.17) of the oscillators. Following Cal-
deira and Leggett' we will use one that is linear for fre-
quencies that are smaller than some cutoff co, and that
vanishes above this cutoff. It is convenient to introduce
an exponential cutoff
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and

P(r) =
2
C

(r, +r )

2

S,it= I dr[Rr' —rtRr f (r—)Rr +f, (r)r], (2.36)

Thus the final path-integral expression, dropping the
switching term, takes the form (2.12) with (2.13) replaced
by

1 1

P 27rP (&/p)' sinh(~r/P)
(2.25)

where r, = 1/co, . In the limit r, ~0, (2.24) takes the
form

and where P(r r') i—n (2.14) is given by (2.25).
For the explicit calculation of the propagator, one has

to find the classical path [R",r'] for which S,& is sta-
tionary. Using (2.36) the resulting equations for the clas-
sical path are

a(r) = —
rt 5(r),a

a7
(2.26)

1p(r)= — —,, r, «r«p
7T ~'

and the 1ong-time regime

(2.27)

consequently S,s is local in time. P(r) has two regimes of
behavior, the short time where

R+gR+f(r)R =f, (r),
rrtr '' +—f ('r)r =0,

with the boundary conditions

R (0)=Ro, R (t) =R

r(0)=ro, r(t)=r .

(2.37)

(2.38)

(2.39)

(2.40)

p«r2'
(2.28)

One can prove (Appendix B) that for the quadratic poten-
tial (2.35) the path integral (2.12) leads to

It satisfies the sum rule

I dr/(r) =2
0

J(R r Ro, ro)=Ne
iS (Rr R, r )—S (r r

(2 29) with S,it and Siv of the general form

(2.41)

We shall see (Sec. III) that for high temperature it
reduces to a 6 function, i.e.,

S,s.=(a&&R +a&;Ro+a&)r

+ (a &R +a, ,Ro+a, )ro, (2.42)

(P(r) =2 5(r),

while at zero temperature
2 2

TC 7
P(r) = +

( 2+ 2)2
Po(r) .

77

(2.30)

(2.31)

The function Po(r) will be studied in detail in Appendix
A.

In what follows we assume co, to be large compared to
the dynamical time scales that appear in S,z. Substitu-
tion of (2.18) and (2.24) in the general expression (2.13)
yields after integration by parts

S,it= f dt[Rr' rtRr —V(R—+ ,'r)—

Siv =
—,
'

( b/ r + 2brr 0 +b, r 0 ), (2.43)

=N exp

j
U

2bb —b
—b b 8'f

(2.44)

and N is a constant independent of (R, r;R or )0. The a' s

will be called convection coefficients and the b's will be
called diffusion coefficients. The motivation for this ter-
minology will become evident below.

The Wigner representation of the propagator (2.41) is
obtained using (2.19)

J(R,P;RO, PO)

+ V(R —
—,'r) —rIRoro], (2.32) where

where Vis the renormalized potential

1V(x;r) = Vo(x;r) ——geo, x
7T

(2.33)

The last term of (2.32) may be factored out of the propa-
gator and has the effect of operating on the initial state
with

U =aff R +af;Rp —P +af,
8 =a ~yR +a R 0 +Pp +a

(2.45)

(2.46)

The diffusion results from Sz. If the 6's vanished, the
propagator (2.44) would reduce to the form

J(R,P;RO, PO)

Jswitching(Rot Ro&R &P )

= 2m 5(P0 —(P —qR ) )6(RO R)—. (2.34)

=N6( U)5( W)

=o(P P, (RD, PD))5(R ——R, (RO, PO)), (2.47)

V(x;r) = f, (r)x + ,' f(r)x——(2.35)

In this work we confine ourselves to potentials of the
form

where R, (RO, P0) and P, ( RPD)0may be found by solving
the coupled equations U=0 and 8'=0 for R, P. In the
presence of the noise term Sz, i.e., when the b's do not
vanish, the propagator is a Gaussian with finite width
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R —Rr
=N exp

R —R

P —P,

that is peaked at R„P,. Formally, one may write the
propagator (2.44) in terms of the deviation from R„P,
J(R,P;RO, PO)

U=affR, +af;R0 —P, +af =0,
W =a,fRt +a, ,R 0+P0+ ai =0 .

