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Steady-state diffusion-controlled A + A =0 reaction in Euclidean and fractal dimensions:
Rate laws and particle self-ordering
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For diffusion-limited reactions of the type 3 + 3 ~0, we present a theory for the pair correlation
function and the macroscopic reaction law for the Euclidean dimensions d=1, 2, 3 and for self-

similar fractal structures with spectral dimension such that 1 d, 2. In any dimension we define a
length A, which is the typical size of the depletion zone around each particle. A is expressed as a
function of a fundamental size g=&pD/R, where p is the steady-state density, R the external
source rate, and D the microscopic diffusion constant. For d, ~2, we obtain the "fractal" reaction
order X =1+2/d, and a mesoscopic, density-dependent depletion zone around each particle. We

give an interpretation of the particle self-ordering and anomalous rate laws in terms of the randorn-
walk topological properties.

I. INTRODUCTION

The study of the diffusion-limited annihilation of the
type 3 + 2 ~0 is relevant in many areas of physics and
chemistry such as studies of exciton annihilation process-
es in molecular crystals, porous glasses or polymers, and
heterogeneous catalysis reaction kinetics. ' In the case
where the dimension of the substrate is not a three-
dimensional Euclidean space, numerous experimental,
theoretical, and numerical simulation studies' have
been carried out. It is currently understood that in re-
stricted geometries the reaction process may lead to non-
trivial spatial correlations of the reactants. In the
case where the system starts from an initial random dis-
tribution of particles and decays, the decay rate is found
to be anomalous for dimensions d ~ 2 (fractal sets includ-
ed). ' Also, for a steady rate of arrival of particles, in
d= 1, it was shown that the effective order of the reaction
is not the classical answer X=2, but X =3.' ' This re-
sult is due to spatial correlations of the reactants at
steady state. Moreover, from a scaling conjecture, '
it was demonstrated that X =1+d, /2 for the spectral di-
mension d, & 2 and X=2 for d, )2.

In this paper we give a unified treatment for d= 1,2,3
and fractal substrates for steady-state conditions. The
theory we propose is based on a multiparticle correlation
density analysis. We show that, in the low-density limit,
the classical multiparticle hierarchy of equations can be
truncated in a consistent way at the level of the two-
particle density function. The set of two equations result-
ing from this procedure can be solved in the low-density
limit and it captures the essential physical features of the
problem. We relate the magnitude of the self-ordering of

reactants to the properties of the random walk in the
different dimensions considered.

II. EUCLIDEAN SPACES

We consider a d-dimensional Euclidean space on which
identical particles "3"diffuse freely. Two-body annihila-
tion occurs whenever two particles come in contact at a
distance less or equal to a, the size of a particle. we as-
sume that a source produces a fixed external rate R of
particles per unit time and volume. We examine two
types of sources: hard-core exclusion or vertical annihila-
tion. A particle landing on the top of another one is ei-
ther discarded (in the hard-core exclusion case), or a pair
is annihilated for the vertical-annihilation case. In any
case, the effective rate of arrival is less than R and denot-
ed by Q. We also consider the possibility of an internal
first-order decay in conjunction with a nonvertical an-
nihilation source. The internal decay, of the type 3 ~0,
is controlled by a fixed rate A, . We explicitly consider
these three cases for their practical importance and also
because for reactions of the type 3 +B~O, the exact
definition of the source term is an essential feature con-
trolling the kinetics.

In order to derive the equations of motion for the one-
and two-particle density functions, we discretize the
medium onto a d-dimensional square lattice at the scale
of the particle size a. Then we introduce p, the local
particle density, which is unity if a particle A is present
at the site j and zero otherwise. The spatial and statisti-
cal average of this quantity is the one-particle density
p(t). The two-particle density fk is the average over
space and realizations of the quantity p p + k (the indices
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j and k are d-dimensional lattice indices). The continu-
um limit of ft, is denoted f (r, t).

