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It has been shown that many enzymes should be capable of utilizing free energy supplied by exter-
nal time-dependent perturbations to drive the chemical or transport reactions they catalyze away
from equilibrium. This property is analyzed in terms of thermodynamic and kinetic theory. An ex-
plicit demonstration using irreversible thermodynamics, through second order, is given for the case
of a simple model enzyme in the presence of a periodic external perturbation. Three reasons for an
enzyme to drive a reaction in a nonstationary environment may be identified: the average values of
the forces, the root mean square of the external time-dependent perturbation, and the frequency-
dependent correlation between the applied perturbation and the enzyme response. The extent to
which the output reaction responds to any of these is governed by the kinetic constants of the en-

zyme. Even if the catalyzed reaction (e.g. , the transport of an uncharged substance across a mem-

brane) is in and of itself thermodynamically independent of the periodic perturbation (e.g. , an ac
electric field), the enzyme is competent to mediate free-energy exchange between the two. This orig-
inates from the fact that at high frequencies, the enzyme response lags behind the applied perturba-
tion. It is sufficient that the enzyme interact with the applied field, and that the catalytic rate con-
stants display the kinetic asymmetry typical of many, and particularly transport, enzymes. These
results highlight the role of enzymes as free-energy converters in addition to that of biological cata-
lysts.

INTRODUCTION

Random fluctuation and periodic oscillation of physi-
cal and chemical parameters are inherent to the environ-
ment of many proteins, particularly those embedded
within the membranes of living cells. ' We will consid-
er, from a theoretical standpoint, how such fluctuations
may influence the catalytic properties of enzymes.

Current theories used to model the effects of environ-
mental nonstationarity on dynamic systems typically
make a number of assumptions. Most of these are not
necessarily reasonable for systems that are away from
equilibrium, whereas biological processes of interest tend
to be displaced from equilibrium by quite a few RT
units, where R is the gas constant and T is the Kelvin
temperature. Fluctuations resulting from exergonic (dis-
sipative) processes may be arbitrarily large and do not
necessarily scale with the inverse of the square root of the
volume of the system. Additionally, there is no guarantee
that the correlation time of the fluctuation is much
different than the relaxation time of the chemical system,
and the response of the system may be intimately cross
correlated with the fluctuating parameter.

One parameter particularly relavent for membrane en-
zymes is the membrane potential b.g, which is typically

between 50 and 250 mV. ' The electric field strength
effective for processes occurring within the membrane is
of the order 10 V/m. The effect of a static b,g on en-

zyme kinetics and thermodynamics has been well ela-
borated. However, despite many experimental observa-
tions of dramatic oscillations and fluctuations of b, P (+
40 mV) (Refs. 9 and 10), a similar, general theory for the
effects of a dynamic field on enzyme catalysis has not
been given.

It has been recently demonstrated theoretically that os-
cillating '" or stochastic fields' ' can cause an enzyme
to drive a reaction away from equilibrium. The main re-
quirements were that some enzyme conformational tran-
sitions be influenced by the field and that the fluctuations
in the field be driven by a free-energy-dissipating process.
It has also been demonstrated that enzymes should be
able to drive reactions against their average free-energy
differences in response to concentration fluctuations in
small systems. ' As a result of these theoretical con-
siderations, enzymes should be held capable of transduc-
ing free energy from external fluctuations in their envi-
ronment. This finding is particularly timely since ender-
gonic reactions have been observed in the apparent
abscence of a sufficient stationary free-energy source in a
number of biological systems. ' '

Other workers have focused on how oscillations may
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influence dissipation and efficiency in free-energy
transduction' ' and on how sensitivity and stability of
signalling in biological systems may be improved by auto-
nomous oscillation of a chemical messenger. ' '

Horsthemke and Lefevre have treated the subject of
noise-induced transitions in a wide variety of systems, '

including those of biological interest.
Enzyme catalysis is coupled to the environment by in-

teractions between the catalytic transitions and thermo-
dynamic parameters such as temperature, pressure, and
local electric field strength. Much previous work has
stressed only the influence of the environment on the free
energy of the output (catalyzed) reaction. In the present
paper, the effects of environmental parameters on the
conformational transitions intrinsic to the protein are
also emphasized. It is this possibility of such an interac-
tion which is one important factor distinguishing en-
zymes from small-molecule catalysts. The treatment
given applies, in principle, to any catalyst even in a
homogeneous solution. However, the nonlinear terms
giving rise to free-energy transduction would typically be
negligibly small. It is the conformational Aexibility of
proteins and the positioning of certain enzymes within
the bilayer where, e.g. , local electric-field-strength fluc-
tuations may be 10 V/m, that imply the possibly
significant expression of this fundamental nonlinearity.

We present a detailed analysis of the interaction be-
tween a simple enzyme system and externally driven fluc-
tuations. There are three major points we wish to em-
phasize. First, dynamically varying parameters such as
concentrations of substrate, temperature, pressure, and
electric field strength may influence enzyme catalysis in
ways significantly different from what would be predicted
solely on the basis of their time-averaged values. Second,
external, or free-energy driven fluctuations, are qualita-
tively different from those which might arise in a system
at equilibrium and do, in fact, "contain" free energy.
The third theme is that many enzymes are capable of
transducing this inflowing energy into a form usable in
metabolism.

To develop these ideas, we first will describe a simple
two-state enzyme. Then we will consider the effect of
changing environmental parameters such as pressure,
temperature, substrate concentrations, and electric field
strength on the thermodynamic and kinetic properties of
this enzyme. Using irreversible thermodynamic and ki-
netic theory, the inAuence of environmental fluctuations
on the dynamics of a (pseudo-) first-order process are in-
vestigated. Finally, analytical results calculated for the
catalytic flux, free-energy dissipation, and thermodynam-
ic efficiency of free-energy transduction of our model en-
zyme in the presence of various types of environmental
fluctuations are given and discussed.

To clarify the major issue in which we are interested,
let us imagine an elementary interconversion between two
chemicals (we will designate this as the output reaction)
which does not involve any net movement of electric
charge, or change in dipole moment between the two
reactants. Thus an external electric field is not coupled
to this process, and the imposition of a field of arbitrary
direction and magnitude will change neither the sign nor

magnitude of the AG of reaction. If, however, an enzyme
which catalyzes the interconversion between substrate
and product has conformational transitions within its
catalytic cycle which do involve intramolecular charge
transfer or change in dipole moment, the enzyme can ab-
sorb energy from an alternating electric field. It has been
shown computationally that under certain circumstances
part of this energy may be converted to do work on the
electrically silent output reaction by driving it away from
equilibrium. In this paper we illustrate in the context of
an analytically solvable model the fundamental thermo-
dynamic and kinetic principles involved in this free-
energy transduction.

The concepts presented may prove useful in under-
standing how a biological organism makes use of energy-
driven fluctuations for the purpose of signal and free-
energy transduction, and how "noise" may be a source of
order rather than disorder.

MODELS AND CALCULATIONS

First-order reaction

In terms of mathematical description, the simplest pos-
sible reversible biochemical reaction is a (pseudo-) first-
order transition involving a protein conformational
change:

EL,

EA- (3)

Here, both the top and bottom transition pathways, with
rate constants denoted by a's and P's, respectively, may
be taken as short-hand notation representing a series of
elementary transitions, where the concentrations of the
intermediates not explicitly shown are assumed to be

where the rate coefficients for the forward (kf) and re-
verse (k„) processes depend on the instantaneous, local,
thermodynamic parameters such as p, T, and e (electric
field strength). We have included in the description the
binding of a single molecule of ligand L in the transition.
To allow for pseudo-first-order behavior the concentra-
tion of L is taken to be externally controlled, along with
the other, thermodynamic parameters. The differential
equation describing the evolution of the system in terms
of the normalized concentration (state probability) of E,
represented by E, is

dE
(kfL +k„)E+—k„.

dt

We have taken advantage of the fact that E+E *L= 1.
Such a protein conformational transition may be used

to describe a simplified catalytic cycle of an enzyme (e.g. ,
see Appendix D) summarized by
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smaH and stationary. The overall cyclic pathway de-
scribes the catalytic interconversion between substrate A
and product B (i.e., the "output reaction"). The kinetic
equation for E is

dE = —(af A+a„+PfB+P„)E+(a„+P„).
dt

(4)

J +Jp — =0 .dE
dt

(6)

We define the flux Jzs =(J —J&)/2, which reduces to
the usual definition for the net flux of A ~B over any
time period in which the average (dE/dt ) =0. We will
show that parametric fluctuations may lead to the reac-
tion A ~B being driven away from its equilibrium, and
we will perform a kinetic and thermodynamic analysis of
this free-energy transduction.

We can also view this in terms of an external fluctuat-
ing or oscillating parameter causing a breakdown in de-
tailed balance for the enzyme. The derivations could be
done for the three-state triangle reaction discussed by On-
sager, except in this case, there would be two equations
necessary to describe the time evolution of the chemical
concentrations relevant for the reaction, and an analytic
solution to the system of differential equations would be
more complicated. At true equilibrium for the system of
Eq. (3), the transitions from left to right along the top (a)
path would be identically counterbalanced by transitions
from right to left along the a path, and the same would
be true for the bottom (P) path. If such a cyclic system is

For simplicity, af and Pf represent pseudo-first-order
rate coefficients into which reference equilibrium activi-
ties (concentrations) of A and B have been subsumed and
A and B have been normalized to these reference values
(i.e., af =k f A, „&, where k f is the "true" second-
order rate coefficient, and A multiplied by I'A, „&] is the
actual instantaneous concentration of A). Detailed bal-
ance requires that af /a„=Pf /P„, but the reference equi-
librium state may always be chosen such that af =1, sim-

plifying subsequent calculations.
Since A, B, and E may be dependent variables, Eq. (4)

is fundamentally a nonlinear differential equation, the
analytical solution of which is quite complicated, al-
though numerical integration can be carried out. '

However, A and B are often either controlled externally,
or changes in their activities due to the reaction shown in
Eq. (3) are negligible: The number density of enzyme
molecules is often much smaller than that of substrates
and products. ' In this case, A and B may be treated
as parameters rather than dependent variables, reaction
(3) becomes a pseudo-first-order process, and Eq. (4) is a
linear differential equation in the single variable E. af,
a„, Pf, f3„, A, and B may, because of external environ-
mental fluctuations, depend on time.

