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Front propagation into unstable states.
II. Linear versus nonlinear marginal stability and rate of convergence

Wim van Saarloos
A Tcfc T Bell Laboratories, Murray Hill, New Jersey 07974

(Received 21 December 1988)

In an earlier paper, we developed a general physical picture for the linear-margina1-stability

mechanism governing the dynamics of front propagation into linearly unstable states. The main

conclusion from this approach and the expressions for the resulting front velocity are similar to
those obtained along different lines for the space-time evolution of instabilities in plasma physics
and Quid dynamics with the so-called pinch-point analysis (a special type of saddle-point analysis).
However, as stressed by Ben-Jacob et al. [Physics 14D, 348 (1985)], it is known from the work of
Aronson and Weinberger [in Partial Differential Equations and Related Topics, edited by J. A. Gold-
stein (Springer, Heidelberg, 1975); Adv. Math. 30, 33 (1978)] on a class of simple model equations
that exceptions can occur to the linear-marginal-stability velocity selection. In this paper, we gen-

eralize these observations and incorporate such exceptions into our general picture of front propa-
gation into unstable states. We show that a breakdown of linear marginal stability occurs if the
linear-marginal-stability front profile becomes unstable against a particular nonlinear "invasion

mode. " If this happens, a larger front speed is selected at a point at which the front profile is now

marginally stable against this nonlinear invasion mode. We therefore refer to this as the nonlinear-

marginal-stability mechanism. (Ben-Jacob et al. call it case-II marginal stability. ) We present the

results of detailed numerical studies that support our identification of the nonlinear-marginal-

stability mechanism, and present the first examples of it for fronts in pattern-forming systems. In
the neighborhood of a transition from linear to nonlinear marginal stability, the wavelength of the

pattern generated by the front is only weakly dependent on the nonlinearities. We also analyze
front propagation properties close to the threshold for instability at a pitchfork bifurcation. We
conclude that linear marginal stability generally holds near a continuous transition (corresponding
to a supercritical or forward bifurcation point), while front propagation close to a first-order transi-

tion (corresponding to a subcritical or inverted-bifurcation point) is generally governed by nonlinear

marginal stability. These results are of importance for recent applications of the various approaches
in Quid dynamics and other fields. Finally, we derive an expression for the rate of convergence of
the front velocity to its asymptotic value. For the class of equations studied by Aronson and Wein-

berger, our expression reduces to a rigorous result by Bramson [Mem. Am. Math. Soc. 285, 1

(1983)],but it differs from the one often quoted in the pinch-point or saddle-point analysis. We ar-

gue that the latter one is only valid in a limited region of space, and show how to extend the usual

analysis to arrive at our result. Several experimental systems to which our results are relevant are
discussed.

I. INTRODUCTION

In the last few years, the problem of front propagation
into unstable states has received renewed experimental
and theoretical interest in the physics community. '

One class of systems that exhibits these types of fronts —a
propagating region of space where the properties of the
system vary sharply in a certain direction —is one whose
time evolution, following a quench into an (absolutely)
unstable state, is dominated by the propagation of well-
developed fronts or domain walls separating the unstable
state from some other state. Such behavior has, for ex-
ample, been studied in fluid dynamics experiments on
Taylor-Couette" ' and Rayleigh-Benard' systems, in
liquid crystals, ' ' and in a simple chemical wave exper-
iment' (as discussed later, fronts in excitable media' '
are difFerent). Typically, such experiments need to be

carefully controlled, since the state into which the front
propagates is absolutely unstable, meaning that, viewed at
a Gxed position, perturbations are found to grow.

A second class of systems for which the study of the
propagation of perturbations into an unstable state is
relevant, consists of those that are convectively unstable.
In this case, a perturbation not only grows in time but is
also convected away, and this convection is strong
enough to make the system locally stable. As a result,
the long-term evolution of a particular convectively un-
stable system will depend on its size, the boundary condi-
tions, and the presence of noise. ' ' Likewise, these fac-
tors will determine the extent to which the system exhib-
its well-developed fronts, by which we mean the (non-
linear) transition region between the convectively unsta-
ble state of the system and some other, usually stable,
state of the system. However, the propagation of such
fronts is governed in a number of cases by the same
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mechanism of growth and convection as the one control-
ling the linear perturbations, and therefore the study of
front propagation is relevant for understanding convec-
tively unstable systems as well. Clearly, since convective-
ly unstable systems are stable locally (at a fixed posi-
tion), they usually do not only occur under carefully
prepared experimental conditions, but also arise naturally
in various fields of physics in experimentally less well-
controlled situations. While early theoretical studies of
the linear time evolution of convectively and absolutely
unstable states were done mostly in the field of plasma
physics, their relevance to fluid mechanics ' and
pattern selection —especially at the transition from a
convective instability to an absolute instability or in
relation to the sensitivity to noise ' '—has recently be-
come recognized as well. Thus the study of front propa-
gation into unstable states (convectively as well as abso-
lutely) is an important ingredient for understanding a
variety of problems.