The equation of motion for the overall density p(t) is

p(t)=Q(t) J„„—(t),
where Q(t) is the effective source term, which may in-
clude the internal decay contribution, and J„„(t)is the
reaction term. For the nonvertical annihilation process,
a particle attempting to land on an already occupied site
is discarded. The contribution to the derivative of p, is
R (1—p, ). In the other case (vertical annihilation), a par-
ticle landing on top of another particle reacts and annihi-
lates with this other particle. This adds —R p; to the pre-
vious contribution. In the first-order-decay case, the ex-
tra contribution to the nonvertical annihilation source
term is —kp;. After spatial and statistical averaging of
these contributions, and after going to the continuum
limit, we obtain

Q(t)=R [1—vp(t)]

with v =a " for the nonvertical-annihilation case, v =2a "
in the vertical-annihilation case, and v =a +A. /R in the
internal decay case. In any case, v is an effective excluded
volume that modifies the external rate of arrival. Since
we describe a diffusion-limited process we know that
J„„(t) is given by the Smoluchowski boundary condi-
tion

J„„(t)=2DJ dS Vf (r, t) .

After assuming a statistically isotropic distribution near
the particles, we can write the first hierarchic equation:

p(t) = Q (t) 2DQ„ad—, 3 (r, t)
Br

with Ad the solid angle in dimension d.
The second hierarchic equation is the equation of

motion for the two-particle density correlation f (r, t)
The condition of instantaneous reaction at a close contact
ensures a natural truncation at the three-particle level
and therefore

where I a /Zd is replaced by D, the diffusion constant,
and the kronecker symbol, limiting the extent of the con-
tribution to the nearest neighbors, is replaced by a6,
We also used the boundary condition f (a, t)=0 and ex-
panded f (r, t) up to the first order in a.

The F3 term of Eq. (2) is a three-particle contribution.
It can be visualized as resulting from two particles, at a
distance ~r~ ) a of a third one, reacting with each other.
In a lattice formulation, this is the average of a term

(r/Z )(p p „p „.+p p

where j +j' and j +k +k' are nearest neighbors of j and
j +k, respectively. We approximate this term by a func-
tion linear in f (r, t) with an unknown coefficient —2a(t):

F3 = —2a(t)f (r, t) .

This is a truncation scheme where only two particles are
correlated and a third one is considered to exert an aver-
age influence. An identical approach was used by
Waite' in order to evaluate short time corrections to the
classical Smoluchowski rate constant in d=3. We sys-
tematically ignore the contributions where three particles
are confined in the same microscopic volume. Thus, we
expect this approximation to be valid in the low-density
limit. Now Eq. (2) becomes

f(r, t)=2DV f (r, t) —2(a+uR)f (r, t)

Bf(r, t)
Br r=a

+2Rp(t) . (3)

The unknown parameter a is determined from the identi-
ty (1/V) f dr f (r, t)=p(t), where V is the total volume.
After integration over V of Eq. (3), we obtain

jump rate and Zd =2d is the number of nearest neigh-
bors. After averaging and in the continuum limit, we
ha~te

Bf(r, t)
Br

f(r, t) =Fz&+S +FR+F3, (2)
—(a+vR)p(t)+R . (4)

where F~ is a diffusion term, S is a source term, F2 is a
two-particle contribution, and F3 is a three-particle con-
tribution. The source term is obtained considering all the
elementary contributions to the variation of p p + J, per
unit of time. In a nonvertical-annihilation case, one has
R p (1 —p +& )+Rp, +&(1—

p ). In the vertical-anni-
hilation case, one adds to the previous term the vertical
reaction contribution —2R p p. +&. For the internal de-
cay, the extra contribution is 2ip p +&. After spatial
and statistical averaging and in the continuum limit, we
obtain

Then we compare (4) with (1), and in the thermodynamic
limit (V~ oo ) we have

R [1—vp(t)] —p(t)
p(t)

Inserting this value of o. into expression (3), we obtain the
equation of motion for f (r, t):

f(r, t)=2DV' f (r, t)—2R [1—p(t)]' f(r, t)
p(t)

S =2Rp(t) —2Ruf (r, t) . Bf(r, t)
Br 5„,+2Rp(t) .