The instantaneous rate of binding of A and B to the
enzyme, J and J&, respectively, may be written

J =(af A+a„)E—a„,
Jp = (pfB+p„)E—p„

and by conservation of mass,

brought from equilibrium to a steady state by the input of
a static energy source (e.g. , for an enzyme this could be
done by externally enforcing a constant nonequilibrium
distribution of product and substrate), the system will be-
gin to cycle through its states in either a clockwise or
counterclockwise direction, depending on the external
force. This would imply the breakdown of detailed bal-
ance. In a three-or-more-state kinetic system, where each
state may have a different property with respect to some
physical property (such as fluorescence), this breakdown
could be revealed by observing that fluctuations in that
property would be asymmetric with respect to time rever-
sal. In Eq. (3), having A in excess of its equilibrium
concentration will lead to clockwise, and excess B to
counterclockwise, cycling. We will demonstrate that the
application of external time-dependent perturbations, ei-
ther random (noisy) or regularly oscillating will also im-
part a tendency for the system to undergo cyclic flux
through its states and that the direction of this cycling is
determined solely by the kinetic coeScients of the sys-
tem. Furthermore, if two forces, static or dynamic, are
acting on the system to cause cycling, one in the clock-
wise and the other in the counterclockwise direction, free
energy can be transduced from the larger to the smaller
force, irrespective of any a priori coupling between the
two forces. An enzyme, through its cyclic catalytic pro-
cess, can serve as the sole intermediary for this free-
energy transduction.

We will now provide a thermodynamic analysis of the
effect of an external perturbation on the free energies of
reaction for each transition in Eq. (3). This will allow us
to obtain a thermodynamically consistent, though not
necessarily unique, set of rate coeKcients which explicitly
depend on the applied perturbation. Using these, we can
evaluate the fluxes of Eq. (4) and thereby (5).

Equilibrium thermodynamics of the interaction
between an enzyme and its environment

The equilibrium constant of a chemical reaction de-
pends on the thermodynamic parameters of its environ-
ment such as p, T, and e, and this is no different for the
conversion of an enzyme from one state to another. Thus
changes in such a parameter, designated in general as F,
from a reference state will influence the values of the
effective rate constants as well as the basic free-energy
change of the transition. The magnitude of this effect
will depend on the value of the conjugate parameter
(volume V, entropy S, or molar polarization M, respec-
tively), designated x, associated with the transition. As
derived in Appendix A, for a finite perturbation in an F,
A, or B, from the reference state (denoted by 5F, 5 A,
and 5B, respectively) the instantaneous basic free ener-
gies of reaction may be written

AG =AG o+56G

~Gop =b 6po 0+5~6po

5b, G =(bx~+x„)5F+5 ln( A ),
56G& = (bxz+xs )5F+51n(B ),
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Pz =exp[6 xz5F /(R T)],
P „=exp[x „5F/(R T)],
P~ =exp[xs5F/(R T)],
P„a=exp[6„sx5F/(RT)] .

The apportionment of the influence of the environment
on the various rate coefficients is subject to thermo-
dynamic constraint:

4E4 A fo/ 0 WE4'Bl fo/P 0 (10)

Within this constraint, the details of the catalytic transi-
tions give the appropriate distribution among the various
transitions, as denoted below by apportionment factors l,
m, n, and p. For the enzyme of Eq. (3), a general set of
rate coefficients is given by

m I
&foNE4 ~

+r + r04'E 0 A

~f I f04'E48

&, =&04m 'Pa '.
Using the rate coefficients given in Eqs. (11), analytic

solutions of the kinetic equations of the system of Eq. (3)
for the case of a periodic square wave, or random sto-
chastic dichotomous perturbations of F, A, or B about
their reference values, may be obtained as described in
Appendixes B (square-wave perturbation) and C (random
dichotomous perturbation). Here, let us look at what
may be expected from an enzyme system exposed to envi-
ronmental fluctuations from the point of view of none-
quilibrium thermodynamics and compare this with a ki-
netic derivation for a simple specific case.

Nonequilibrium thermodynamics (NET)
for the interaction between a nonstationary

environment and an enzyme

In this subsection we shall discuss the driving forces
that arise when a parameter is oscillating or fluctuating.

where the subscript a (P) refers to the top (bottom) tran-
sition in Eq. (3), and subscript 0 refers to the value evalu-
ated at the reference state. With this formulation, we
have formally "split up" the influence of external envi-
ronmental parameters between changes of structure in-
herent in a transition from one enzyme state to another
(bxE5F) from those due to the catalytic transformation
of substrate to product (x „5F+5 ln A ) and (xs5F
+51nB). The free energy of the output reaction A ~8
may also depend on the environmental parameter F,

~Gas ~G~a, o+&~G~a ~

(&)
5&Ggg =5p g

—5ps = ( b gsx )5F+R T5 ln( A /8 ),
where (h„sx) refers to a molar volume, polarizability, or
entropy difference between A and B, depending on which
F is considered to vary. We may introduce the parame-
ters

where the sum is over all conjugates of generalized flows
and forces. Around equilibrium, any flow J; may be re-
lated to the forces X (or vice versa) by a Taylor-series ex-
pansion

BJ; BJ;
J, = g 5X„+—,

' g 5X„, ax, '„aX„'
8 J+ —,

' g g 5Xk5XI+O(3),
k I Xk XI

(13)

where O(3) represents third- and higher-order terms. In
principle, depending on the operational definition of the
flows and forces, the flows may in addition depend on fac-
tors other than the forces. For example, if both A and B
of the enzyme reaction Eq. (3) are doubled, the magni-
tude (but not the sign) of the catalytic fiux perhaps would
change, even though the 56~& of the output reaction
would be the same. In the examples we will discuss, all
effects on the fluxes will be contained within the forces as
we define them.

The first term on the right-hand side of Eq. (13)
represents the first-order contributions to the flux J, and
sufficiently close to the reference state all higher-order
terms vanish since all 6X~O. In this case, we may write

J, =Jo+ g L;„5X„,
k

(14)

where L,k=BJ;/BXk. This .familiar equation, in which
each flux is expressed as a linear combination of all the
forces, forms the basis for the theory of linear irreversible
thermodynamics, ' and when the reference state is equi-
librium, for a simple formulation of the Onsager recipro-
city relations.

One question is, how close is sufficiently close? A pure-
ly thermodynamic treatment is unable to provide a
definitive answer because few constraints can be placed
on thermodynamic grounds on the magnitudes of
8 J;/BX„, 8 J;/(BX„BX&),etc. It is typical to attempt to
establish a domain in which the linear equation (14) is
sufficiently accurate by experimentally obtaining a flow-
force curve plotting J, versus an Xk while keeping the
other external forces constant at their reference values.
These experiments are usually performed under steady-
state conditions such that the enzyme-state probabilities
may be considered constant during the period in which a
J; is measured at a particular value of Xk. In any range
of Xk where a linear relationship is found to hold, the
terms (8"J, /BXk )5Xk are shown to be negligible. On the
basis of enzyme kinetics, various authors ' ' have prov-

These forces may cause fluxes which would not be expect-
ed on the basis of only the stationary (or time-average)
forces.

The rate of entropy production within a system,
d, S/dt, multiplied by the temperature, is equal to the
rate of free-energy dissipation and is known as the dissi-
pation function. The dissipation function is typically
written, in general, as '

d;S =@=X JI,Xk
dt
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en theoretically that for many enzyme systems this range
is quite large. Of course, even in this linear range for Xk,
under conditions where another force, X&, may not be
constant (or during any time before the enzyme-state
probabilities have attained their steady-state values),
significant contributions from the cross-force terms in
Eq. (13) may still be expected.

Indeed, when an external force is applied to a system
so as to displace it from a stable steady state, the system
will respond to counteract the applied force and to return
to a (new) stable state according to a principle reminis-
cent of the Le Chatlier —van t'Hoff principle. The dis-
tance of the system from the unperturbed steady state
takes on the role of a restoring force, which is correlated
with the applied (time-dependent) perturbation. Particu-
larly in situations where the external force is dynamically
fluctuating, this may give rise to non-negligible terms of
the form [i3 J;/(BXk BX& )]5Xk5X„where Xk is the per-
turbing, and XI the restoring, force.

To better illustrate these concepts for the case of an
enzyme-catalyzed conversion of A to B [Eq. (3)], we write
the dissipation function

4=J AG +JpAGp

half the net rate of conversion of enzyme from E~E* A.
Of the forces, X& represents the cyclic driving force in the
context of steady-state (nonfluctuating) enzyme kinetics,
X2 the force driving the enzyme to the left- or right-hand
state, and X3 is the internal "restoring" force, coun-
teracting the applied perturbations and driving the return
of the system to its original condition if the external per-
turbation would be removed. Eo refers to the enzyme-
state probability when 5X, =6X2 =6X3 0.

The dissipation function (15) may be transformed to

4=J, (X, +5X, )+J2[(X~+X3)+(5X2+5X3)]. (19)

Often, Xz+X3 is treated as a single force. However, this
treatment is valid only near equilibrium. Even then, if
the perturbation is dynamic, the phase relationship be-
tween 5X2 (or 5Xi) and 5X3 may depend on frequency.
In the following we shall concern ourselves with terms
only through second order, dropping 0 (3).

We are interested in how a periodically fluctuating per-
turbation influences the enzymic catalysis of the reaction
A =B. External perturbations can be applied such that
5F ( t ) = ( 5F ) +5+, with ( 5z ) =0. The time-dependent
external forces are

=J (hG o+5bG )+Jti(EGp)+56Gti) . 5X, =(5X, )+5,, 5X, =(5X, )+5, . (20)

b, G o and b, G+ are the gross (concentration-dependent)
free-energy differences between the two states under some
reference conditions for the a and P paths, respectively,
and 66G and 66G& represent contributions of perturba-
tions from these conditions to the free-energy differences.
If we consider the deviations to arise because of external
perturbation through F, or from direct externally en-
forced concentration fluctuation, 6 ln A or 5 lnB, we may
write

56G =(bxz+x„)5F+RT51n[E/(1 E)]+51n( 3 ), —
(16)

55G& =(bxz+xti )5F+R T5 ln[E /(1 E)]+51n(B)—.