It should be kept in mind that in this paper front prop-
agation into an unstable state is always understood to
mean front propagation into a linearly unstable state.
Apart from the experiment by Hanna et al. ' on waves in
an iodate arsenous acid system, most chemical waves do
not fa11 in this class. The essential feature leading to trav-
eling pulses and wave trains in excitable media' ' is bi-
stability, and the relevant fronts for these situations are
those between two stable states. We will discuss the
differences in some more detail in Sec. VII of this paper.

In this paper, I will mainly concentrate on the dynami-
cal theory for front propagation into unstable states that
leads to the marginal-stability picture first hypothesized
by Dee, Langer, and co-workers. ' This theory is based
on the intuitive idea that most properties of fronts propa-
gating into an unstable state can be obtained from an
analysis of the dynamical evolution in the leading edge of
the front profile, i.e., the region where the deviations
from the unstable state are small enough that the equa-
tions can be linearized. The formulation of my earlier pa-
per, which builds on a reformulation and extension of
some of the ideas of Dee and co-workers, ' and Shrai-
man and Bensimon, identifies the general properties of
front propagation into unstable states that drive the ve-

locity of initially localized fronts to a special value v*,
the so-called marginal-stability velocity. This name
derives from the fact that at v*, the front profile also
changes stability (front profiles with velocity v ) u* are
stable, with u ( u* unstable).

Another approach to the dynamical evolution of small
perturbations around an unstable state was developed
since the late 1950s by several workers in plasma phys-
ics. The method, summarized elegantly in the book by
Lifshitz and Pitaevskii, is based on an asymptotic
analysis of the Green's function of the linearized evolu-
tion equation using contour deformation techniques for
the inverse Laplace-Fourier transform. In the language
appropriate to this formulation, the long-time behavior
is determined by a "pinch point" in the complex plane, at
which two roots of the dispersion relation "pinch off" the
integration contour (the pinch point is a special type of
saddle point). Besides differences in language between

this approach and the marginal-stability theory, there is a
difference in focus —in the pinch-point analysis, usually
less attention is paid to the importance of initial condi-
tions, and the asymptotic behavior for t ~ ~, x fixed is
derived; in the marginal-stability formulation, however,
the requirement that initial conditions be sufficiently lo-
calized emerges naturally' ' ' and the analysis focuses
on the propagation of the leading edge moving with the
front, i.e., the limit t~ ~, x~ ~, x/t fixed. Neverthe-
less, in first order the equations for the pinch point are
exactly the same as those for the marginal-stability point,
and one can even translate the conditions arising in one
formulation into the language of the other. These con-
nections, as well as the relative merits of one formulation
over the other, will be the theme of a future paper. As
we shall see, however, the two approaches yield different
expressions for the rate of approach to the asymptotic be-
havior, due to the different way in which the limits are
taken. The limit x, t~ ~, x/t fixed considered in the
dynamical approach is the natural one for front propaga-
tion.

Both the dynamical theory and the pinch-point for-
mulation are based on an analysis of the linearized
dynamical equations; henceforth, we will therefore,
within the context of the dynamical approach, refer to v

'
as the linear-marginal-stability value. However, as Ben-
Jacob et al. point out, the work by Aronson and Wein-
berger' shows that there are explicit examples of cases in
which the fronts propagate with speeds u ( ) v

*
)

different from the linear-marginal-stability value v . For
the particular type of equations considered by Aronson
and Weinberger' (first order in time, second order in

space), Ben-Jacob et al. showed, however, that the ex-
istence of a different front speed v can also be related to
a stability property of the fronts. For speeds v & v, front
solutions are unstable to an isolated mode of the fully
nonlinear equations. While they refer to this situation as
"case-II marginal stability, " I will therefore call v the
nonlinear-marginal-stability value.

It appears that one of the main advantages of the
dynamical approach ' ' ' ' over the pinch-point analysis
is that the condition under which the linear analysis
breaks down is much more readily understood in the first
approach. Indeed, except for a remark by Lifshitz and
Pitaevskii, the importance of initial conditions is usual-

ly hardly mentioned in the pinch-point literature, while
the analogue of nonlinear marginal stability has, to my
knowledge, never been considered within this formula-
tion. Since the most promising applications of the
theory are to systems whose dynamics is certainly non-
linear behind the front, a proper understanding of these
effects is quite important.