In the lattice model, the two-particle annihilation contri-
bution Ez is nonzero if j +k is a nearest neighbor of j.
We obtain —2(I /Zd)p p +&, where I is the intrinsic

At steady state, Eq. (5) yields a differential equation
describing the distribution of particles. For r a
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Q =2Dn
Br

(8)

Inspection of Eq. (6) shows that a "natural" or "charac-
teristic" length g arises and has a value

j=v'pD /R

Furthermore, dimensional analysis shows that we can re-
place df (r)/Brl„, by p /A, where A is an effective
correlation length for the A-A pair distribution which
characterizes the influence of the particle distribution on
the reaction kinetics. It can also be interpreted as the
characteristic size of a depletion zone around each parti-
cle. In the following, we will seek to express A as a func-
tion of the length g. Moreover, it is important to note
that the particular form of the source term and the con-
sideration of an internal decay mechanism enter Eq. (6)
only indirectly in the effective rate constant Q. There-
fore, these details do not influence the bimolecular reac-
tion kinetics. This result contradicts that of Suna, ' de-
rived for the reaction kinetics of excitons where the decay
mechanism is found to control the bimolecular reaction
rate.

From a Fourier transformation, the solution of Eq. (6)

4z(qa)
2 Q dq e ~'qr

ad —
1 2+$2

where Nd(qa) is the Fourier transform of 6„
For d= 1, we have Q, =2, 4, (qa) =2cosqa, and we ob-

tain for r ~ a

2 Qk —(r —a)/g 1+e
J ir)=p — e

4D 2

5,
V' f (r) —f (r) — + =0 .

pD 2D ~da ' D

This is the central equation that we solve in various di-
mensions, with the condition for r ~ a:

f (r)=f (a)=0 .

Also we must satisfy the Smoluchowski boundary condi-
tion at steady state:

agrees with computer simulations. If we compare the
prefactor 16 we found to the exact number 20.64, ob-
tained in the exact calculation, we have a numerical
agreement of approximately 25%. The anomalous
effective exponent is also a result obtained by Peacock-
Lopez and Keizer, ' for the reaction A + A ~A +P, us-
ing an approximate theory based on fluctuation-
dissipation theorem. It is also noted that this length g is
proportional to the maximum of the nearest-neighbor dis-
tance distribution.

For d=2, we have Q2=2vra and 42(aq) =2naJo(aq),
where Jo(aq) is a Bessel function of the first kind. '

Thus, f (r) (Ref. 16) is

f (r)=p Io—(a/g)KO(r/g),4~D

where Io(z) and Ko(z) are modified Bessel functions. '~

Condition (8) requires that a/g « 1 and, in this limit, we
have for r +a

Ko(r /g)

Ko(a /g)

and the macroscopic law

4m.D
Q =R (1—vp)= p

Co + in//a
4vrD DP'C+1 pD

0

(12)

with C=0.577 the Euler constant, Co=ln2 —C=0.116,
and

A=CO —in//a . (13)

This macroscopic law is totally nonclassical and cannot
be cast in the form of an effective power law.

For d=3, we have 03=4na and C&3(aq)
4vra sinqa—/q, and f (r) is

2 Q e ' sinh(a /g)r =p- 8mDr a ./g
To satisfy the boundary conditions (8), we obtain for
a /g « 1 the expression

r

ae (r —a)/gf (r)=p 1—
r

Condition (8) imposes, for the theory to be consistent,
that a/g«1, and in this limiting case, considering the
first condition (7), we obtain

and the macroscopic reaction law

Q =R (1—Pp) =8~Dap (14)

which is the classical Smoluchowski result' ' and the
depletion zone is of the order of A =a.f(r)=p'(1 —e '" ' ~)

The reaction law is Q =(4D /g)p, which implies that

(10)

The effective reaction law is

Q =(1—vp)= p
16D

1 —Up

We have a nonclassical result and, in the low-density lim-
it, an effective exponent of the density X=3. The ex-
ponent of 3 was also obtained exactly by Racz and it