In order to highlight the influence of dynamic pertur-
bation on the catalytic Aux, we define the following com-
posite fluxes:

The resulting internal force will, after a sufficient number
of periods, reach a stationary oscillation such that
(J~) =0, and

5X, =(5X, )+5, (21)

with (53) =(52) =(5i) =0. The angular brackets
denote the operation of averaging over time, and in terms
of single cyclic integrals can be written ( X )= fXdt/(ddt)= ffXdt, where f is the

~
eriod of os-

cillation. Subsequently, we will denote J X dt = fX,
where the variable under which integration is carried out
is implicitly time, and the integration is carried out over a
single period of the oscillation. The time-averaged cata-
lytic Aux may be obtained

(J, )=gL, (5X )

Ji =(J J0)/2, J2 =(J—+Jp)/2,
and forces

(17) + g g L;~k ( 5X, ) ( 5Xk ) +ff 5 5„
j k

(22)

(P ao Pao) ~

5X, =(x„—xs)5F+51n( A /B ),
X2 = (P ~o+Pao+2PE 2P~ + ~ )

5X~ =(x„+xs+2bx~ )5F+5 ln( AB ),
X3 =2RT ln[Eo/(1 Eo )], —

5X3 =2R T1 in[(Eo+5E )/(1 Eo 5E)]——
—ln[E /(1 E)]I . —

J, is the flux of the enzyme around its catalytic cycle, and
at steady state in the absence of time-dependent perturba-
tions, becomes the net catalytic flux (i.e., Jzz). J2 is one-

where i =1,2, j,k =1,2, 3. For symmetric Auctuations
such that (5Xi ) =(5X2)=0, the stationarity condition
( J2) =0 results in a quadratic equation that expresses
(5X3) into second-order terms of the applied forces.
Consequently, for sufficiently small symmetric perturba-
tions, (5X3) can be taken as approximately zero. That
is, in a first-order approximation, zero average fluctua-
tions do not cause the average (E ) to deviate from its
nonfluctuating steady-state value.

At larger perturbation amplitudes the second-order
terms in Eq. (22) become relavent. Then, we can identify
several types of terms contributing to the net catalytic
Aux at larger perturbation amplitudes. First, there are
linear ((5Xi ), (5Xz )) and nonlinear ((5X, ), (5X2),
( 5Xi ) ( 5X2 ) ) direct contributions from the average
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values of the external forces. These are the classical driv-
ing forces which would also pertain for static perturba-
tions from the reference state. All of these are identically
zero for symmetric perturbation. Specific for the case of
dynamic perturbation, there are three types of driving
forces. First, there are rectification terms (involving
ff 51dt, f $52dt, f$5,52dt) T. hese refiect the nonlinear
flow-force relationship and indicate that net flux can be
induced even if the average driving force is zero. All of
these terms are frequency independent (since integration
of a cosine or sine yields a 1/f factor to cancel with the
premultiplier) and are operative for ensembles of systems
with a distribution of constant 5, and 52 at steady state as
well as for a single system subject to dynamic perturba-
tion of arbitrary period.

There are also frequency-dependent terms. These in-
clude the cross correlation between the system response
and the imposed perturbation (f$ 5153dt and f$ 5253dt),
and the "rectification" term for internal response
(f$53dt). The former are frequency dependent because
the "phase lag" between 5& and —53 goes from 0 in the
low-frequency limit to 90 in the high-frequency limit,
and the latter is frequency dependent because the ampli-
tude of 53 approaches zero in the high-frequency limit.

Since we have assumed the 5's to be Fourier analyzable,
they may be expressed as sums of sines and cosines, with
a frequency-dependent phase lag between the perturbing
(51 and 52) and responding (53) function. Finally, there
are those terms containing the average value of the in-
duced internal restoring force, & 5X3 ) and & 5X3 ), which
are frequency dependent through their dependence on all
the other frequency-dependent terms.

Let us look now at a few special cases which will also
be investigated analytically using the kinetic equations
derived in the Appendices. If an external perturbation
interacts with the enzyme but does not influence the
b.G„21 of the output reaction, 5, and &5X, ) =0. This is
equivalent to taking pz&1 and p„ti =1. Furthermore, if
the perturbation is symmetric, &5X2) =0. If A =8=1,

& J, ) =L.„&5X,)+L„,&5X, )'

+f L 122 y 52(52+ 53) +L 133 y 53(52+ 53)

(23)

From the stationarity condition (i.e., & J2) =0) we can
obtain the stable solution for & 5X3 ) to be

2L233 & 5X3 ) L22 L22 4fL233 L222 f 52(52 53)+L223 f 53 (52 53) (24)

In the low-frequency limit, 53 52 so

f 52 = f 53 = —f 5352. By use of the relationship be-
tween the L's, we then find that both & J, ) and & 5X3 )
are zero. Similarly, imposition of a static 5X2, which
does not influence the free energy of the output reaction,
does not cause flux when p„=pz. In the high-frequency
limit, the phase difference between the forcing and
response functions approaches 90', hence f $5253dt goes
to zero and neither & 5X3 ) nor & J, ) are, in general, zero.
This is an interesting result since at no time is there a
nonzero b, G~ti (=X, ) of the output reaction. The sign of
the induced flux is governed by the L constants and is in-
dependent of the amplitude and frequency of the external
force. Thus, we can surmise that even if we applied a
small constant & 5X, ) (e.g. , by setting 5 ln A (5 lnB) that
a situation could arise with time-dependent 5Xz where
there would be net flux from A~B even if p&)p„.
This would represent free-energy transduction from a
force not coupled to the EGAD& to do work on the output
reaction. Such a coupling would be mediated solely by
the interaction between the enzyme and its environment.
In the results section, quantitative calculations for a
specific kinetic model will be given.

If 52= &5X2 ) =0 and 51%0 but with &5X1)=0 (i.e.,
p„ti &1, pz = 1), as would be the case if 5 ln A and 5 lnB
were caused to oscillate 180 out of phase with one anoth-
er, thereby keeping ln( A 8 ) constant and zero but caus-
ing ln( A /8 ) to oscillate symmetrically if A =8 =1, the
flux is

& J, ) =L,2&5X3)+L„,f$5,
+L,23 & 5X3 ) +f f53

+L»3f $515 (25)

As before, & 5X3 ) may be obtained by solving the quadra-
tic equation derived from Eq. (24) under stationary oscil-
lation. No general statements concerning the low- and
high-frequency limits may be made here except that nei-
ther need be zero.

The L coefficients, which govern the extent to which
any of the driving forces, including those which arise
from dynamic perturbation, lead to net flux, are parame-
ters depending on the kinetic mechanism of the enzyme
and on its catalytic constants. In our discussions, we
have implicitly assumed that they need not take on trivial
values such as zero. This may be directly shown by
evaluating these coefficients, and by doing so we could
also explicitly calculate the fluxes under a variety of con-
ditions. However, it is usually much simpler to calculate
the fluxes directly from a kinetic formulation. Thus, an
explicit kinetic treatment seems in order.

Kinetic picture

We consider the model enzyme of Eq. (3). In order to
allow for clear illumination of the underlying physical
principles, we perform the derivations in this section for
only one set of kinetic parameters, using 3 = 1,
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a&0=a„o=/3&O=P„0=1, P„=1, m =1, n =p =0 [see Eq.
(11)]. The average catalytic flux (J„s) = (J —J&) /2 is
a measure of the effect of the fluctuating parameter F on
catalysis, and (J„s ) )0 when (ps ) ) ( p „)will be indi-
cative of free-energy transduction. We shall strive to em-
phasize the effect of first- and second-order terms as dis-
cussed in the preceding subsection.

The instantaneous state probability E can be written in
terms of its reference steady-state value and some dis-
tance 6 from that value,

dt
= —(1+x'+x' l2+8 )E0

+(2—y'+y' /2 —x'+x'y'+x' /2)(1 E—o)

+(3+8—y')b, ,

J =(1+x'+x' /2)EO —(1 Eo—)+(2+x')b, ,

Jt3=B Eo —(1—y'+y' l2 —x'+x'y'+x' l2)(1 Eo—)

+(8+1—y' —x')b, .

(27)

E=EO+b, EO=2/(3+8) . (26) Under stationary oscillation conditions,

Substituting x'=[bxF5F/(RT)] and y'=[xsoF/(RT)],
and dropping third- and higher-order terms (including,
e.g. , x' b, ), we may derive and

(J„)=f fJ —
/JAN 2

( Jqs ) =(1 B)EO/—2+fEO fx'2 2+f(1 Eo) f—y' +2)x'y'+ fx' 4+ff b (x'+y'/2) . (28)

This shows that net flux from A to 8, even with 8 = 1 (or
slightly greater than 1) may result due to second-order
terms (x'), and (y') and cross terms x'b, and y'b, .

The time-averaged entropy production may be written
using Eq. (15),

(4) l(RT)=ff J&y'+ ff J&ln(B)

+ f (J +Jp)x'+b, G~s( J„s) . (29)

E=Ess+b, '=(I+/~)/(2+pF+pF ')+b, ' . (30)

dE/dt can be written as a strictly linear equation (i.e.,
with neither square nor cross-terms) through second or-
der,

dE /dt = (3+8 )6' . (31)

Thus the response of E to a periodic perturbation in this
case is appropriately modeled by a linear-response theory
so long as the perturbation strength, x'(1. Neverthe-
less, J and J& are not given by linear equations, even to
this second-order level of approximation, nor is the cyclic
integral P(J —J&) necessarily equal to zero (not even if
8 = 1). The effect of a dynamic perturbation on the en-
zyme catalytic flux is not interpretable by a linear
response theory except at much smaller perturbation

From the second law of thermodynamics, ( 4 ) ~ 0.
However, one or more of the individual terms of the
right-hand side of Eq. (29) may be negative. In particu-
lar, if $6F =0, b, G„&(J„s) (0 would be indicative of
the reaction A, B being driven in a direction opposite to
what would be predicted on the basis of the average
difference in the electrochemical potentials of 3 and B,
i.e., free-energy transduction from the fluctuating force to
do "work" on the output reaction.

Interestingly, with the special set of parameters we
have chosen, and in the case that y'=0, by redefining 5
in terms of the distance from the steady state (SS) to
which the system would relax if the instantaneous value
of F were maintained for a long time, i.e.,

I

strengths, and even then, the enzyme can act as an in-
tegrator of an external fluctuating signal. This shows
that a linear dielectric response of an enzyme is not
necessarily inconsistent with its ability to transduce free
energy from a periodic electric field. The above, howev-
er, is a special case, and in general we must expect dE/dt
to be given by a nonlinear equation also.

