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Collective resonance fluorescence in a squeezed vacuum
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The resonance fluorescence of a small sample of N two-level atoms driven by a strong resonant
coherent field and damped by a squeezed vacuum is examined. The steady-state spectrum is shown

to be dramatically dependent on the relative phase of the pumping field and on the squeezed-
vacuum field in both the strong- and weak-squeezing limits.

I. INTRODUCTION

The 1980's witnessed an intense search for squeezed
states of the electromagnetic field (for a review see Refs. 1

and 2). Broadband squeezed light has been generated us-
ing four-wave mixing in atomic vapors and fibers, opti-
cal parametric oscillation, and optical bistability.

Having known the possibilities of obtaining squeezed
fields it is quite natural to examine the interaction of such
fields with matter. In general, the interaction can lead to
quantitatively and qualitatively new phenomena. The
phenomena of collapses and revivals for a single two- or
three-leve1 atom interacting with squeezed light have
been discussed by Milburn and Abdel-Hafez et al. , re-
spectively. The radiative decay of an atom interacting
with a broadband squeezed-vacuum field has been con-
sidered by Gardiner. Carmichael et al. ' have examined
resonance fluorescence from an atom damped by a
squeezed vacuum. They have shown striking differences
from the spectrum of ordinary resonance fluorescence in
both the weak- and strong-driving-field limits. Quite re-
cently, Ekert and Rzyzewski" have shown that the
squeezed-vacuum field is the most efficient in the produc-
tion of the second-harmonic light.

In this paper we analyze the collective resonance
fluorescence from X strongly driven two-level atoms
which are damped by a squeezed vacuum. Interatomic
interactions are neglected. The steady-state fluorescent
spectrum is calculated.

II. MASTER EQUATION

We consider a system of 1V two-level atoms concentrat-
ed in a region small compared to the wavelength of all
relevant radiation modes and interacting with a classical
coherent driving field of frequency col and with a quan-
tized multimode radiation field.

In the electric dipole and rotating-wave approxima-
tions the interaction picture Hamiltonian of the system
under consideration reads

H =
—,'5(J22 —J]])+n(e J2, +e J]2)+H„d

+(J21 +J]2~

the coherent driving field. H„d denotes the free Hamil-
tonian of the quantized radiation field and I" and I" are
operators corresponding to the positive- and negative-
frequency components of this field, respectively. J;,
(i,j =1,2) are the collective angular momenta of the
atoms, obeying the commutation relation

[Jij ~ kl ] il~jk kj ~il

In the usual treatment of resonance fluorescence the
quantized radiation field is assumed to be in the normal-
vacuum state. Following the considerations presented in
Refs. 9, 10, and 12 we assume here that the quantized ra-
diation field is in a squeezed-vacuum state and the band-
width of the squeezing is sufficiently broad. Hence the
squeezed vacuum appears as 5-correlated squeezed white
noise to the atoms and correlation functions for the free
parts I t, , and I t„, (the noise operators) of the operators
I and I take the form'

( I ~„,(t)I „,(t') ) =yPo(t —t'),
( I „„(t)1,'„,(t') ) =y(P + I )&(t t'), —

(3)
(I f„,(t)1 t„„(t'))

=plQle�
"li(t —t'),

(I t„„(t)1„„„(t'))=y~Q~e 5(t —t') .

y is the single-atom decay rate for spontaneous emission
into the unsqueezed vacuum. The parameters P and
Q = ~Q~exp(ig], ) characterize the squeezing and

~Q~ ~P(P+1), where the equality takes place for a
minimum-uncertainty squeezed state.

Using Eqs. (1) and (3) and making the unitary transfor-
mation

U =exp[ i pL ( J22 —J„)/2 ]

one finds a master equation for the reduced density
operator p of the atomic system in the form'

= 1 [p, H, „h ]+ (P + 1 )(J]2pJ21 J21J]2p—+H. c. )
r

Bt 2

+ P (J2,pJ,2
—J]2J2]p+ H. c. )

2

~Q~e 'k(J2]pJ2] —J22, p+H. c. )

6=co&& —coI is the detuning of the frequency ~L from the
atomic transition frequency co2]. 0 exp(i QL ) =pE, where

p is the atomic dipole moment and E is the amplitude of ~Q~e'(J]2pJ» —J]2p+H. c. ) =L, . (4)
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Here $=2PL —P~ is the relative phase of the driving field
and the squeezed-vacuum field. In what follows we re-
strict ourselves to the case of exact resonance (5=0);
then H„„=Q( J,~ +J~, ).

It is convenient to use the Schwinger representation'
for the collective atomic operators:

where the operators a; and a; are treated as the annihila-
tion and creation operators for the atoms being populated
in the level li ) and obey the boson commutation relation
[a, ,a, ]=5,,

The canonical transformation

normal-vacuum form, i.e., they are independent of the
parameters P, l Ql, and P v of the squeezed vacuum.

III. STEADY-STATE SPECTRUM

With the help of the master equation (8) we derive the
following equations of motion for the averages (( )) of
the atomic observables:

&R, &
= y(P—+-,'+ lglcosy)&R, &,

d
dt

d (R,~ ) = 2—i Q(R, ~ )
dt

a, =(c, +cz)/&2,

az =(c2 —c, )/+2,
(6)

(3P+—', Iglcos&)& R, 2 &, (10)

d
(R2, ) =2iQ(R2, ) —~(3P+—', —lglcosg)(Rz, ) .

splits the Liouville operator L in the master equation (4)
into two parts, one containing the slowly varying terms
and the other containing the terms oscillating at frequen-
cies 2A and 4A. In the strong-driving-field limit the sec-
ular approximation' is justified. Then one can retain
only the slowly varying part of the Liouville operator and
the master equation (4) transforms to the following one:

Bp 2—
i3t

=i Q[p, R3]+ A (R3pR3 —R 3p+H. c. )

+B(R»pR»+R„pR» R„R„p—R»R»p—
+H. c. ) .