III. EXTENSION TO FRACTAL SETS

For a self-similar fractal structure characterized by the
geometrical fractal dimension df and the spectral dimen-
sion d„' we propose a theory generalizing the previ-
ous results. For a random walk on a self-similar fractal
structure, the distribution of particles in the fractal is
highly discontinuous (and this at every length scale), but
the envelope c(r, t) of this distribution is smooth and is a
solution of the generalized Fick equation '.
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c(r, t)=K, r c(r, t) .
a. . . a

ar

0 is the anomalous diffusion exponent defined by the rela-
tion 0=2(dfld, —1). The constant K depends on the
geometry of each fractal set and is related to the scale-
dependent diffusion constant D(r) through the relation-
ship D (r) =Kr . We note that this result is obtained
after averaging on a collection of identical fractal sets
with different orientations in order to render the problem
essentially isotropic. Also, it is important to realize that
an implicit cut off was performed in the fractal at the size
of the particles and this procedure defines a volume for
the fractal embedded in the Euclidean space. Therefore,
all the densities we define are normalized to this "fractal
volume. " For example, c (r, t)duf(r) represents the prob-
ability that a particle is on the fractal in a small volume
dr around r, where duf(r) is the volume of the fractal in
dr. We transpose Eq. (6) into the fractal domain using
the generalized Fick equation to express the diffusion
operator acting on the envelope of the two-particle densi-
ty function [denoted f(r, t)]. We note that a similar
method using the generalized Fick equation was success-
fully used in the case of a decay of particles from a ran-
dom initial distribution, in order to explain the anoma-
lous behavior of the decay exponent. Therefore, at
steady state, we seek to solve the following equation for
r ~a:

v=1 — =1-df
2+0

d,
2

' 9/2
1 8 . sy=+j =+l

1+0/2 a df

df /d —1

a

a
1 —V p

In the limit where a/g «1

The particular Bessel function that fits the boundary con-
ditions is the modified Bessel function' K,(z). We notice
that this result extends to the particular cases df =d, = 1

and also df =d, =2. Using the boundary condition

g (a) =p, we finally obtain
' K,((a /pg)(r/a)~)

K (a/pg)

Since K (z) = v'(vr/2z)e ' when z~ ~, the limit of f (r)
for r ~ ~ is p . To find the macroscopic law of reaction
and the depletion length A, we calculate

2

af(r)/ar~„, :— . We obtain
A

d —
1
—O9 RK r f f(r) — f(r)+Rp-' Br Br P A =aC„(2P)

a

2v

and Xd is the reaction surface. For r ~ a,ff ( r) =f (a ) =0, and the Smoluchowski boundary condi-
tion is

af(r, t)
g =La Xd

Br

2

=Ka Xd'f A

We define g(r)=p f (r) and then, fo—r r ) a and
g (a) =p, we solve the differential equation

1 0 d —1 —0 RK r f g(r) ——g(r)=0 .' hr Br p
(16)

Equation (16) is transformed into

d —1 —0
g "(z)+ g'(z) — ~ z g(z)=0

5„, (15)
a df

where the microscopic diffusion constant

D =D (a) =Ka

or, as a function of the fractal and spectral dimensions
(for 1&d, &2),

d.
A =aC1

S

A priori, C„depends also on g and P. For large values of
1/2 —d,g/a such that g/a ) ) e ', coefficient C has the

constant limiting expression

1.(v) I (1 —d, /2)
C =

I (1 —v) I (d, /2)

For the intermediate values of g/a, or more precisely, for
1/2 —d,

1 «g/a «e ', C„has the limiting expression

dfg
C, g q2= —Co+In +O(v)

S sa

Therefore, in the limit where v=O or d, =2, we recover
the result for the Euclidean dimension d=2.