ERciency of free-energy transduction

Of fundamental importance in our considerations are
the free-energy dissipation in, and efficiency of free-
energy conversion, which have been touched on briefly in
Eq. (29). First, there must be the notion of input (free-
energy-supplying) and output (energy-absorbing) reac-
tions. There is a certain arbitrariness in these definitions,
which rely on the observer's interpretation as to the func-
tion of the system. Any two reactions can be written
down such that the one with the larger affinity may ap-
pear to drive the one with the smaller affinity away from
its equilibrium. However, as Koenig et al. have point-
ed out, a simple linear transform (or as these authors put
it, a stroke of the pen) allows a set of reactions to be writ-
ten down such that each reaction appears to proceed in
its thermodynamically spontaneous direction indepen-
dent of the other. The choice of what belongs to the in-
put and what belongs to the output comes from the
observer's concept of the function of the system, or from
the mechanism by which the free-energy transduction
occurs.

Even when an overall cyclic enzyme mechanism is
written such that the net result of turnover is that one re-
action goes up its chemical-potential gradient at the ex-
pense of another, of larger thermodynamic affinity, going
down its gradient, the situation is not unambiguous. If
the entropy production is written in terms of a sum of
flows through each elementary enzyme transition J,- in
the mechanism, each multiplied by the corresponding
AG, for that transition,
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dS
dt

=gJ; bG), (32)

each term on the RHS of Eq. (32) is individually posi-
tive. Thus, there can be no question of one thermo-
dynamically downhill elementary transition driving some
other elementary transition uphill. The role of an en-
zyme in free-energy coupling may be viewed as providing
a sequence of elementary steps (mechanism) which recon-
cile the fact that net flux through each possible transition
always occurs in the thermodynamically spontaneous
direction with the desired (and observed) overall result
that a net reaction occurring in the thermodynamically
downhill direction can "drive" another net reaction
uphill.

Typically, a reasonable definition for input versus out-
put processes can be arrived at by splitting the various
contributions of the environment and the chemical poten-
tials within the EG's and grouping them together. For
the system of Eq. (3), with the parameter values used pre-
viously, the entropy production in terms of elementary
steps is given by Eq. (15). The b,G's can be written as

b G =bG o+bxz5F+RT ln[E/(1 E)—],
(33)

b G& =b 6
t'ai

+ ( b xF +x& )5F+R T[ln( 8 +58 ) —lnB ]

+RT lnB+RT ln[E/(1 E)] . —

The dissipation per cycle once steady-state oscillation has
been reached may be written

T T

bxF t((iJ +J&)5F+xtt tt) J&5F+RT)ln(1+5B/B)J& — [RT ln(8)+x&Fo] fJ& (34)
I

where —[RT ln(8 )+x&Fo]=b G„s o. We may define the first term on the RHS in large parentheses as the input, since
it contains all contributions from fluctuations about the average values, and the second term to be the output, as this
characterizes flow of 3 to B times the force according to the average values of B and F. Other interpretations may also
be possible.

Using these definitions, an efficiency may be defined:

[RT ln(B )+xsFo]fJ&

bxF f (J +Jtt )5F+xti fJ&5F +R Tf ln( 1+58 /8 ) J&
(35)

Quantitative analysis of the effects of periodic
perturbations on enzyme catalysis

E(t), and consequently J (t) and J&(t), can in general
be obtained directly from Eq. (4), since the formal solu-
tion to this linear first-order differential equation is

E(t)=E(0)exp —fPdt

+exp —fP dt fQ exp fP dt (36)

where P =(af A+a„+Pf8+P„) and Q =(a„+P„). For
any defined functional form for P (t) and Q (t), this can be
solved by direct numerical integration. Eigen has provid-
ed an analytic solution to this equation for the analysis of
data obtained by stationary relaxation techniques, in
which P (i.e., the inverse relaxation time r ) was as-
sumed to be constant, and Q to be a harmonically oscil-
lating forcing function. This is the same point of view as
adopted in linear dielectric theory. In this case it could
be shown that the dynamic variable follows the forcing
function with the identical frequency, but with an at-
tenuated amplitude and phase lag depending on the ratio
between the forcing frequency and the relaxation time of
the chemical system. In the situation of interest in this
paper, neither can P be taken as constant, nor Q be as-
sumed to be a purely harmonic forcing function even if
the perturbation inay be written F(t)=Fo+5F sin(2mft).
This significantly complicates the mathematics, but nu-

merical integration of Eq. (36) can still typically be
effected. Even if the underlying reason for nonstationari-
ty of P and Q would be a random stochastic (but external-
ly defined and periodic) noise in the environment, F(t)
can be expressed as a Fourier series, which would allow
computational solution of Eq. (36) to arbitrary accuracy.
An analytic solution, even for a special case, is neverthe-
less greatly desirable, since it will facilitate understanding
of the importance of the various parameters with respect
to the qualitative behavior of the system. Thus, we will
focus on two cases of environmental nonstationarity, one
for regular periodic oscillation, and the other for stochas-
tic fluctuation for which an analytic formulation for E(t),
as well as for fluxes and free-energy dissipation, may be
obtained. In both cases, the key will be that only two
possible fluctuation levels, denoted + and —,will be con-
sidered. Derivations of the relevant equations for these
two cases are presented in Appendixes B and C.

RESULTS

In this section we report on the behavior of our model
enzyme (3) under the influence of square-wave periodic
and dichotomous stochastic fluctuations. The calcula-
tions were done using the equations derived in the Ap-
pendixes. Unless otherwise specified, the parameter
values are the same as given in the preceding section on
the kinetic picture, where here, the numerical value of Pz
(or Ps depending on the circumstance) is equal to 256,
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which corresponds to a value for Ax5F/(RT) =5.5.
Concentration fluctuations —8( t ) =8+58 ( t ). Sym-

metric (e.g. , Gaussian) fluctuations of concentration do
not imply symmetric chemical potential fluctuations, and
in fact (ps(8)) &ps((8)). Thus, it may not be too
surprising that, as seen in Fig. 1, symmetric fluctuation of
8 such that 8(t)=8+0.5 could lead to net flux convert-
ing 3 to 8 even when 8 = l. 1 (with 2 = 1). This does
not require any nonlinearity (asymmetry) in the fiow-
force relationship, and arises simply because the average
chemical-potential difference

(p„(A )
—ps(B ) ) = —[ln(1.05+0.5)+ln(1.05 —0.5)]/2

=0.16
is positive even though

p„((& ))—I,((8))=—1 (1.05)= —0.05

is negative. Thus, the symmetric fluctuation of one reac-
tant always leads to a bias of the flux (that may or may
not be counteracted by other forces), which disappears at
high frequencies, in the direction from the constant to the
fluctuating component. The "efticiency" of free-energy
transduction due to this eA'ect, as calculated according to
Eq. (35), is very low, and we shall not further consider
this effect here. We note also that if the fluctuations
would be such that around an average (8 ) =1, the aver-
age chemical potential of 8 would be equal to the chemi-
cal potential of the average concentration of 8 (as we
might expect for equilibrium fluctuations), the average
chemical-potential difference when A =1, (p„—ps ),
would be zero despite the fluctuation. The nonstationari-
ty of the chemical-potential difference (i.e. , force on the
output reaction) would then be symmetric, and entirely

1.4

1.2—

1.0—

0.8—
CQ
K 0.6-
3~ 04-

cognate with the environmental fluctuations when
Ax+ =0, Ax ~~ %0, as discussed below.

Environmental fIuctuations F(t) =Fo+5F tvith Pz = 1

and Ps&1. Here we consider that an environmental fluc-
tuation, such as in p, T, e, p~, or p~, influences directly
the output reaction through the term x~6F, but not the
intrinsic relative free energies of the enzyme conforma-
tional states (Ax@=0). A steady-state (nonfluctuating)
flow-force relationship for the model enzyme is shown in
Fig. 2 (8 =1). This plot is quite asymmetric even in the
range —RT &x&6F &RT and thus an ensemble average
with one-half of the enzyme systems operating at steady
state where x~6F = —R T and one-half where
xz 5F = +R T will show net flux even though the
ensemble-average force (xs5F ) =0. Accordingly, calcu-
lations based on Eqs. (14B) and (13C) for the low-
frequency (LF) limit show nonzero net flux even when
(F ) =0 and A =8. This behavior is analogous to that of
a half-wave rectifier in electronics and requires asym-
metry of the flow-force relation within the range of the
fluctuation. In our NET analysis, we call this the
rectification component. If we set the apportionment fac-
tor p =

—,
' (keeping 8 = A =1), an antisymmetric flow-

force relation about 6F =0 is obtained over the entire
range of forces, and the low-frequency (LF) limit net flux
is abolished.