That nonlinear marginal stability has physical
relevance and is not a pathological mathematical excep-
tion, is illustrated by the chemical wave experiment of
Hanna et al. ' The wave fronts they study propagate
with the nonlinear-marginal-stability speed v, which is
much larger than the value of v . Also, recent experi-
ments by Cladis et al. ' on wall motion in smectic-C*
liquid crystals in an electric field are believed to show a
crossover from a linear-marginal-stability regime to a
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nonlinear-marginal-stability regime with increasing field
strength. Although I will concentrate in this paper on
the general mechanism of front propagation, I will show
in Sec. X with several examples that the work in this pa-
per is experimentally much more relevant than one might
guess on the basis of just these two examples. Indeed, as
we will discuss, nonlinear marginal stability generally
occurs near subcritical bifurcations, and the distinction
between linear and nonlinear marginal stability sheds new
light on several fundamental instabilities in fluid dynam-
1cs.

In my earlier paper on the dynamical theory of linear
marginal stability, the exceptions arising from nonlinear
marginal stability were not discussed in detail; remark (4)
about it in Sec. IV is actually incorrect. In this paper, we
will show that nonlinear marginal stability can be readily
implemented into our formulation. Indeed, a reforrnula-
tion of the arguments presented by Ben-Jacob et al. for
the specific equation they studied gives a very simple in-
tuitive picture for the origin of nonlinear marginal stabili-
ty. While our approach may be viewed as an immediate
extension of the exact results for equations that are of
first order in time and of second order in space, we espe-
cially focus on the underlying dynamical mechanism and
its generality that allows us to apply it to more compli-
cated cases. In particular, for arbitrary problems whose
relevant fronts uniformly translate solutions of the type
P(x —Ut), our approach allows us to predict whether or
not nonlinear marginal stability occurs from an analysis
of the nonlinear profiles P(x —Ut) This wil. l be illustrated
with an explicit example of a fourth-order partial
differential equation. We will also present evidence that
the same mechanism governs the transition to nonlinear
marginal stability for pattern-forming fronts. However,
without an explicit analysis of the nonlinear time-
dependent problem, our approach is not yet powerful
enough to predict explicitly whether nonlinear marginal
stability occurs in a given pattern-forming problem at ar-
bitrary values of the parameters. Fortunately, near the
instability threshold of a pattern-forming system, the dy-
narnies often reduces to that of an amplitude equation for
which the essential front propagation behavior is known,
and this enables us to make explicit predictions in the
physically most relevant regime.

The rate of approach to the asymptotic front velocities
v* and v has not received much attention, neither in the
pinch-point formalism nor in the marginal-stability
theory. In this paper, we also show that this rate of ap-
proach can be derived easily with the dynamical theory.
For linear marginal stability, we get an algebraic ap-
proach U(t)=v" —3/[2(k')'t], with (k')* the spatial de-
cay rate of the profile. Specified to the Fisher-
Kolmogorov equation, this expression agrees with the re-
sult derived rigorously by Bramson, but it differs from
the usual pinch-point (saddle-point) expression. For non-
linear marginal stability, we argue that the velocity re-
laxes exponentially fast in time, U(t) =U =De ', and
show that this is indeed found in numerical simulations.

The plan of this paper is as follows. In Sec. II, we first
summarize the essentials of the dynamical theory
developed earlier. We then discuss in Sec. III the excep-

tion due to nonlinear marginal stability in the context of
the dynamical approach, and give two examples of it in
Sec. IV. The numerical results in support of our picture
are presented in Sec. V. In Sec. VI we discuss the impli-
cations for the behavior close to bifurcation points. We
then briefly sketch the main differences between the type
of fronts we consider here and those arising in excitable
media in Sec. VII, while in Sec. VIII we turn to an
analysis of the rate of convergence. After we point out
some simplifications of the theory in Sec. IX, we discuss
in Sec. X the relevance of this work to fluid dynamics and
other fields.

II. SUMMARY OF THE DYNAMICAL APPROACH

The propagation of a front into an unstable state differs
significantly from the well-known propagation of an in-
terface or front into a metastable state. When a system in
a metastable state is slightly perturbed, it relaxes back to
that state; this implies that for a phase transformation to
occur, fluctuations have to be pushed over some barrier.
Accordingly, the speed of an interface propagating into a
metastable state is determined by a balance between the
driving force and the dissipation or the kinetic barrier in
the nonlinear interfacial region. In the picture underly-
ing the dynamical approach, front propagation into un-
stable states is very different: since virtually any small
perturbation around the unstable state will grow out by
itself, most of the important front dynamics already
occurs in the leading edge of the front, where the devia-
tions from the unstable state are small and described by
the linearized equations. The dynamics of the nonlinear
region of the front often just follows, as it were, that dic-
tated by the dynamics in the leading edge of the profile.