When the squeezing is weak the secular approximation is
justified at the same condition which holds in ordinary
resonance Auorescence, i.e., for B&&y. ' In turn, for a
highly squeezed vacuum (P )) 1) this approximation re-
quires much stronger driving fields satisfying the inequal-
ity 0))yP. In (7),

(P + —,
' —

l gl cosP ),

8 =~(P+ —,'+ lglcosg),

R3 =R22 —R]]

p= TpT

where T is the unitary operator representing the dressing
transformation (6). R; =c, c are the collective operators
for the "dressed" atoms and satisfy the same commuta-
tion relation (2) as the operators J; .

The master equation (7) has the exact stationary solu-
tion

The above equations can easily be integrated.
In what follows, the steady-state averages will be

denoted by ( ), . Using the quantum regression
theorem' and the solutions of Eqs. (10) we get the two-
time atomic correlation function (J~,(r)J,2), in the
form
( J2~(~)J~2 ),= —,'(R 3 )

where

Po= y(P + —,'+ l glcosg),

P, = +(3P +—', —
l Q cosP) .

(12)

The averages appearing in (11) may be expressed by the
statistical moments (R t& ), which, in turn, from (9) are

(Rt, ), =(N+1) ' g nf,
n1=0

(13)

The steady-state spectrum of the Auorescent light is
proportional to the Fourier transform of the correlation
function (11)and reads

S(co)=—,'Re J e (J2, (r)J,2),d~
0

where n, is the eigenvalue of R» in the eigenstate ln, ).
After simple algebra we find

(R 3 ), =2(R2, R, ~ ), =2(R,~R2, ), =N(N +2)/3 .

(14)

p, =(N+I)-' g ln, )(n, l,
n, ——0

where
l n, ) is an eigenstate of the operators R ~, and

R
& &

+R 22. The analogous solution for collective reso-
nance fluorescence of normal radiatively damped atoms
has been given earlier. ' ' As a consequence, in the
strong-driving-field limit all stationary one-time averages
of the atomic and field observables preserve their

N(N+2)
12

pp

(co —coL) +po

1 1+—
2 (co —

coL
—2Q) +pi

1+
(co —col +20) +p&

(15)



646 T. QUANG, M. KOZIEROWSKI, AND L. H. LAN 39

IV. DISCUSSION

P, (P, O) =—(3P —&P(P +1)+—', ),

P,(p, ~)=y(P &P(P+—1)+-,'), (16)

P, (P, ~)=—(3P+&P(p+I)+ —', ) .

Obviously, for P =0 from (16) we find the well-known
linewidths of the Mollow triplet in the case of ordinary
fluorescence: Po=y/2, P, =3y/4.

For a highly squeezed (P »1) minimum-uncertainty
state from (16) we arrive at

P,(P, O)=2yp, P, (P,O)=yp,

Po(p, tr) =y/8P, Pt(p, rr)=2yP,
(17)

in full agreement with the results obtained by Carmichael
et al. ' for a single atom.

The linewidths of the sidebands will then be always
broadened in comparison with those for the normal vacu-
um. In turn, the central line may have either a subnatur-

Irrespective of whether the vacuum modes are
squeezed or unsqueezed the incoherent steady-state
fluorescent spectrum in the strong-driving-field limit con-
tains three Lorentzians centered at co=coL, coL+20. The
central line has the spectral width Po, while the sidebands
have the linewidths f3&. From (11) or (15) it is evident
that the integrated intensity under the central peak is al-
ways equal to the sum of the integrated intensities under
the two sidebands and they are proportional to N(N +2).
The widths and heights of the spectral lines depend on
the parameters characterizing the squeezed vacuum and
are phase-sensitive quantities. The quantitative analysis
of the spectrum is particularly clear for minimum-
uncertainty squeezing. Then P(P+1)=~Q~ and for the
relative phases P =0 and P =nfrom. (12) we have

13,(p, O) =y(p+&p(p+1)+-,'),

al (Po (y/2) or supernatural (Po& y/2) linewidth de-
pending on the phase P.

In order for us to view the single-atom fluorescent
spectrum for P )) 1 there must exist a small "window" of
unsqueezed modes. ' In the case of collective resonance
fluorescence from a large number of atoms (N & P »1)
the intensities of the spectral lines, proportional to N,
will dominate over the squeezed noise. Hence in this case
such a window is unnecessary.

In the weak-squeezing limit (P ((I) from (16) we get
approximately

P,(P, O)=y(&P+,'), 13,(P, O)= y( —vP+ ),
(18)

P,( P~)= y( &P+—-,'), P, (P,~)= (&p+—3) .

It is readily seen that now not only the central line but
also the sidebands may have either subnatural or super-
natural linewidth depending on P. The function P, (P, O)

(16) reaches its minimal value &2y/2 for P = —
—,'+

3&2/8. In general, Pt(P, O) is less than 3y/4 within the
range PH(0, —,'). So, in the case of weak squeezing it is
possible to get for the sidebands subnatural linewidths;
however, the narrowing will be rather small.

The secular approximation does not include the small
additional sidebands in collective resonance fluores-
ence. ' Then on resonance ordinary cooperative17, 18

fluorescence reminds us of the single-atom case. ' Hence
the results obtained here for the shape of the steady-state
spectrum of collective fluorescence in a squeezed vacuum
could be cautiously deduced from those derived by Car-
michael et al. ' for a single atom damped just by a
squeezed vacuum. Here, in fact, we have proved that.
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