(2.59)

(2.60)

Note that only a„and a depend on the force f, (r).
Now, one casts the solution (2.58) into the forms [com-
pare with (2.45)—(2.46)]

with

1
b, z =

z (affb; —2aff a,fb +a,pf ),
b;b, —b2

&t=,(b;),1

bfb; —b

1
(affb, —a,fb),

bfb, —b

and note

(2.48)

(2.49)

(2.50)

(2.51)

Identification of the coefficients enables one to express
the a's of (2.59) and (2.60) in terms of the a's of (2.58). In
particular,

PP

Q„
ifa

Qrp
(2.61)

Let us now turn to find the diffusion coefficients. One
takes the classical path (2.38) and (2.40), substitutes it in
the functional S~[r, r] to obtain S~(r, ro), and then
identifies the b's. It is convenient to write the solution of
(2.38) and (2.40) in the form

1
b, R b.p

—5 = (a ~f ) .
bfb; —b

Consider the nonphysical preparation

p, 0(R, P)=2rr5(P Po)5(R —R—o) .

(2.52)

(2.53)

Ap
cr~—:&(R —R, ) &

=

', =&(P —P, )'&

1 b;, (2.54)
Qif

AR AP —6
2

ff b. 2
'ff b+b

r f '

if if
(2.55)

If one takes a physical Gaussian preparation, operating
on it with the propagator (2.48), the resulting state is a
convolution of Gaussians, leading to a spread

Operating on this distribution with the propagator (2.48),
the resulting distribution is a Gaussian centered at R„P,
with a spread in R and P given by

r (r)= roC, (r)+ rCf (r), (2.62)

where C(r) are solutions of (2.38) satisfying the boundary
conditions

C;(0)=1, C, (t) =0,
Cf(0)=0, Cf(t)=1 .

(2.63)

(2.64)

C„(r)—=a„~c;(r) (2.70)

Thus one obtains (2.43) with the diff'usion coefficients

b, = f f drdr'P(r r')C;(r)C—, (r'), (2.65)

b= f f'drdry(r r)C—, (r)C (r), (2.66)

bf = f f dr dr'P(r r')Cf(r)—Cf(r') . (2.67)
0 0

Substituting (2.61) and (2.65)—(2.67) in the formulas (2.54)
and (2.55) for cr& and cr &, one obtains

cT'~ = f f dr dr'ctp(r r')C„(r—)C~(r'),
0 0

crt, = f f dr dr'P(r r')Ct, (r)ct (r—'),
0 0

where

o'„—= &(x —&x &)'& =o'„-+o'~,

,'=&(p —&p&)'&= ', +', , -
(2.56)

(2.57) Cp(r) =ap C; (r)+ Cf(r) . (2.71)

where o.z, o~ are defined to be o, o. for the problem
with no diffusion. In particular o. —=o.-=0 for the un-2 '2

R P
physical preparation (2.53) that was discussed previously.

Let us now elaborate on the calculation of the convec-
tion coefficients. Formally, one should take the classical
path (2.37)—(2.40) and substitute it in the functional
S,tt[R, r] to obtain S,ft(R, r;Ro, ro) and then to identify
the a s. Alternatively, exploiting the insight obtained
from the Wigner representation, one may use the follow-
ing prescription. One solves Eq. (2.37) for given initial
conditions and writes the solution in the form

Note that Ctt (r) and Ct (r) are solutions of (2.38) satisfy-
ing the boundary conditions

C~(0)=a„, C„(t)=0,
Ct, (0)=a, Ct, (t) =1 .