The bias to the flux due to the nonantisymmetric com-
ponents of the flow-force relation [originating from the
f f5& in Eq. (25)] is frequency independent As the. fre-
quency increases, cross terms between the applied time-
dependent force, which work opposite to terms f tt&5&

and ff 53, decrease, and the induced flux increases. This
contribution to the fluctuation-induced bias of the output
flux is strongly frequency dependent, being maximal as
f~ oo as shown in Fig. 3. The net flux may be viewed as
the sum of contributions arising from the steady-state
chemical-potential difference ( b p „—hp, s ), the
frequency-independent rectification, and the frequency-
dependent cross correlation between the perturbation and
the restoring force. We note that setting p = 1 (instead of
0) leads to a counterclockwise rather than clockwise bias

0.2—

0.0—

—0.2-

0 1

I o g) (t)
FIG. 1. Demonstration that symmetric concentration fluc-

tuations can induce flux in a direction opposite to that predicted
based on the average concentration. The average value of the
parameter B was 1.1, with fluctuations [random stochastic di-
chotomous (

———
) or regular periodic square wave ( )]

superimposed on this value, where 5B =0.5 {i.e., B+ = 1.6,
B =0.6) with 5F =0. All of the parameters in this and all oth-
er figures are as given in the section on the kinetic picture ex-
cept where stated otherwise. The flux is calculated by use of
Eqs. (B10), (C2) —(C8), and (C11). At low frequency, it is seen
that flux is induced from A to B despite the fact that
&B&&&a&.
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0 3
~ xA& SF/(RT)

FIG. 2. Steady-state flux of the model enzyme when
A =B=1 as a function of the force AG» (as modulated by
Ax»6F) with bx~ =0. Notice that this flow-force relation is
quite asymmetric, even in the region +1.5R T.
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FIG. 3. Flux induced by symmetric fluctuation of the force

(through 5Fk) on the reaction, such that the average (F) was
zero [(———

) is for random, and ( ) for regular periodic
perturbation]. The flux is seen to be positive (A~8) even
though B=10 and A =1. At low frequency, this is solely due to
a frequency-independent rectification e6'ect (i.e., to the funda-
mental asymmetry of the flow-force relation). At high frequen-
cy an additional effect arises due to the cross correlation be-
tween the fluctuating 5F and the nonstationary aSnity of the
enzyme transitions.

from both LF and HF contributions, and p =
—,
' abolishes

both.
Enuironmental f?uctuations F(t)=Fo+5F with x& =0

and b,xzAO. Here, the fluctuating parameter interacts
only with the intrinsic protein conformational equilibri-
um and not with AG„~. Thus, F does not influence the
"steady-state" driving force for the output reaction.
Nevertheless, variation of the stationary value of F can
significantly regulate the catalytic efficiency of the en-
zyme, even operating under steady-state conditions, as
seen in Fig. 4. When F is dynamically varied, a bias of

0.7

0.6—

FIG. 5. E6'ects of dynamic perturbation of 5F when
hx»=0, but b,xF&0 with B=100. The yield (---) (net A~B
transitions per field cycle); flux ratio (

———) (net A ~B tran-
sitions per E~E*A —+E cycle; this is essentially the fraction of
fluctuation-induced enzyme transitions which actually go into
doing work on the output reaction); and efticiency ( )

(power out/power in, as explained in the text).

the output flux is induced which for our chosen set of pa-
rameters is in the clockwise direction. The frequency
dependence of both stochastic and regular periodic per-
turbations (not shown) is similar to that for the previous
case where x&WO, but here, when B=1, the LF limiting
flux is identically-zero, and otherwise is of the same sign
as that for the enzyme operating at steady state with con-
stant 5F =0.

The high-frequency flux when B= A arises when the
cross term ff 5253 between the restoring force and the
dynamic perturbation becomes small, failing to cancel
f It)5z and f (t) 5 3The yield (A ~B transitions per cy-
cle), flow ratio (A ~B transitions per net E~E*A ~E
cycle), and efficiency for B=100 are shown versus log, nf
in Fig. 5. Figure 6 shows the input, output, and dissipat-
ed power as functions of frequency, and Figs. 7(a) and
7(b) show the flux ratio and efficiency versus the output
free energy AG„z and perturbation strength ln(gz), re-

0.5—

0.4—
Q3
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I
' ' ' I ' ' ' I-6 —4 —2 0 6

~x,~F/(RT)
FIG. 4. Steady-state flux of the enzyme with A =1 and

B=0. 1 as a function of a stationary perturbation AxF5F/(RT)
with Ax» =0. Since the term Ax~6F is not a part of the driv-
ing force of the output reaction, the flux when A =B=1 was
identically zero independent of the value of 5F. That changing
the static value of 5F influences the rate of catalysis illustrates
the thermodynamic regulation of enzyme activity.
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FIG. 6. Illustration of how the total dissipation ( ) may
be broken up into an input (---) and output (———) power
(B= 100).
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spectively. Of these, only the yield has a maximum value,
falling off at high frequencies. As will be noted later, this
is due to our selection of a very simple two-state model,
and with more complicated models, the behavior is more
complex. Note that the high-frequency bias is reversed
by setting m =0, n =1, and abolished when m =n.

The phenomena discussed in this section emphasize the
role of an enzyme as a free-energy converter, by which an
energy source that is not thermodynamically coupled
directly to the output reaction A =B may, through
differential interactions with two or more protein confor-
mations, be used to drive this reaction away from equilib-
rium.

Comparison between fluctuations interacting with the
output reaction Uersus those that interact with the intrinsic
protein conformational equilibrium Two. parameters
which might be indicative of the viability of Auctuation-
induced free-energy transduction in biological systems
are the thermodynamic efficiency Eq. (35) [(power
in)/(power out)] and the static-head concentration of
product (B) in excess of the equilibrium value which can
be supported by various amplitude perturbations. In the
high-frequency limit, using the equations derived in Ap-
pendix A, the static head for the case Pz= 1, p„ii&1

c 0.8—
03

~ 0.6-(U

with all other parameters as before is

(BsH)HF —(0ii+4ii ')/2

and for Pzii = 1, $,„,%1 is

(BsH)HF=(p~+Q~ +2)/4 .

(37)

(38)

The low-frequency limit BsH with P ~ii&1 and P,„,= 1 is

(BSH )LF (( B +48 +2) (39)

while for the case with Pz&1 and Pii = 1 (BsH )LF is iden-
tically unity. Notice that for equal magnitude P s, in the
high-frequency limit the static-head value supported by
Auctuations which interact with the enzymes intrinsic
conformational equilibrium is much larger than that sup-
ported by fluctuations which interact only with the out-
put reaction. This is because for the case where the in-
teraction is intrinsic to the enzyme conformational dy-
namics, the positive phase of the field serves to preferen-
tially "push" the enzyme clockwise along the a path, and
the negative stimulates clockwise transitions along the P
path. If the interaction is only with the output reaction,
then either only the a or P clockwise path is enhanced. If
the interaction is split between A and B, then both paths
will be stimulated, but each to a lesser extent than in the
intrinsic case.

The efficiency in the high-frequency limit may be cal-
culated, with Pii&1, and P,„,= 1, to be (see Appendix A)

(i))= —[ln(B )/in(i))ii )]

XI[»—(4 +4 ')1/[(B+1)(4 +4 ')ll
0
0c- 0.4 ~

~ 0.2-
and for $,„,%1, Pii = 1,

(40)
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FIG. 7. Calculations of the flux ratio and efficiency of the en-

zyme subjected to high-frequency (HF-limit) fluctuations of 5I'
with b,x»:=0. (a) While Ps was kept constant at 256, the out-
put reaction free energy was varied by changing B. With
respect to e%ciency, the optimal value was approximately
4.6RT, or B= 100. (b) When B was constant at 100 and PF was
varied, the optimum was found to be )n(gs ) =6 or Pz =400.

(ri) = —[In(B )/In(P~ )]

4B —(i))~+/~ +1)
24F. +20F. '+2(4F. 4F. ')(1+B)— (41)

For the latter case, efficiencies of 30% (see Fig. 7) may be
obtained. However, for none of the conditions we have
studied did the efficiency of the former case exceed 10%%uo

and most often was less than 5%.
In general it seems that in the high-frequency limit

Auctuation-induced free-energy transduction is more
effective when the perturbing parameter interacts with
the intrinsic enzyme conformational equilibrium rather
than when the only interaction is with the output reac-
tion. This result may be very important in better under-
standing the conformational coupling mechanism for
free-energy transduction in biological systems.

Comparison between random stochastic and regular
periodic perturbations. So far, we have not discussed
much concerning the differences between random versus
regular perturbations. This is because there really are not
many. The high- and low-frequency-limit behavior is in
fact identical for the two cases. The major difference lies
in the frequency response, where it is seen (Figs. 1 and 3)
that the response curve for random stimulation is broader
and less sharp than the curve for regular periodic input.
This is understandable since the stochastic perturbation
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arising from a Lorentzian process (which is equivalent to
what is known in some cases as random telegraph
noise' ' ') has a continuous distribution of Fourier com-
ponents at frequencies both higher and lower than the in-
verse relaxation time of the noise-generating process,
while the regular square-wave signal contains discrete
components at the fundamental and higher harmonic fre-
quencies.

The result that random perturbation can cause an en-
zyme to drive the reaction it catalyzes away from equilib-
rium may at first seem surprising since it is a common
aphorism that random fluctuations occur even in systems
at equilibrium. Let us consider more closely why an
externally defined random signal (particularly a multipli-
cative noise term such as used in the nonlinear Langevin
equation ) is not and cannot be descriptive of fiuctua-
tions at equilibrium, particularly for a noninertial system
such as a chemical reaction, and why, even for a simple
unimolecular process such as in Eq. (1), symmetric exter-
nal fluctuations may cause a shift in the average probabil-
ity distribution except when kf =k„and 5 =

—, (as we

might imagine to be the case for the diffusion of a
Brownian particle ' ). For the sake of concreteness, let
us concentrate on the case of electric fluctuations.

We can imagine a protein in which a charge moves
from one point to another via a Lorentzian process. An
enzyme which is located close to this field-generating pro-
tein will thus sense a stochastically fluctuating electric
field. If the output reaction and/or the conformational
transitions of this enzyme are electrically sensitive (i.e., if
hx and/or x„or xit are not zero), the overall reaction,E
including the generator transitions, can be represented in
terms of a single diagram"' (see Appendix C). If we as-
sume that the generator transitions are independent of
the enzyme, the noise may be considered to be auto-
nomous. In this case net flux of reactant to product away
from equilibrium may be obtained, i.e., the free energy of
the output reaction is increased. But, in order to sense an
electric field, the enzyme must itself generate a field. In a
local picture of a system at equilibrium, the field generat-
ed by the enzyme would of necessity exert an influence on
the transitions of the generating protein, and when these
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having already reached a stationary fluctuating state such that ~dE =0. The parameters (~~E =(~~=30 B=2) which diFered from those
used in the other calculations were chosen so as to better illustrate the principles involved. (a) Probability of the F. state [Eq. (3)] of
the enzyme as a function of time is shown for one cycle of the oscillating 5F. (b) The resulting instantaneous fluxes along the top a
and bottom (P) transition pathways as a function of time. Notice that the two cross. If 5F were allowed to remain at a constant value
for a long time after a sudden perturbation, the integrals of J and J& taken to infinity would be identically equal if A =B. (c Here
we show J —J& as a function of time. (d) In the case of a dynamic perturbation, 5F does not remain constant, and the integra

J —J may be positiven even when 8 & A, and this represents free-energy transduction from the source of the fluctuations to doJ —J& may be positiven even w en

work on the output reaction mediated by the enzyme. In all plots time is dimensionless.
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reciprocal interactions are explicitly included (a situation
we have termed endogenous noise' ), it has been shown
that the ability of the electric fluctuations (which are still
of course present) to do work is lost.