Suppose we want to determine the front propagation
into an unstable state /=0 of some field P. For long
times, the profile in the leading edge will become of form
P-e ' '+'"", with ro(k) given by the linear-dispersion re-
lation. To facilitate the comparison with the literature on
space-time evolution of instabilities, we have included a
factor i =&—l in the exponent. This factor was not in-
cluded in Ref. 9; formulas from that paper have to be
transcr1bed by putting khere k9 nd ~here Ek9, 1.e., the
real parts of quantities in Ref. 9 become the imaginary
part here. The definition of all other complex quantities
has been changed likewise. To study the approach to the
asymptotic form e '"'+' and the selection of the
relevant k* and co(k*), it is, as before, advantageous to
transform to a complex field u defined by P(x, t) =e'"' ".
The spatial derivative q =Bu/Bx of u clearly plays the
role of a local wave number k and the derivative —u,
that of the local growth rate cu, and hence both these
derivatives are expected to approach constant values for
long times [note that co and k, and hence u, can be com-
plex: the imaginary part of k is associated with the decay
of the envelope and the real part with the oscillations,
since Ree '""=e ™"cos(Rekx) ]. Before specifying the
dynamical equation that shows how and under what con-
ditions the local wave vector q and the velocity v are
driven towards the linear-marginal-stability values k
and v, it is useful to first summarize our intuitive under-
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standing of the dynamics in the leading edge, based only
on our insight into the behavior of profiles consisting of a
sum of terms of the form e

Since k in P-e '"'+'" is in general complex, we have
to analyze the dynamical selection of both its real and
imaginary parts. The selection of a particular "mode"
Rek can be understood as follows. For fixed values of
k'= Imk, the growth rate Imago(k) as a function of
k '—=Rek will have a maximum at some value of k ", as
sketched in Fig. 1 (the difference between the cases in
which the maximum is at k"=0 and k "WO is discussed in
Ref. 9, p. 222, and in Ref. 10). Thus, if we consider a su-
perposition of profiles of the form e ' '+' " with all the
same value of k' ( =Imk), so that the spatial decay rate of
the envelope is the same, the long-time appearance of the
profile will be dominated by the mode k" corresponding
to the maximum growth rate co'=Imago, i.e., for which
Bm'/Bk"=0 and 8 co'/(Bk") &0. For understanding the
long-time dynamical selection of a value of k' governing
the spatial falloff of the envelope, it therefore suffices to
consider for each value of k' only the maximum growth
rate mode —this amounts to taking k as an implicit func-
tion of k' through the requirement Bco'/Bk'=0. For
these maximum-growth-rate profiles of the form
e '"'+', the envelope velocity U =co'/k' is thus a func-
tion of k' only. Since for propagation into an unstable
state the maximum growth rate co' must be positive in the
limit k'~0 (the "profile" then approaches a spatial
Fourier mode), U(k') diverges for k'~0. Thus U(k') is a
decreasing function of k', and we will assume that U(k')
is of the form sketched in Fig. 2, with a minimum at
some value ( k')*. Since the asymptotic spatial decay for
a given velocity U will be given by the smallest value of k',
we will initially concentrate on the branch of solutions
corresponding to the smallest values of k', indicated by
the solid line.

In reality, the envelope of a front will, of course, be
smooth. However, to bring out the essence of the dynam-
ical mechanism, it is easier to imagine a hypothetical
front consisting of two pieces of the form e '"'+' with
different values of k' (governing the spatial decay) and ve-
locity U(k')=co'/k'. As sketched in Fig. 3, the dashed
piece drops off slower than the piece drawn with a solid
line (k z & ks ), but in agreement with the behavior of the
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function U(k'), the profile A also moves faster than 8.
Nevertheless, as the figure demonstrates, the slowest
moving part of the profile expands in time, i.e., becomes
dynamically dominant. It is clear from Fig. 3 that this
property is due to both (i) the fact that the fastest of the
two profiles has the slowest spatial decay, and (ii) the fact
that the part with the fastest spatial decay is to the right
of the one with the slower spatial decay. Regarding (i),
the connection between slope and velocity, note that by
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FICJ. 2. Typical behavior of U(k') for front propagation into
an unstable state. In this plot k' is an implicit function of k'
through the requirement ibsen'/Bk"=0. The behavior of the
fronts corresponding to points A and B is shown in Fig. 3.

Re k

FIG. 1. Two types of possible behavior of the growth rate co'

as a function of k" for k' fixed. For front propagation into an
unstable stable, the maximum values of cu' will be positive for
relevant values of k'.