(2.72)

(2.73)

R+qR+f(r)R =0 (2.74)

We conclude this section noting a simplification which
emerges in cases where f (r) is symmetric in time.

Let a ( t ) be a solution of

P, aQp Qpp

t Qrr arp R0 ar
+

P0
(2.58)

with initial conditions

a (0)=0, a(0) = 1 . (2.75)
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Then, we claim that definition (2.58) of the a s implies

a, =a(t),
a =a(t) .

(2.76)

(2.77)

Furthermore, from the latter definitions of Cii (r) it
emerges that if f (t r)=—f (r), as is the case in the fol-
lowing applications, then

J(R, r;Rp, rp)= f f DR Dre
Ro ro

with

(3.4)

(3.5)

N

Sz[r, r]= g —,
' f" f dr dr'P(r —r')r(r)r(r'),

n =1 (n —i)T (n —i)T

C~(r)=a (t r) .— (2 78) and thus for the spread one gets the following formula,

For constant f (r)

Cp(r) =a(t —r)

holds as well. Substitution of (2.78) in (2.68) yields

(2.79)

N

cr (t)= g j f dr dr'P(r r')C—(r)C(r'),
(n —1)T (n —1)T

(3.6)

cr~(t)= f f drdr'P(r r')a(—r)a(r') .
0 0

(2.80)

The advantage of this formula, compared to (2.68), is that
a (r) does not depend implicitly on the elapsed time t.

III. MEMORY EFFECTS
AND THE MARKOVIAN APPROXIMATION

XJ(R i Pi Rp Pp ti tp) (3.2)

The term SN is responsible for the fact that the propaga-
tor does not satisfy (3.2). Physically this is due to the fact
that at t = t, the state of the system and bath is no longer
factorized as in (2.9).

In some problems the time interval [0, t) is divided into
subintervals of length T in a natural way, i.e., t =AT. If
one assumes that the group property holds, one obtains
the Markovian approximation. It neglects correlations
between the various subintervals. In this approximation

J(X)=J(1)e . e J(1)eJ(1), (3.3)

where J ( 1) is a propagator for a subinterval of time T,
and e denotes the convolution of (3.2). The resulting
path-integral expression for the propagator of X steps is

In this section memory effects on the propagator will
be analyzed. We start the analysis with the investigation
of S,~, which is a local functional and therefore does not
lead to any memory effects, and proceed with the analysis
of SN, which may lead to memory effects due to its nonlo-
cal character.

The action S,z is a local additive functional of the
path, i.e.,

S,tt[path; t2, t p ]=S,s[path; t 2, t, ]

+S [pttafh; t tip ],
tp & ti & t2 . (3.1)

This is a special feature of the choice J(cp) =ilco (Ohmic
dissipation). Therefore, had the term S~ been absent
from the action, the propagator would have had the
group property

J(R2)P~~Rp Pp)t2 tp)

= f fdR, dP, J(R~,P2;R, ,P, ;t2, t, )

where C(r) is either Cii or Cp of (2.70) and (2.71). It
should be compared with the exact results,

cr (t)= f f drdr'P(r r)C—( )rC( r), (3.7)
0 0

and thus it enables one to check quantitatively the validi-
ty of the Markovian approximation.

We turn now to a general discussion concerning the ex-
pected behavior of o (t) and cr (t). For this purpose we
define the following time scales: ~*, the typical time scale
over which variation in C(r) takes place; and P, the re-
ciprocal temperature of the bath. We denote by t the to-
tal time during which the evolution takes place. A gen-
eral assumption is ~* &&t; otherwise the definition of r' is
meaningless. In what follows some of the typical cases
are discussed.