We have used these concepts to formulate a model for
free-energy transduction by enzymes. In this picture, we
visualize an energy-transducing unit to be composed of
two a priori independent enzymes, each catalyzing some
reaction toward equilibrium. As a specific example, we
mention the FOFI ATPase of the mitochondrial mern-
brane (where ATP is adenosine 5'-triphosphate). The
Fo is a proton translocator and F, an ATPase. During
the course of their independent catalytic cycles each en-
zyme undergoes some conformational transitions which
might involve, e.g. , intrarnolecular charge-transport or
dipole-moment changes. These result in local electric
fluctuations, and as a result, when the two enzymes are
(in a gedanken experiment) brought close together, they
begin to interact, where the reciprocal influences of one
on the other are specifically included in the model. Cal-
culations reveal that flux of one reactant pair down its
(electro-) chemical-potential gradient can drive flux of the
other (with smaller affinity) up its gradient. '

DISCUSSION AND CONCLUSIONS

We have presented an analysis of the effects of free-
energy-driven oscillations and Auctuations on the kinetics
of catalysis by a simple enzyme. It was shown that the
dynamic behavior cannot be understood in terms of the
time average values of the environmental parameters
alone. A steady-state force b, G~& imposes a directional
bias on the cyclic catalytic flux of the system. It was
demonstrated here that energy-driven fluctuations can
also impose directional biases on this flux which may be
opposite to that given by the steady-state force and
strong enough to induce flux against the time-averaged
force. This may be identified as free-energy transduction
from the fluctuations to a time-averaged chemical-
potential gradient.

A key factor determining whether an enzyme can use
energy-driven fluctuation for doing useful output work is
the kinetic asymmetry displayed by the system. Concen-
tration Auctuations were seen to provide a bias in the
direction of the nonfluctuating to the fluctuating com-
ponent (in our case from B to 3 ), even when A = (B ).
This did not require any a priori asymmetry of the en-
zyme system because symmetric concentration fluctua-
tions give rise to asymmetric Auctuation of the output
free energy [(b,G(A))WAG(( 3 ))] and therefore a
nonzero average driving force. Similar concepts have
been discussed recently by Mou, Luo, and Nicolis, who
generalize the entropy production to include a term relat-
ing to non-Poissonian concentration Auctuations. As in
the case discussed here, significant power output resulted
only if the system were driven far enough from equilibri-
um. If the fluctuation of B were taken to be Poissonian,
this bias due to asymmetric fluctuation of the output
force disappeared. However, as we see in the present
paper, even Auctuations which lead to symmetric force
Auctuations can impose bias given kinetic asymmetry
typical for an enzyme.

Fluctuation of F (or chemical potential of substrate or
product) influencing only the output reaction implies a
symmetric Auctuation of the output free energy. In this
case, symmetry breaking requires the Aow-force relation
for the enzyme to be nonantisymmetric about Fo. When
this condition was met, significant Aux from A to B could
be induced, even when 3 was 1 and B was 10 as shown in
Fig. 3.

Fluctuation of an F that influences the relative basic
free energies of E and E* but is not thermodynamically
coupled to the reaction A —B, induces no fluctuation of
the output free energy AGE&. Here the required asym-
metry to allow such a fluctuation to drive the reaction
A ~B even when pz & p ~ is provided by having the
greater F dependence in the forward process along the
top (a) branch and in the reverse process along the bot-
tom (P) branch of reaction equation (3). Although this
may seem somewhat artificial, it turns out that increase
of the "interaction energy" (which we have termed the
conformational bias, or asymmetry parameter b in previ-
ous publications'' ' '

) to be very large for a four-state
enzyme with two transitions having symmetric depen-
dence on F, and subsequent reduction of the diagram to
two states, results in precisely this form, as shown in Ap-
pendix D.

In general, if a plot of steady-state flux J~~ versus
some parameter of interest is nonantisymmetric (in the
absence of fluctuation), a symmetric fluctuation of that
parameter may lead to a time-averaged Aux different
from the flux calculated by steady-state theory for the
time-averaged value of the parameter. This directional
bias is frequency independent. In addition, there may be
a kinetic contribution which is maximized at high fre-
quencies. The way in which this situation works to allow
flux in a preferred direction to be induced by symmetric
fluctuations is shown in Figs. 8(a) —8(d) which demon-
strates how the temporal symmetry of an input perturba-
tion may be broken by the interaction with a very simple
enzyme system such that a directed output is induced. In
Fig. 8(a) the symmetric oscillation (under stationary oscil-
lating conditions) of the enzyme-state probability is
shown. Figure 8(b) demonstrates that, nevertheless, the
instantaneous fluxes through the a and I3 branches may
be different and that for the parameters chosen, initially
following a positive perturbation +5F, J & J& and fol-
lowing a negative perturbation —J~) —J . Figure 8(c)
results if their diff'erence (J —J&) is plotted, and integra-
tion of this quantity yields the accumulated excess clock-
wise flux [Fig. 8(d)] from A~B even when ps )p„.
This symmetry breaking results, for instance, if the
affinity for substrate and product is different for different
enzyme states. Under certain situations this output may
be translated into an increase in the free energy of the
system at the expense of the environment.

Throughout our discussions, we have emphasized the
interaction between an environmental parameter and a
protein conformational equilibrium, which makes an en-
zyme unique among catalysts. This interaction allows for
the exchange of free energy between an enzyme and its
surroundings and may be unrelated to any reaction ca-
talyzed by the enzyme. If the environmental conditions
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are caused to fluctuate rapidly by some energy-releasing
process, the free-energy exchange becomes irreversible.
The catalytic properties of an enzyme, coupled with its
conformational interaction with the environment, may al-
low some of the input free energy to be utilized to drive
an output-catalyzed reaction away from equilibrium,
thereby storing free energy. For the case of electric
field fluctuations, we have termed this to be free-
energy transduction by electroconformational cou-
pling, ' ' ' ' stressing the interaction between the
electric field strength and the protein conformational
transitions.

Up to this point, we have been talking only about
"fluxes" of A to B or vice versa, with the actual normal-
ized concentrations A and B being kept fixed. This was
necessary in order that the kinetic equation for the model
be a linear differential equation, allowing for the analytic
solutions provided here. Hopefully, this will not obscure
the fact that, as shown previously, ' direct numerical in-
tegration of the nonlinear differential equation demon-
strates a buildup of B, at the expense of 3, with a static-
head condition where B ) A as the final result. Thus, the
system would have a higher free-energy content than be-
fore the imposition of the (possibly random) external fluc-
tuations. This free energy within the system, absorbed
from the energy-driven environmental randomness, can
be used to create order, introducing a new facet to the
concept of order through fluctuation.

Although we have framed our discussion in as general
a context as possible, we have been primarily motivated
by considerations of fluctuations (particularly electric
field fluctuations) at and across biological membranes,
and the effects on membrane-bound proteins (reviewed in
Refs. 4, 7, and 15). Macroscopic oscillations of the mem-
brane potential of +50 mV (equivalent to +100000-
V/cm field strength across the bilayer) have been ob-
served experimentally, and even larger stochastic fluc-
tuations may well occur in the vicinity of ion channels in
free-energy-transducing membranes. ' The latter have
ambient membrane potentials of up to 250 mV. Further-
more, large-amplitude oscillations of the membrane po-
tential are relatively simple to attain experimentally due
to the fact that an externally applied field is amplified
across closed cell membranes. It has been experimentally
demonstrated that external alternating electric fields can
induce Na+ and K+ ATPase of erythrocyte membranes
to drive Rb+ (Ref. 49) and Na+ (Refs. 50 and 46) up their
respective electrochemical gradients, apparently in the
abscence of significant ATP hydrolysis. Two important
observations made experimentally but not demonstrated
within the context of the simple model used in the
present paper were the appearance of both frequency and
amplitude windows. Simple extensions of the theory
presented here allow for both of these to be qualitatively
reproduced. The introduction of an induced dipole-
moment term [i.e., inclusion of the functional dependence
of b,xE on F in Eq. (A7)] revealed a perturbation ampli-
tude optimum. Numerically solving the equations for a
four-state model such as discussed in Appendix D, a fre-
quency optimum with respect to the perturbation-
induced flux (which may be thought of as a

"quasiresonant" frequency) is observed. ' This is relat-
ed to the finite rate of association and dissociation of sub-
strate and product. If the frequency is much greater than
these rate coefficients, the electric field will simply stimu-
late back and forth movement along the top and bottom
transitions (with large dissipation), but does not allow for
significant binding and subsequent conversion of sub-
strate to product.

Enzymes found in the bilayer represent an extremely
important class of proteins, as it is these molecules which
handle the tasks of communication between the cell and
its environment, and, for a large part, of conversion of
free energy from one form to another (e.g. , from a redox
potential difference through a proton electrochemical
gradient to the synthesis of ATP ' ' ). The parameter
values used in obtaining the figures displayed were chosen
so as to be physically realistic within this context. For ex-
ample, a Pz value of 256 corresponds to a protein transi-
tion F.—E* involving the transfer of one elementary
charge across the membrane being subjected to a fluc-
tuating membrane potential of +142 mV.

We have made no attempt to exhaustively characterize
the properties of the model-enzyme system under the
influence of fluctuations. Rather, we attempted to outline
fundamental aspects of the behavior which may be im-
portant in understanding how proteins accomplish their
roles as catalysts and free-energy converters. Along these
lines, the basic concept of fluctuation-induced free-energy
transduction may be used to model coupled systems, such
as redox-driven proton pumps, or ATPases which cou-
ple ion transport to ATP hydrolysis and synthesis. ' ' '

As discussed in detail elsewhere, an energetically
downhill reaction may serve to generate electric (or oth-
er) fluctuations which are sensed by an enzyme catalyzing
a reaction which it is desired to drive thermodynamically
uph111 ' ' '

Also, we have tried to present ideas which might be
helpful in designing experiments, such as dielectric spec-
troscopy, ' based on fluctuating perturbations to study
the properties of membrane proteins. The equations
presented in the Appendices can form the general basis
for developing a qualitative picture of what to expect,
and numerical techniques described elsewhere "" can
be used to model more realistic (and therefore more com-
plex) systems of interest.