FICx. 3. Intuitive illustration of velocity selection. (a) The

lower part of the envelope of some front profile, drawn with a
solid line, corresponds to point B in Fig. 2. It moves slower
than the dashed part (corresponding to point 3 in Fig. 2), but
falls off steeper. The figure illustrates how the crossover point
moves up in time, so that the profile becomes more and more
dominated by the slowly moving part. This is a result of the de-

crease of the velocity with the slope of the profile, i.e., the fact
that U„& U& while k„(k&. (b) If the slowest profile B is not the
one to the right, the fastest profile emerges. Thus the selection
illustrated in (a) only occurs if the initial conditions are
sufficiently localized.
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taking k„' close to kz, one may easily convince oneself
that the slower profile generally emerges as long as
dv(k')/dk'(0. As argued above, the negative slope of
v (k') is a general feature of front propagation into unsta-
ble states. Thus, if we imagine a smooth front as a collec-
tion of pieces with different values of k, this simple pic-
ture immediately suggests that the front velocity will con-
tinue to slow down as long as dv/dk'(0 (near v*, the
asymptotics is actually somewhat more complicated, and
v approaches v" from below; see Sec. VIII). Observation
(ii) above, viz. , the fact that the slowest profile dynamical-
ly dominates because it is in front of the faster one is fur-
ther illustrated in Fig. 3(b). Here, we show that if the
two pieces are interchanged, so that the faster one is to
the right, the faster one dominates the long-time dynam-
ics. These observations imply that initial conditions are
important: only if the initial profile P(x, t =0) drops off
faster than e ' ' will the slowing down of the velocity
continue all the way to the minimum value v* on the
curve. Unless stated otherwise, we will henceforth al-
ways assume that the initial conditions are sufticiently lo-

i
calized, i.e., fall off faster than e . In this case,
therefore, the above argument shows that v' will be the
asymptotic front velocity. From the definition of
v(k')=to'/k' with Bcv'/Bk"=0, it is easy to show that
this minimum is given by '

co Bco Bco
v ak" ak

(2.1)

These equations determine the linear-marginal-stability
velocity v* as well as the wave number k* at that
point. As mentioned earlier, the name marginal stability
refers to the fact that the point defined by Eq. (2.1) is also
the point at which the stability of the front profiles
changes. Indeed, the quantity Btv'/Bk' (with Btv'/Bk'=0)
plays the role of a group velocity v, for small perturba-
tions in the local value of k'. We can think of the effect
of virtually all perturbations that decay faster than the
envelope of a front traveling at speed v ) v * as giving rise
to a small change in the local wave number k' in the lead-
ing edge. Since on the branch drawn with a solid line in
Fig. 2 vg, & v, the front profiles are linearly stable simply
because the front out runs the perturbation. Equation
(2.1) therefore locates the point where v, =v, i.e., where
fronts are marginally stable as perturbations just keep up
with them. As we shall discuss in Sec. III, in some cases
an exceptional type of perturbation can nevertheless
render the profiles unstable for velocities v ~ v', this will
correspond to the nonlinear-marginal-stability scenario.

The above intuitive line of reasoning is supported by a
more precise analysis of the leading-edge dynamics of
smooth front profiles. For concreteness, we only summa-
rize here the results for front propagation in systems de-
scribed by a partial differential equation that is of first or-
der in time but of arbitrary order in the spatial deriva-
tives. In Sec. VIII, where we discuss the long-time con-
vergence in more detail, we will show that the analysis is
essentially unaltered for equations that include higher-
order time derivatives.

For the systems under consideration, substitution of
P=e'"'"" into the linearized equation leads to a dynami-

cal equation of the form u, = f—(q, q„, . . . }, where

q =t}u/Bx is the local wave number. To obtain a dynam-
ical equation for q, it is most convenient to write q as a
function of u'=Imu. Since u' is a measure of the en-
velope of the front, this amounts to a transformation to a
comoving frame. For q(u', t), we then obtain [cf. Ref. 9,
Eq. (3.21)]

I

q, = . —f, q'q„+Xq . (2.2)

Xq„„ (2.3)

The behavior of Eq. (2.2) is consistent with the dynamical
picture discussed earlier. Indeed, we can make contact
with the earlier analysis by noting that for slowly varying
q(u't), the terms Xq are small, while f'(q, q„, . . . )

=f '(q, 0,0, . . . ) =tv'(k)
~ I, ~. Thus the first term

f'/q'=tv'/k' is essentially the envelope velocity v and
Ref~=Geo'/Bk' is essentially the group velocity. With
these identifications, it is then easy to demonstrate that
the dynamical mechanism envisioned earlier is contained
in the first term on the right-hand side, and that indeed
for localized initial conditions the front velocity is driven
towards the linear-marginal-stability value. In Sec. VIII,
we will also derive the long-time asymptotics from this
equation.

III. NONLINEAR MARGINAL STABILITY

The analysis sketched above, which shows why the
front speed approaches the linear-marginal-stability
value, is based on the assumption that the dynamically
relevant branch v (k") is the one drawn with a solid line
in Fig. 2, i.e., the one corresponding to the smallest root
k' solving the equations

co Bco 8 co &0.k' Bk" (Bk")
(3.1)

The reason that we consider this branch the dynamically
relevant one is that the asymptotic spatial decay

lk I x —tk~x
Q=C, (v)e ' +Cz(v)e ' + . will be dominated
by the root with the smallest value of k', k, say, whenev-
er the prefactor C, (v) of the exponential is nonzero. For
uniformly translating profiles of the form P(x —vt), a
general counting argument does support this intuitive
idea for arbitrary values of the velocity v. Nevertheless,
it may happen that at some particular value v, one has

C, (v }=0, (3.2)

so that the asymptotic spatial decay of the steady-state
front profile is not given by the smallest root k i on (3.1),
but by the next root kz, with k2)k', . This situation is
depicted in Fig. 4(a).