At high temperatures, i.e., when P «r", P(r r') may-
be approximated by the 5 function of (2.30). Since S~ is
local in this case, the propagator satisfies the group prop-
erty (3.2). Consequently, for high temperatures (HT) the
Markovian approximation is exact and formulas (3.6) and
(3.7) take the form

(3.8)

cr'(t)lzT=+ f f drdr Pp(r r) C( r) C( 'r) .
0 0

(3.9)

As for the behavior of the Markovian approximation in
the zero-temperature case, let us assume that T &&~*;
then C(r) is approximately constant within each of the
subintervals of length T and one finds

cr (t)lzT=~21n(cp, T)f lC(r)l2dr, (3.10)

where we used (A20). Thus the Markovian approxima-
tion yields in this case a high-temperature-like behavior
with an incorrect prefactor.

Finally, let us note the cutoff dependence of the
diffusion. It is evident from (3.8) that the diffusion is
cutoff independent at high temperatures. At zero tem-

At low temperatures, i.e. , when r' «P, one has to dis-
tinguish between the short-time regime r* « t &P and
the long-time regime P & t For sho. rt times the bath may
be considered as if it was at zero temperature (ZT), be-
cause the tail of P(r) does not manifest itself. The formu-
la for the spread takes the form
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perature, Eq. (3.9) applies and the cutoff dependence
enters as an edge effect which is investigated in Appendix
A. Hence for zero temperature one finds

1
~p(t)lHT=2

271
(4.8)

[l «0) I'+
I
C (r) I'] inca, + b,o (3.1 1)

In the zero-temperature limit one finds [see (A24) and
(A27)]

'2
but the Markovian approximation yields

N

~'(r)lzT=~ g [IC((n —1)T)l'+IC(nT)l']
7T ]

Xlncu, +Acr (3.12)

(T~ (t)(zT= ~ — [ln(co, t)+in(i)t)],1

77 7l

o.2p(t) ~zT
—— ln(co, /il) .

(4.9)

(4.10)

where Ao. and Acr are cutoff-independent terms. The
spread cr ( t ) is typically dominated by the cutoff-
dependent term [note (3.10) as an extreme example]; thus
within the framework of the Markovian approximation
the cutoff dependence is much more pronounced then for
the exact results.

and

o'„=oo+ o z (t) (4.11)

These results should be compared with those of Ref. 15.
In Fig. 1 the Wigner function of a Gaussian wave

packet is shown for 1 « alt Figu. re l(a) demonstrates this
function, if S~ vanishes, while in Fig. 1(b) the diffusion is

taken into account. Note that

IV. SIMPLE EXAMPLES o =op(t), (4.12)

In this section the formalism that was presented in Sec.
II is applied to the damped particle and damped harmon-
ic oscillator. These problems were already solved in the
past. Their solution is presented here mainly in order to
demonstrate the formalism and to compare their behav-
ior to the one of the kicked particle that will be studied in
Sec. V.

B. Damped harmonic oscillator

The renormalized potential is taken to be

V(x)= —,(II x (4.13)

where the spread o o is o z of (2.56) for 1 « rjt and is illus-

trated in the figure, while asymptotically 0 p O.

A. Damped particle

For the damped particle the renormalized potential
V(x;r) of (2.33) vanishes, i.e., f (r) =f((r) =0. The
solution (2.58) is

(0)

R =Ro+ —(1—e "')Po,1

7l

P =e "'Po .

Identification of the convection coefficients yields

a„=—(1 —e "),
PP

(4.1)

(4.2)

(4.3)

Q 2
0

a =e
PP

(4.4)

The functions Cz(r) and Cp(r) are found using Eq. (2.38)
with boundary conditions (2.72) and (2.73), leading to

C„(r)=—(1—e -"'-'),
rl

( )
—e 7)(( T)

P

(4.5)

(4.6)

The spread (Tz(t) and op(t) is readily calculated using
formulas (2.68) and (2.69).