Although we have focused in this paper on the effects
of macroscopic, temporal oscillations, the general ideas
developed are also applicable to consideration of spatial
inhomogeneity, and/or fluctuations arising in ensembles
of small systems. ' ' While classical chemical kinetics
has been developed as a predominately mean-field theory,
in which it is assumed that fluctuations occurring spon-
taneously are small and rapidly relaxing enough such that
they may be averaged out, it is beginning to be realized
that in small systems and systems which are not in equi-
librium this may not be the case. Furthermore, the im-
portance of such systems in biology is the current focus
of much attention. We have demonstrated here, by expli-
cit inclusion of environmental nonstationarity in the
equations describing the dynamic behavior of a very sim-
ple enzyme system, that energy-driven fluctuations may
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lead to behavior entirely different from what would be
predicted solely on the basis of time- and space-averaged
values of the parameters governing the system.
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APPENDIX A: THERMODYNAMICS
OF THE INTERACTION BETWEEN AN ENZYME

AND ITS ENVIRONMENT

where

+ ( n H+ . )dp + +R Td ln( L ), (Al)

RTd lnL+ VI dp —MLde —SI dT=dp (A2)

In many (even most) cases, an enzyme operates away
from equilibrium with respect to the reaction it catalyzes.
Within the framework of steady-state enzyme kinetics,
the activities of substrate and product are considered to
be externally defined. Let us, therefore, first consider
how the environmental parameters influence the equilib-
rium of a simple protein which has no catalytic role, such
as depicted in Eq. (1), and then modify this description to
encompass enzymes.

The macromolecule may be viewed as a small, open
thermodynamic system immersed in a bath in which the
intensive thermodynamic parameters are externally con-
trolled. These include pressure p, temperature T, electric
field strength e, and chemical potential of any ligand such
as, e.g. , proton p +, that may have many binding sites on

the protein. A conformational state in this picture con-
sists of a set of molecular configurations which are in
internal equilibrium with one another. For each state
there is a set of extensive parameters which are conjugate
to the intensive parameters. These are, respectively,
volume V, entropy S, polarization M, and number of
bound protons n +.

We wish to determine how a small change in an exter-
nal parameter will influence the state-concentration-
independent (i.e., the basic ) free-energy difference (and
thus the equilibrium constant) between two conforma-
tional states i and j. For clarity, we take these to denote
the left and right states of Eq. (1), respectively. The
differential of the appropriate generalized basic free ener-

gy (denoted by G ) of i (per molecule) is ' ' the
differential of the state-probability-independent part of
the chemical potential of state i plus the chemical poten-
tial of the stoichiometric ligand L [see Eq. (1)] present in
the bulk but not bound in state i,

dG, =dp;+dp
=(V, + VL)dp —(M, +ML)de —(S, +Sl )dT

—(6, S+SL )dT+(b, ; n ~ )dp

+RTd ln(L ) . (A3)

For clarity, we note that V is the partial molar volume of
E*L, and hence contains the contribution of the bound
ligand to the volume of the complex. In other words,
6, V+ VL corresponds to the total volume change ac-
companying the binding. This is likewise for the other
parameters. Equation (A3) may be generalized to

d(b. ;.G )= g [b;)(x)i, +(xL )I, ]dFI,
k

+RTd ln(L) . (A4)

The xj, 's are extensive and F&'s intensive parameters, and
b;~(x)I, =(x;)I, —(x~)&. In this formulation, all of the in-
tensive parameters are considered to be externally defined
and consequently any cyclic process i ~j~i in a station-
ary environment occurs without change in the basic free
energy of the macromolecule (It) dG =0). Using the rela-
tion

5; G =RT ln(k;, L/k;)
=RT in(K, )

=R T ln(p, /p ), (A5)

where k, (k;) is the rate coefficient for transition from
state i to j (j to i) and K,"=(p;/p ) is the ratio of the
probabilities of these two states to exist at equilibrium,
we may write a generalized Van 't Hoff relation for the
effect of changing one Fj, (keeping all others constant) on
K,, (=k, L/k;)

8 lnI(, -

=[6, ( ) xI (+x) L] I( /TR) . (A6)
k FAN

We have implicitly taken the electrical contribution to
the total energy of state i to be given by M;de (change of
the electric field strength at constant polarization). '
This seems most consistent for development of a theory
for the basic free energy of a molecular dipole. Other
points of view developed for ions and ion-pair reac-
tions lead to the same equation.

Note the difference in the treatment of a stoichiometri-
cally binding ligand such as L, where nI =0 in state i and
nl =1 in state j, and a freely associating ligand such as
H+, where n + . represents the average number of pro-
tons bound in state i. In the former case, the free-energy
difference is treated analogously to a chemical reaction
such as A +B =C, where b,G„„,=(p„+pii —IMc). For
proton binding to a protein, this would not be convenient
since every substrate with a different number of bound
protons would have to be explicitly considered separate-
ly. Instead, we treat n +. analogously with V, , S, , M,-,

etc. , i.e., as an average value with a Boltzmann distribu-
tion being maintained at all times. We have assumed that
ligand L does not bind protons.

An equation analogous to (Al) may be written for state
j, and thus

d(E,, G )=(b, , V+ VL)dp —b, , M+MI )de
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In the remainder we will drop the subscript k, and it wiH
be implicit that only one F will be varied from its refer-
ence value, with all others held constant.

In principle, all xL, x;, x~, and hence 5;~x depend on
the value of F. Thus, integration of Eq. (A6) for a finite
change of F yields

lnK;. =ln(K; )p+ f [(b,; x +xL )/(RT)]dF, (Aj)

where (K;~ )p is the equilibrium constant at some reference
state (i.e., with F =Fp).

If the difFerence 6F between F and its reference value is
small enough for the dependence of (b, ; x +xi ) on F in
this range to be negligible, Eq. (A7) becomes

lnK, =ln(K; )p+(b;, x +xL )5F/(RT) . (AS)

Dropping the explicit reference to states i and j, and
denoting 6;~x =Ax@, we may write

K =Kpexp[(hxz+xL)5F/(RT)]=KpgzPL (A9)

with Pz =exp[bxz5F/(RT)] and Pl =exp[xL5F/(RT)].
Thermodynamically consistent rate coefficients are seen
to be

kf =kfpPzPt. , k„=k,pPz (A 10)

m and n are apportionment constants which are a mea-
sure of the fraction of the overall 5F relevant to the for-
ward process and depend on the kinetic details of the
transition. Although not thermodynamically necessary,
it is usually taken that 0 ~ m, n ~ 1. Effects of changing L
on the equilibrium and rate coefficients may be handled
analogously. Since K =KoL, when the reference state is
L o

= 1, and with F =Fo, if we consider that the entire
dependence on the concentration of L is in the forward
process, reduction to the typical kinetic formulation in
which L is a multiplier of kf is possible. This is the way
we will treat the effects of varying stoichiometric ligand
(substrate and product) concentrations throughout this
paper.

When the macromolecule E in question is an enzyme,
we must take into consideration that there may be more
than one transition pathway between any pair of states,
as in Eq. (3). Typically F may have diff'erent eff'ects on
the two transition pathways. Thus, there may be an
inhuence of F on the AGE& due to the transformation of
3 to 8 as well as on the transition from one enzyme state
to another. In this case, the formulation for the ratio be-
tween forward and reverse rate coefficients must be done
separately for each pathway. For the top (a) path in re-
action equation (3), which involves the binding and
release of one molecule of substrate A, we may write

db GP =(Axz+x„)dF+RTd ln(A) . (Al 1)

dbGp=(bxz+xz)dF+RTd ln(B) . (A12)

The bottom (p) path involves the binding and release of
one B from the bath, and

free-energy difference impelling transitions between en-
zyme states is not equal for the a and P paths except
when the overall system is in equilibrium.

In our derivations, we have used a Gibbs equation (Al)
in analyzing the inhuence of changes in environmental
parameters on the enzyme reaction. As we intend to use
the results to describe systems possibly far from equilibri-
um, we must question its appropriateness and describe
those implicit assumptions which will, if reasonable, be
sufficient to warrant our approach. In the case of chemi-
cal reactions, it is necessary (and sufficient) that the reac-
tion rate be sufficiently slow so as not to perturb the
internal Boltzmann partitioning of energy among the
various degrees of freedom other than that of the reaction
itself. Thus, we have assumed that the two conforma-
tional states described in the kinetic model (3) are indi-
vidually in internal equilibrium. That is, the various
configurations making up each conformational state are
at all times distributed based on their individual basic
free energies according to the Boltzmann equation. This
is equivalent to assuming "quasiergodic" behavior for
each individual conformation within the time scale of in-
terest. Furthermore, the correct usage of the kinetic
model for enzyme catalysis requires that all processes not
in a steady state be explicitly denoted. For example, it is
implicit that we consider molecular transport of 3 and 8
to and from the enzyme to be quite rapid relative to the
transitions explicitly written down. If these assumptions
of internal equilibrium are not met a more complicated
diagram, displaying more complex behaviors, is some-
times required for the description of the system (see
also, e.g. , Appendix D). For the purpose of revealing the
basic concepts involved for the interaction between a
nonstationary environment and an enzyme reaction, it is
adequate to consider the two-state model given in Eq. (3).
The results so obtained provide a lower limit to the com-
plexity of behavior to be anticipated.

APPENDIX 8: FIRST-ORDER PROCESS
IN A PERIODIC SQUARE-WAVE FIELD

+ [1—exp[ P„/(2f)]I Q„/P„—, (B2)

where f is the frequency of the field and P„and Q„are
the values of P and Q during the nth half-wave of the in-
put. We define

During any time period in which P and Q are constant,
the analytic solution of the integral equation (36) is

E(t) =E(0)exp( Pt)+ [1—e—xp( —Pt)]Q/P, (Bl)

where E(0) is the value of E at the beginning of the time
period of interest. The effect of a periodic square-wave
perturbation can be analyzed in terms of a series solution
of Eq. (Bl) (see Fig. 9). The value of E at the nth field re-
versal (E„) can be written in terms of its value at the
(n —1)st reversal according to the recursion relations

E„=E„,exp[ P„/(2f)]—
We may identify RT in(EG ) [RT ln(b G&)] as the
pseudo-first-order equilibrium constant which would per-
tain for the a (P) path if the P (a) path were blocked. The

P+ =( A+af++a„++B+pf++p +),
Q+ =(a,~+0,+»

(B3)
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E+

E +F

The instantaneous Aux along each (a and P) branch of re-
action equation (3) is given by Eq. (5). Thus, the integrat-
ed (total) number of net transitions along each branch
during each half-cycle is

J + = of+A ~+a,+ P+ E—z+ 1 —g+

Eo
{0+2)

+ [z+ (af+ A+ +a„+ )
—a„+]/(2f ),

Jp+ = f+B+ + „+ P~ E —z+ 1 —g+
(8&)

If we define

+ [z+(pf+B+ +p, +)—p„+]/(2f ) .