The dynamical implications of this can be understood
immediately within the same picture as the one used be-
fore to understand linear marginal stability. Since, as il-

Here the subscript u denotes a differentiation with
respect to u ', and Xq stands for

Xq =— q'f (q—, q„,q„„, . . . )q„„q'f (q,—q„,q„„, . . . )
ll tl
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lustrated in Fig. 4(b), the front moving at speed U drops
off faster in space than any front profile with velocity
U )v*, this profile will overtake all other ones moving at
smaller velocity, as Fig. 4(c) illustrates. As before, we
have drawn the profiles with sharp breaks in the deriva-
tive, so as to bring out the effects more clearly, but again
the dynamical selection illustrated in the figure is obvi-
ously valid quite generally: If there is a front profile with
steady-state velocity U", satisfying (3.2), then all fronts
with velocity U ( U will be unstable against "invasion" by
the profile with asymptotic speed U . This will lead to a
breakdown of linear marginal stability, and we expect
that the asymptotic speed of fronts emerging from

V(t ')

yt

Y

(b) w V~&V &V' V=V

(C)
4J

UJ

LLI

FIG. 4. Illustration of nonlinear marginal stability. (a) For
all velocities v )u*, the asymptotic spatial falloff of the en-

velope of some front profile is given by the values of k' deter-
mined by the solid line, except at the velocity v". At this value,
Eq. (3.2) holds and the asymptotic part is given by the value of
k' corresponding to the dot, The solid line denotes the branch
of solutions that is stable to perturbations; the cross-hatched
line denotes the branch that is unstable to the "invasion mode. "
Except at u, the dashed branch of v(k') has no dynamical
significance, since there are no front profiles whose asymptotic
spatial decay is governed by these roots k'. (b) Qualitative
features of the front profiles corresponding to velocities
v*(v & v and v =v . The profile with velocity u drops off
fastest in space. (c) Illustration of velocity selection due to non-
linear marginal stability, in the same spirit as in Fig. 3. As a re-
sult of the behavior sketched in (b), front profiles corresponding
to velocities u & v (dashed line) are unstable to an invasion by
the profile moving with velocity v . For long times, the relevant
front velocity is therefore u . P, =P„„+F(P), F(0)=0, F'(0) = l, (3.3)

sufficiently localized initial conditions becomes U instead
of U*. Both in the case of linear marginal stability and in
the case of nonlinear marginal stability, the velocity
selection of initially localized fronts can therefore, ac-
cording to our picture, be summarized as follows: the
selected front velocity is the one corresponding to the
maximum value of k' that describes the asymptotic spa-
tial falloff of a front profile.

Clearly, the existence of U is again connected with sta-
bility arguments, since all profiles with velocity U (U are
unstable to the "invasion mode, " while those with veloci-
ty U & U" are stable [it is easy to convince oneself of this
with a picture similar to Fig. 4(c)]. Thus U is also the ve-
locity at which front profiles are marginally stable against
this "invasion mode. " However, while these dynamical
implications can be understood completely within our
picture of the leading-edge dynamics, the actual oc-
currence of a case in which the smallest root k'& does not
dominate the asymptotic spatial decay of a profile, de-
pends on the properties of the whole front —it can only be
determined by a global analysis including the leading
edge as well as the nonlinear region behind it. We there-
fore refer to v as the nonlinear-marginal-stability value
to distinguish it from the linear-marginal-stability value
v', which can be calculated from a linear leading-edge
analysis.

At first sight, one might wonder why the instability
against the invasion mode was not automatically included
in the earlier analysis summarized in Sec. II. The reason
is that the arguments presented there and in Ref. 9 are
based on the assumption that in the leading edge, q, is al-
ways smoothly varying with the velocity dependence
v(q') described approximately by the solid branch in
Figs. 2 and 4(a). The invasion mode violates this assump-
tion. Similarly, one should not conclude that the
nonlinear-marginal-stability profile moving with U is un-
stable since v~, ) v on the dashed branch of the curves
U (q') in figs. 2 and 4(a): the spatial decay of the relevant
perturbations does not correspond to smooth perturba-
tions in k' along this dashed branch. Rather, the eigen-
functions corresponding to the relevant perturbations fall
off with values of k' close to those on the solid branch at
U, and the nonlinear-marginal-stability profile is stable to
these perturbations. See Appendix B for details.