In the high-temperature limit one finds for 1 «r)t [see
(A25) and (A28)]

2

Q 2
0

and

(r' (r)~„T=2 1 (4.7)
FIG. 1. The spread in time for the damped particle. (a)

Without diffusion. (b) In the presence of diffusion. The con-
tours are of constant p. The dashed contours represent the ini-

tial preparation.
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e shall use the shshortcut) =f1 Here we s a
—2.80) to obtain results orin (2.74)—( .ffit ( )The convectioion coe c

2 (t) behaves asy/2+v
nt in t e

+ ) therefore ~&
h ~ regions

ith 7 R '1
as a constan

e in the E
for

l 1/&l '
tiaily '

h

totically~
d ows expone

0 & y ). For
(where 7' &0),

eter space (wf the parameter
2.80) reduces toeratusinh( vt),a(t)= —e (4.14)

where
2

—02 (4.15)2
V

0 ) ofthere io
'

arameter sp ace (q,
1 oneAlted in Fig. 2(a .problem are

'

li

R+ d' 'd
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In order to find the co
a on

e convection coeffi

g nalize the matrix A. Its e'
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x . Its eigenvalues satisfy

=det 3 (5.4)

A++X =tr A
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(5.5)

detA =e

trA =(1+e " ———e( 1
TJT

7l

(5.6)

(5.7)
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(d) The limit T~O, i.e., when (rtT, vT) &&1, in the re-
gions E,R, R, , and R

(e) The limit opposite to T~O, i.e., when 1 && (AT, vT),
in the regions E—and R +—.

The convection coeScients of (2.58) can be calculated.
In particular,

sinh( —,
'

rt T)a„=a (NT) =— . e " sinh(vNT)
sinh(vT)

(5.14)

for 0 & tr A, or else it should be multiplied by —
(
—1)

In the interval [(n —1)T, nT] the function a (r) is

which is different from (4.22), e.g. , we expect considerable
qualitative difference in the vicinity of M+ for t ( t *.

(c) In the marginal region M (limit cycle) a ( r )

reduces to the form

(t (r) =ct (r)~ +q(r), (5.21)

where y(r) is a periodic function of period 2T satisfying
p(nT) = —

(
—1)",and a (r)i + is defined in (5.17). In the

limit rtT «1, a (r) is piecewise linear and one may use
results (A47) and (A48} to obtain for high temperatures

'2

(5.22)

a(r)=
a„—e a„gT

1 —e

n —
1 n g(7- —(n —])Z )

a —a
T e

1 —e
7 (5.15)

and for zero temperature
T 2

32
„2T' (5.23)

where ct„:—a (n T). The spread o.~ (t) is given now by for-
mula (2.80), while in the Markovian approximation it
takes the form

while the Markovian approximation is

cr ~ (t) ~zr= ~ — 21n(co, T)
7T

(5.24)

o ~(t)= g f f drdr'P(r r')a(r)a—(r') .
(n —1)T (n —1)T

(5.16)

Using the same argumentation as in Sec. IVB, we con-
clude that in the R regions cr„(t) and cr „(t) behave
asymptotically as constants, while in the E regions of pa-
rameter space these functions grow exponentially with
time. We shall denote the time within which the asymp-
totic behavior in these regions is achieved by t*, namely
t *=

I I /Re( —rl /2+ v) i.
We now turn to a more detailed study of crR(t) and

o. ~(t), referring to the various regions (a)—(e) mentioned
above.

(a) In the marginal region M+ (damped particle) a (r)
reduces to (4.3), namely

The prefactors of these formulas are slightly modified for
general gT. One observes that qualitatively the Markovi-
an approximation predicts the right behavior, but with a
wrong prefactor. This observation is generalized in (d).