FIG. 9. Illustration of the parameters for the analytic series
solution for the enzyme-state probability in the presence of a
square-wave perturbation. The numerals on the time axis
represent the n value. In the case shown, the relaxation time
during the positive pulse was smaller than during the negative
pulse, and consequently, the average value of (E) after many
perturbation cycles was dift'erent than Eo. Under stationary os-
cillation, the value of E oscillates symmetrically about (E),
from E+ to E

where the + (
—

) subscripts refer to the values during the
positive (negative) phase of the perturbation. Introducing
the terms

Mg =(af p A++a„+ 13f+B—+ —P„+),
N+ =(P,+ —a,+),

(89)

the rate of conversion of A ~B, (J„s ), averaged over
one cycle, is

( J„s) =f [(M+ /P+ )(E —z+ )(1—g+ )

+(M /P )+(E+ —z )(1—g )]/2

+(z+M+ +N+ +z M +N )/4 . (810)

Limiting our discussion to symmetric perturbations such
that 3 =Ho+6~, B=Bo+5~, and F=Fo+5F, the basic
free energies for binding of A and B (driving force along
the a and P branch from left to right, respectively) during
the positive and negative phases of the perturbation are

b G + =+(bx&+x„)5F+RTln( A+5& )+b G o,
g+ exp[ P+ /(2f ) 1 z+—= Q+ /P+ (84) (811)

we may rewrite Eq. (82) in terms of an arbitrary value of
E=Ep typically, the steady-state value of E at the aver-
age environmental conditions in the absence of perturba-
tions. For n =odd,

g [(n + ] j/2] [(n —1)/2]
n. Og+

+g+ [(1—g+ )g z+ +(1—g )z ]

AGp+ =+(bxs+xB)5F+RT ln(B+5B)+6 6~ .

The average rate of dissipation of free energy and ther-
modynamic efficiency may be calculated from Eqs. (34)
and (35), respectively.

We may investigate also the low- and high-frequency
limits of the (lux. Evaluating Eq. (86) as f~0,

X[1—(g g )'" " ]/(1 —g g ),
and for n =even,

)( n /2)

+[(1—g- )z-+(1—g+ )g -z+ ]

X[1—(g+g )" ]/(1 gg+ ) . —

(85) (E+ )LF=z~

and as f~ ~,
(E+)H„=(P+z+ +P z )/(P+ +P ) .

Using these results, we may obtain

( J„s )LF= [ [(Q+M+ /P+ )+N+ ]

(812)

(813)

In the limit that n~~, a stationary oscillation will be
attained such that En =E„+2~ Then, the value of E fol-
lowing a positive (negative) pulse, E+ (E ), is and

+[(Q M /P )+N ]]/4 (B14)

E~ =[(1—g )z +(1—g —)g z —]/(1 —g g ) . (86) (Jqs )HF= I2[(Q++Q )(M++M )/(P++P )]

E(t+ ) =E+ exp( P+t)+z+[1 —exp( —P+t)] . —(87)

In the following consideration, we limit ourselves to the
case that stationary oscillation has been attained. Then,
using the values calculated from Eq. (86), E(t) at any
time may be calculated. During a positive or negative
phase of the cycle

+(N++N )]/4 . (815)

Similarly, the high- and low-frequency-limiting values for
the dissipation, ( 4 ), and efficiency, ( g ) [given as Eqs.
(40) and (41) for the standard set of parameters], may be
obtained. The limiting values for the static-head ratio for
A /B may be evaluated by setting the right-hand side of
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Eqs. (A16) and (A17) to zero and solving for B, taking
A =1 [see e.g. , Eqs. (37)—(39)].

APPENDIX C: EFFECT OF STOCHASTIC
DICHOTOMOUS NOISE

ON A FIRST-ORDER PROCESS

2

Although regular periodic oscillations of parameters
such as membrane potential and metabolite concentra-
tion do occur in biological systems, stochastic fluctuation
is more ubiquitous. ' ' The relation between such exter-
nal "noise" and regular periodic perturbations can be
recognized by writing arbitrary external fluctuations as a
Fourier series of sine and cosine waves. While approxi-
mate solutions for the effects of external "noise" on an ar-
bitrary chemical system can be obtained in the two ex-
treme cases that the correlation time of the noise is either
very large or very small compared to the relaxation time
of the system on which it is to act, ' so far a general solu-
tion has not been obtained. Here, let us consider the case
of Markovian dichotomous noise influencing a first-order
chemical process, a situation for which a general analytic
formulation can be obtained. In this case, only two noise
states are considered.

We have shown that such a case can be modelled by a
single kinetic diagram, ' ' where transitions from + to

noise states are explicitly included. The validity of
this approach was later independently confirmed by
Chen. The diagram (3) becomes

EA
]

(C 1)

a, EA

For convenience 3+, A, B+, and B are here con-
sidered to be subsumed into the coefficients af+, af
pf + and pf, respectively. The lateral transitions
represent the change from one set of external parameters
to the other, +~—.The overall kinetic diagram can be
solved for the stationary-state probabilities, cyclic fluxes,
thermodynamic driving forces, and free-energy dissipa-
tion. The rate coefficients for the lateral transitions can
be assigned in two ways, as described previously. "' For
modeling noise which is not subject to feedback influence
by the system, a case we have termed autonomous noise,
and will treat here, these transition constants are in-
dependent of the states from which they originate, and
may all be taken to be equal. When this is the case, the
diagram does not in general conform to the principle of
detailed balance when A =B, but requires an average
concentration ratio different from unity between 3 and B
to attain zero net flux. This implies the continual flow of
energy from the environment into the system. The fluxes
and forces for each of the six individual cycles shown in
Fig. 10 are given below,

4 5 e

FIG. 10. The six possible cycles, delineated by boldface lines,
resulting from Eq. (B1). Only cycles 1, 4, 5, and 6 contribute to
the net flux, but all cycles contribute to the dissipation.

J, = [f l(4X ) ](af +p„pf a„—+ ),
X, =RT ln[(af+P )/(a ~Pf )],
J,= [f '/(4& ) ](af+a„—a„+af ),
X2 =R T ln[(af+a„)/(a f —a + )],
J3 [f'I(4& )](pf +p pf p+—)—
X3 R T ln[(pf +p ) I(pf p„+ )]

J4=[f l(4X)](pf+a„af p +)—

(C2)

(C3)

(C4)

(C5)

X6 =R T ln[(af P„)/(a„Pf )],
with

X=f (P++P )/2+f(P+P ) .

The individual state probabilities are

E~=[f (a„++P„++a„+P„)
+f(a„~+P,+ )Pg ]IX,

E'A+=[f (af++pf++af +pf )—
+f( f+a+pfz)P+]/X .

The total net flux of conversion of A to B is

( J~~ ) =J) —J4+Jq+ J6,
and the rate of free energy dissipation is

(C&)

(C9)

(C10)

(Cl 1)

(4)= g XkJk.
k =1

(C12)

Once again it is instructive to consider the low- and
high-frequency limits for (Jzz ). As f~0, the limit is

X4=RTln[(Pf+a„)/(af P„+)],
J5=(1/X)[(f /4)+(fP /2)](af+p„+ —a„+pf+),

(C6)
X~ =RT ln[(af+P +)/(a +Pf+)]
J6=( 1/X)[(f /4)+(fP+ /2)](af p„—a„pf ),

(C7)
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+(af p„—a„pf )P+ ]l(2P+P )

(C13)

and as f~~
(JAB &f =[(af++af )(P„++P„)—(a„++a„)

&&(Pf++Pf )]/[2(P+ +P )] . (C14)

These limits may be shown to be identical to those ob-
tained for regular square-wave perturbations as Eqs.
(B14) and (B15).

The force acting on the various cycles may be decom-
posed as done in Eq. (35), in order to define an input and
output. However, here, a natural (and equivalent)
definition of efficiency may be given to be

1 ~~AB &(PA PB)f[&@&—(~AB &(PA PB)]

fluctuation-induced excess clockwise flux was that b
should be greater than unity. This produces a situation
where, under stationary condition E=E ' A &)E *=E B
with 5F =0 and p = 1. p = ( A /B )'/ parametrizes the
concentration (A and B) dependence of the transition
rates, b is what we called the bias factor, and b ) 1 indi-
cates that the substrate binds tighter to the enzyme than
it does to the product. This differential binding energy
has been referred to by Jencks, particularly in the con-
text of membrane transport, as the interaction energy. If
we consider b to be large, the occupancy of states E* and
EB becomes very small, and these then may be treated as
steady-state intermediates. Rigorously, if the following
conditions are met,

(b2$ —1/2+be) ) 1 bP +1 2/

(I 2y+ ' "+b) & 1 fp by-'"
over the entire range of p and P of interest, diagram (Dl)
may be reduced to

APPENDIX D: REDUCTION OF A FOUR-STATE
TO A TWO-STATE ENZYME

DIAGRAM —STEADY-STATE APPROXIMATE
E'A ) (D3)

In previous publications "" we have considered a
four-state enzyme diagram and the effects of fluctuations
and oscillation s. This diagram, along with its rate
coefficients may be written as

E

where the effective rate constants are

2pp 1 /2 /( g 2y
—1 /2 +b

b 2y
—1/2/( b 2y

—1/2+ b )

(D4)

b 1/p (D 1)

p —b 2y 1/2 —
1 f( b 2y1

/2+ b)

p b2y
—1/2f(l 2y+1/2+b)

/
EB

tx(
-1/2

(
E*A

In the limit that b ~ ~, we find

af =Pp, a„=1, Pf = I/p, P„=1)) (D5)

where it was assumed Ax~~ =0 for the output reaction
(and so we simply write QB =p). It was found that the
primary requirement for obtaining oscillation or

which gives us (as in the text) rrt = 1 and p =0, i.e., all of
the I' dependence of the a branch in the forward rate
coefficient af and that for the p branch in p„.
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