Although the physical picture for nonlinear marginal
stability is quite compelling, I am not able to demonstrate
its validity in general. In particular, although I will show
explicitly that nonlinear marginal stability can occur for
envelope fronts —those whose dynamics remains intrinsi-
cally time dependent so that the front does not approach
the uniformly translating type P(x —vt) —I do not know
how to prove this mathematically. For equations whose
relevant front solutions are uniformly translating profiles
P(x —vt), the change of stability at v =v can, however,
be shown quite generally. This is discussed in Appendix
A. For this class of fronts, the velocity selection rule for-
mulated above also reduces to rigorous results derived by
Aronson and Weinberger' for equations of the type
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IV. TWO EXAMPLES OF THE TRANSITION
TO NONLINEAR MARGINAL STABILITY

When is nonlinear marginal stability likely to occur?
A general answer to this question cannot be given, but an
example given by Ben-Jacob et al. is quite indicative,
and so we will summarize it here.

Consider the equation

a2~ + ~ (b+y)(1 —y) .
Bt g~' b

(4. 1)

This equation admits two homogeneous stable steady
states, /=1 and P= —b, and one unstable state, /=0.
When b & 1, however, the state P= b is actu—ally only
metastable, and as a result a domain wall between this
state and the absolutely stable state /=1 moves in the
direction of the metastable state for b & 1. (For b ) 1, the
situation is reversed, since the equation is invariant under
the transformation b ~1Ib,g~ PIb )Its—speed . is

1 —b
(2b)1/2

(4.2)

For b close to 1, front propagation into the unstable state
of this equation is governed by linear marginal stability,
and hence the front speed is v*=2 [this value follows
from applying Eq. (2.1) to (4.1)].

Consider now profiles that are initially of the form
sketched in Fig. 5, in which the profile consists of a front

FIG. 5. Three stages in time of a front profile of Eq. (4.1), il-
lustrating how nonlinear marginal stability can occur for strong
asymmetry (b small). The initial profile consists of essentially
two pieces: a first front between the unstable state /=0 and the
tnetastable state P= —b with speed v =v*, and a second one be-
tween P= band the absolutely —stable state /=1. When the
latter wall travels faster, U„, & v*, the leading edge is invaded by
the second wall and the profile evolves to the situation on the
right. There, the front propagates with speed U )U*.

and our picture is equivalent to the interpretation of
these results discussed by Ben-Jacob et al. In fact, the
rule formulated above may be viewed as the postulate
that the velocity selection criterion' derived for (3.3)
holds quite generally.

Since the actual occurrence of nonlinear marginal sta-
bility in models more complicated than Eq. (3.3) is, at
present, impossible to predict analytically except close to
bifurcation points (see Sec. VI), it is useful to have an in-
tuitive feeling for when one should expect to be in the
nonlinear-marginal-stability regime. We therefore ex-
plore this in Sec. IV, before turning to a discussion of the
numerical results.

between the unstable state /=0 and the metastable state—b, followed by a wall between P= b—and the stable
state P= l. When the two are far apart and b is close to
unity, the latter domain wall will, in view of (4.2), propa-
gate slower than the initial front, and so the initial front
will remain undisturbed. However, when we decrease b,
the second domain wall will eventually overtake and des-
troy the initial front, since v ~ ~ for b~0. This sug-
gests a crossover from linear marginal stability to non-
linear marginal stability for small enough b, because the
second domain wall starts to play the role of the "in-
vasion mode" envisioned earlier.

This is indeed what happens. For large x, a front
P(x —vt) propagating into the instable state /=0 with—Kl x —K2xconstant speed u, falls off as tb =C, e ' + C2e ', with

u —(u —4)' v +(u —4)'
K=,K~=

2
'

2

However, as Ben-Jacob et al. point out, for

( 2b ) 1/2+
( 2b )

—i /2

(4.3)

(4.4)

one can obtain the exact front solution

1 —tanh qx
2 2

(4.5)

with

q=K), ~
&b &2,

q=K„O&b «-,', b)2. (4.6)

Clearly, for 0 & b & —,', and b ) 2, these special solutions
are just the nonlinear front profiles that satisfy (3.2) and
so they locate exactly the values of b where nonlinear
marginal stability sets in. In other words, in this exam-
ple, front propagation into the unstable state is, for
0 &b & —,

' or b )2, governed by nonlinear marginal stabil-
ity with u given by (4.4), while for —, & b & 2 it is
governed by linear marginal stability with v

*=2.
To put these findings into perspective, let us write the

last term on the right-hand side of (4.1) as
P+(b ' —l)P —P Ib Thus we se.e that the effect of the
nonlinear term P !b is to decrease (locally) the growth
rate Bpldt with respect to the linear terms. For b & 1,
however, the P term increases the local growth rate in
regions where P) 0. When b ' —1 is large enough, this
increase in the growth rate of the nonlinear region be-
comes so significant, that the dynamics in this region
starts to drive the growth in the leading edge, and a tran-
sition to marginal stability occurs. In all examples I
know of, the transition to nonlinear marginal stability is
similarly related to an increase in the local growth rate of
the nonlinear region.