(d) In the limit T~O, and in the regions E,R, R, ,

and R „,a ( r ) reduces to

a(r}=a(r)~, (~g(r), (5.25)

crz(t)~H&=o z(t)~H&=2 ,
' f [a—(r)~, ~] dr (5.26)

for high temperatures, while for zero temperature

where (P(r) was encountered in (e). Again, we use results
(A47) and (A48) to obtain

a(r)—:a(r)i +, (5.17)
(5.27)

and thus expressions (4.7) and (4.9) for crz(t) hold. The
Markovian approximation (5.16) at zero temperature [see
(3.10)] is

omitting edge-term effects. The Markovian approxima-
tion at zero temperature is

2

cr ~(t) ~z~= — 2 ln(co, T)
rl

(5.18)
cr tt(t)~(zz= 21n(cu, T) f [a(r)~, —+] dr . (5.28)

7T T 0

The Markovian approximation gives nonphysical high-
temperature-like behavior, whereas the actual behavior is
logarithmic.

(b) In the limit T~0 at regions E+, R +, R, , and R „,
a (r) reduces to that of (4.14), namely

a(r)—=a(r)~, , +
. (5.19}

The Markovian approximation at zero temperature is
2

cr ~ ( t )
~ zr =—— 2 in( co, T) f [a ( r )

~ r 0+ ] d—r,
'lT 0

(5.20)

T T
cr~(t) =o. ~ (t)= f f dr dr'P(r r')a (r)a (r')—

0 0

+O(e " ) (5.29)

while for E—

Thus we may generalize the observation of (e) and state
that the Markovian approximation qualitatively predicts
the right behavior, but the prefactor is incorrect.

Finally, let us take the opposite limit t* ((T in the re-
gions E—and R . Here the expression (2.80) as well as
(5.16) for os(t) and cr z(t), respectively, are dominated
by a (r) within one step, i.e., for R—
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crR(t) =cr ti(t)
NT NT= f f d r d r'P( r r—')a (r)a (r')

(N —1)T (X —1)T

+Q ( AT) (5.30)

where we used again 1 &&gT, and for low temperatures

Thus in this region the Markovian approximation gives
the correct answer. Physically, the asymptotic behavior
is achieved within one step, whereas in the previous ex-
amples it is achieved over a period of the order g

' andv, which is much longer than T. Recalling that a(r)
within one step is a solution of the damped particle equa-
tion, one obtains at R —for high temperatures

cr~(t)~ rH=2~[ a(T)] T, (5.31)
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APPENDIX A

In this appendix various integrals that involve the
correlation function Pp(r —r') are calculated. Pp(r) is a
generalized Fourier transform of

qbp(cp)=m/s)i ( fcpi ~cp, ) . (Al)

Pp(cp) vanishes for co, ~ ~cp~; it is assumed that the physi-
cal results do not depend significantly on the nature of
the cutoff. The definition of Pp(r) takes the form

cr„(t)~zr= [a(T)] [ln(co, T)+1n(r)T)] . (5.32) (A2)

Note that [a(T)] is a constant. For the E — regions
(5.31) and (5.32) hold but with [a (T)] replaced by
[a (t)] . In this case note that [a (t)] grows exponential-
ly with t, thus giving the expected behavior.

VI. SUMMARY

where r, —:1 jcp„with the further definition

f Pp(r)dr —=0,
0

thus one obtains

(A3)

In this paper the evolution of the density matrix of the
kicked particle was calculated in presence of dissipation.
It was found that for high temperatures the Markovian
approximation is exact. Even at zero temperature it pre-
dicts qualitatively correct asymptotic behavior in time
whenever either an instability (E regions) or relaxation
(R regions) takes place. The behavior is qualitatively
similar to the one that is found for high temperatures.
The prefactor, however, is different and it exhibits pro-
nounced cutoff dependence. Therefore the Markovian
approximation tends to introduce unphysical dependence
on high frequencies.

When the period T is longer compared to the typical
time scales of the classical trajectories, the Markovian ap-
proximation is accurate. The reason is that the asymp-
totic behavior of the spread as function of time is
achieved within one period.