From this result we obtain the reaction law

where z =rig, g'=&pD/R. Solutions of Eq. (17) are'
g (z) =z~"Z„()z~), where Z (z) is a Bessel function and
d, ~2 aC1

2DXd Pf
d —

1

S

2df

(19)

00
2 d,

'
It is important to notice that, as in Euclidean dimensions,
the condition a/g«1 is essential for the differential
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equation (15) to satisfy the 6-function requirement at
r =a. In the low-density limit, which is actual1y the same
as the limit a /$~0, one obtains an eff'ective reaction law
R =p, with the effective order of reaction

X =1+d, /2 and d, (2 . (20)

This relation was found previously by Anacker, Par-
son, and Kopelman as the result of a conjecture on the
time dependence of the effective rate constant. This ap-
proach was based on considerations involving the behav-
ior of a single random walker. The structure of this ex-
ponent was verified by simulations on various self-similar
fractal structures such as Sierpinski gaskets, Sierpinski
carpets, and percolation clusters, ' and was also found
experimentally. We note that v is the same as the
heterogeneity exponent h.

IV. RANDOM WALKS AND SELF-ORDERING

a S (21)

The ratio S,/V, is called the efticiency of the random
walk (analogous to the efficiency defined by Sz/Vz in
Ref. 23) and when r goes to infinity, it converges to the
escape probability. Relation (21) links the magnitude of
the multiparticle self-ordering to the compactness of the
random walk. " The less e%cient the random walker is in
the exploration of its environment, the more the correla-
tion grows in the steady state. It is worth noticing that,
for the time-dependent or transient problem, Anacker
et al. conjectured that the effective rate constant scales

The results of the previous sections can be put in an in-
teresting way, if we link the self-ordering of the system
(multiparticle effect) to the fundamental properties of a
single random walker. Note first that ~=p/R, is the typ-
ical lifetime of the particles because, for any volume V,
large enough to contain several correlation lengths A, the
number of particles arriving during a time r ( = VR r), is
equal to the number of particles originally present in the
system ( =p V). Since we are at steady state, this number
must remain constant. Thus, ~ is the typical time of
renewal of the population (or the typical individual life-
time). From Eq. (9), r-& . We call V~, the total volume
that a particle sweeps out during a random walk of N
steps. In a continuum description we have N =—I r and
V, =o.aI ~, where cr is the cross section of a particle, a
the typical jump distance, and I the typical rate of jump.
Therefore, V&=IV (or V, —r). S~ is the number of dis-
tinct sites visited. ' ' We recall that for 1 & d, (2,

d, /2
S,~. =N '; for d=2, Sz=N/lnN, and for Euclidean lat-
tices, for d & 2, Sz =N. Thus, in any of the considered di-
mensions,

like dS, /dt, which is equivalent to having a time-
dependent correlation length A(t) —(dS, /dt)

V. CONCLUSIONS

From a simple theory based on a multiparticle hierar-
chy formalism, we gave here results consistent, in the
low-density limit, with an exact theory (in d= 1), conjec-
tures and computer simulations, and some experi-
rnents. ' The theory is applied to Euclidean dimensions
d=1,2,3 and is extended to self-similar fractal sets with
spectral dimension d, such that 1 ~ d, ~ 2. We derive the
pair correlation function and the macroscopic law of re-
action. We find a length A, appearing in the macroscopic
reaction law, which is the typical size of the depletion
zone around each particle. A is expressed [Eqs. (10), (13),
and (18)] as a function of a fundamental characteristic
size /=i/pD/R, where p is the steady-state density, R
the external source rate, and D the microscopic diffusion
constant. Also, g is related to the characteristic lifetime
of the particles: r =p/R. We find in the low-density lim-
it (or a /g « 1) the correlation length A and the eff'ective
order of reaction X [Eqs. (11), (12), (19), and (20)].

1/2 —Ej,For 1 &d, &2 and for g/a ))e
1 (1 —d, /2)

1 (d, /2) df

L =1+d, /2,
for d =d, =2:

A =a [Co+in(g/a)]

no effective order of reaction,

for d =d, =3:
A=a, X=2 .

We can summarize these results as A/a = V, /S„where
V, =~ is the total volume swept out by the random walk-
er and S is the volume effectively explored.

In contrast to the 3 +B~0 problem and to other
theoretical results, ' we find at low density that hard-core
exclusion in the source and reaction mechanisms such as
vertical annihilation or first-order decay have no effect on
the bimolecular reaction kinetics. Both these processes
act as an effective exclusion volume modifying the
effective rate of arrival of the particles.
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