We turn now to the case where the period T is much
shorter compared to the natural time scales of the prob-
lem. The Markovian approximation may qualitatively
agree with the accurate behavior (with an incorrect
cutoff-dependent prefactor) simply because the exact
solution is proved to be high-temperature-like and thus
similar to the Markovian one. Otherwise the Markovian
approximation predicts qualitatively wrong behavior. An
extreme example is the damped particle case where it pre-
dicts linear behavior of the spread where the correct be-
havior is logarithmic in time.
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Ci( 0 )Cii = f f drdr'Pp(r r')Ci(r)Cii(r')
CO

dcocoRe Ci* co C (A5)

In particular,

C(e )C= f f drdr'ctpp(r r')C(r)C(r—')

dco 67 C co
0

(A6)

We want to gain some insight into (A6) and, in particu-
lar, we want to investigate the dependence of C(e )C on
the cutoff cp, . For this purpose we rewrite (A6) in the
form

C(e)C= f d Cr( )[5r,(e)C],
where

(A7)

and

5,(r') =5(r' r), —

5,(e )C = f P(r r')C(r')dr' .—

(A8)

(A9)

We shall investigate the behavior of 5,( e )C for some sim-
ple examples and then make some more general state-
ments.

The behavior of 5,(e )C near a discontinuity is illus-
trated using a simple example. For

C(r) =e(r) (A 10)

one finds

f Pp(r)dr= —(r, ~ t) .
0

We will be interested, in particular, in the correlation be-
tween functions C& and C&& defined as
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(Al 1)
one finds

5,(e )C=—1
7

5,(e )C = —+1 1

7- T —7-

Hence (A7) implies

If the sharp discontinuity is smeared linearly over an in-
terval [0,T], namely

(A19)

C(7 ) —7( 6( r) —6(r —T))+8(r—T),
one finds

1 T
5,(e )C= ——ln 1 ——

T 7

(A12)

(A13)

C ( e )C =2 Inc@, T,
while

f IC(r)l'dr= T .

(A20)

(A21)

Graphical illustration of (Al 1) and (A13) is given in Fig.
5. The asymptotic behavior of (A13) is C(r) = [8(r)—8(r —T)](1—e I') (A22)

For the exponentially smeared step [compare with (A12)]

one finds, for 1 &(y T,
(A 14)

1

5,(e)C= '

. T

5,(e )C =ye I"[I +In~yr~+Ein(yr)], (A23)

(A15) where I =0.58. . . is Euler's constant and Ein(z) is an
entire function. ' Note that for ~ (& T up to this constant
the behavior of (A15) with T~y ' holds:

(A24)C(e )C=ln(co, T)+ln(yT)

and

2dw= T (A25)

For the exponential function

C(r) =8(r)e
one finds

(A26)

One observes that for T ((
~
r~ the behavior is the same as

in (Al 1), but in the vicinity of the step the behavior is less
singular, and the smearing (A12) acts effectively like a
cutoff for the 1/r behavior where 1/T replaces co, .

In this work we confine ourselves to the case where
C(r) is a piecewise analytic function, namely a function
that in each interval coincides with a function that is ana-
lytic in a domain that covers the interval. For such func-
tions cutoff dependence arises only due to discontinuities.
If C(r) is discontinuous only at &=0, then, as one can see
from (Al 1) and (A7),

C(e)C=[C(0+)—C(0 )] Inca, +C, (A16)
C( e )C =ln (A27)

C(e)C = I[C(0)] +[C(t)] I Inca, +C . (A17)

where C represents cutoff-independent term. In the
present work C(r) is continuous within the interval [O, t];
thus the ~, dependence enters as an edge effect, namely

and

f" ~C(r)~'dr= '
(A28)

In what follows we list some formulas that are useful
for the calculations of this paper. For

For the function

C(r) =6(r)e I"sinh(vw)y (A29)

C(r) =8(r) —6(r—T), (A18) with v (y, integration yields

Q
GQ

and

For

1 v VC(e )C = ——arctanh2.r. y

2

C7 'd~=
2 2.

oo V

C(r) =6(r)e ~'sin(vr),

(A30)

(A31)

(A32)

one obtains

-I 0 I 2 3
I i I

4 5 6

and

1 v V
C( e )C = ——arctan

2 . y . . y
(A33)

FIG. 5. The correlation 6,( + )C near a step. The dashed line
is for the case of a sharp discontinuity (A10) and the solid line
for the linear smearing (A12). The units are of T = 1.

2

C~ 'd~=
2oo 4y @2+V2

(A34)
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We turn now to study autocorrelations of more compli-
cated functions where approximations are required. Con-
sider

2
8 QO

772
V

=) (2m —1)

'2
8

V
7j

(A46)

C(r) =f (r) sin(vr), (A35) leading to

where f (r) is slowly varying over time scales of the order
2m. /v. Using the fact that ~C(co}~ is strongly peaked at
v, one finds

C(e)C= f dcocoiC(co)i'=vf dcoiC(co)i'
0 0

=77V ( / dg —V 7- d7- .

(A36)

C(*}C=,—f [f(r)f'dr.
T Qo

Finally

f [C(r)] dr= —,
' f f (r)~ dr .

APPENDIX B

(A47)

(A48)

If sin(vr) in (A35) is replaced by a periodic function

C(r)=f (r) ao+ g a„cos(nvr)+b„sin(nvr)
n =1

it is found that
(A37)

In this appendix it is shown that if the action S,z of
(2.12) is a functional of an order that does not exceed 2,
then the propagator is given by (2.41) with

i5 S [5R 5r] —S [5r 5r]

0 0

and where

C(e)C=(ao) f(e)f+ v f—~f(r)i dr,
QO

where

(A38)
Seff(R, r; Ro, ro ):S,ff[R "—

, r "],
Sx(r, ro ) =Sx[r",r—'],

(B2)

(B3)

v= g (a„+b„)n v .
n =1

(A39)

Edge effects and interference terms were not taken into
account in the approximation (A38). In order to get an
idea of the resulting error, we calculate it for two simple
examples. For

C(r) = [8(r)—e(r t)][a + b—sin(vr)] (A40)

with 1 «vt, one finds

C(e )C =a 21nco t+b vt +a—brt
C

(A41)

The interference term in (A40) is not taken into ac-
count in the approximation (A38), which introduces an
error 0(t ). For

R (r)~5R (r) —=R (r) —R "(r),
r (r)~5r (r):r(r) r "—(r), —

(B4)

(B5)

and gets (2.41) with

N —= f'f D5RD5r

I5 S &[5R,5r] —S&[5r,5r] —2S&[r,5r]Xe (B6}

instead of N. At first glance N' appears to depend on r"
and hence on (R, r;Ro, ro). Actually, this is not the case.
Let us write (B5) in a matrix notation

while 6 S,& is the quadratic part of S,z. The classical
path [R",r"] is defined in (2.37)—(2.40). Note that N is
independent of (R, r; R o, ra ).

For the proof one introduces a change of the integra-
tion variables in (2.12),

C(r) =B(r)e 'cos(vr)

with y/v « 1, one finds

1C(e )C= —v +ln
2 2r

(A42)

(A43)

6R 5RN'= f fD5R D5r exp ——
5 A

5R+B' (B7)

the edge-effect term in (A42) is not taken into account by
approximation (A37). However, practically, such a term
may be guessed and added, since it results from a discon-
tinuity. Finally, let us apply (A38) to find the autocorre-
lation of the periodic function that is defined as

7C(r)=2 ——1
T

0

A

AR, B= (B8)

The Gaussian integral (B6) is

where A and B are infinite dimension and have the gen-
eral form

8 + cos[(2m —1)vr]
(2m —1)

(A45)

in the interval —T ~ ~ T and is continued with the
period of 2T; hence v=~/T. The Fourier representation
of C(r) is

B'A B/2

We made use of

~Rr ~rr ~Rr ~Rr

(B9)

(B10)
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