For partial differential equations of second order, like
those of the form (3.3) with a simple analytic form for
F (P), the nonlinear-marginal-stability velocity u can
sometimes be calculated exactly. The reason is that the
condition that the asymptotic decay of the profile is
governed by only one mode of the form e '" effectively
implies that this profile is the solution of a first order or--
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82
(4.7)

dinary differential equation. Several approaches make
implicit use of this observation, but I have never seen
this point discussed explicitly. We now illustrate this
by deriving v for an equation that will turn out to be im-
portant to understanding the behavior near bifurcation
points (Sec. VI),

Since general front solutions tIl(x —vt) of Eq. (4.7) fall off
Klx —K&x

as P=C, e ' +Cze ' with Kz)E, , we see that the
above solution satisfies the nonlinear-marginal-stability
condition (3.2), C, (u )=0, for d ) —,

'v 3, while for
d (—,v'3 it is just a special, but essentially uninteresting,
exact solution. Therefore, for localized initial condi-
tions, the asymptotic front speed of Eq. (4.7) is

v*=2 for d ~ d, =—'V3 (4.16)
Note that for any value of d, this equation is very similar
to Eq. (4. 1) with b =1: it is invariant under a change of
sign of P, and always has the unstable state /=0 and
two absolutely stable states, P=+P„with P, =[d+(d
~ 4)1/2] /2

Uniformly translating profiles P(x —vt) of (4.7) must
obey

d2—u = +/+de —Pdx
(4.8)

—uh =h +/+de —PdP
(4. 1 1)

The existence of two constraints (4.10) on the solutions of
this first-order differential equation means that solutions
wi11 in genera1 only exist at selected values of the velocity
u. Indeed, upon substitution of the ansatz h =a, P
+azP +a3$ into Eq. (4. 11), we find the exact solution

h =( —p, p+p )/v 3,
2(x —Ut))p /'+3

provided v and d are related by

(4.12)

(4.13)

As mentioned above, we expect the nonlinear-marginal-
stability profiles P(x —u t) to obey a first-order
differential equation of the form

d =h(P) . (4.9)

In order that solutions of this equation correspond to
fronts of (4.7) that approach $ =0 or P =+(t, for
x ~+~, h needs to satisfy the constraints

h (0)=0, h(+P, ) =0 . (4.10)
Since solutions of (4.9) obey d Pldx =h (dh/dg), the
requirement that these solutions also satisfy (4.8) implies
that h has to satisfy

[as follows from applying (2.1) to (4.7)], and

—d+2(d +4)'
v'3 for d )d =—'&3 (4.17)

These results are summarized in Fig. 6. We note that for
positive d, the effect of the term dP in (4.7) is to enhance
the local growth rate over that given by the terms linear
in P. As we discussed before, it is therefore not surpris-
ing that we find a transition to nonlinear marginal stabili-
ty for d suSciently large and positive.

The generalization of Eq. (4.11) to Eq. (3.3) reads

—uh =h +F(P) .
dh

d
(4.18)

V. NUMERICAL RESULTS

To check the validity of our picture for more compli-
cated systems, I have studied front propagation numeri-
cally in three model equations. The first one is a straight-
forward extension of Eq. (4.1),

y
' ~+4(b+~)(1-~)

2 g 4 (5.1)

I have not been able to obtain the general solution of this
equation; as a result, I can not obtain v for arbitrary
functions F(P). As the above analysis illustrates, howev-
er, a simple ansatz leads to an exact solution in a number
of important cases.

Since an equation of the form (4.7) (generalized to a
complex field) often emerges as the amplitude equa-
tion ' for pattern-forming systems close to the instabili-
ty threshold, it is not surprising that nonlinear margina1
stability is also found in these systems. Before studying
this connection, I will first present my numerical results.

d +2(dz+4)1/2
v'3

or, equivalently,

u+2(v —4)'/
v'3

(4.14a)

(4.14b)
y%

According to (4.13) and (4.14b) the asymptotic falloff of
these solutions is as P-e, with

v —(u —4)'
2

+ (
2 4)1/2

2

for d ~ —'&3

for d) —,'&3 .

(4.15a)

(4.15b) FIR. 6. Selected front speeds for Eq. (4.7). The transition to
nonlinear marginal stability occurs at d =

—,&3.
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Since both the second- and fourth-order terms are stabil-
izing, the behavior of this equation for small y is essen-
tially similar to that of Eq. (4.1). However, as discussed
in Ref. 10, the equation exhibits a dynamical transition at
y= —,', in the symmetric case b =1, so that for y= —'

12

fronts propagating into the unstable state /=0 generate a
periodic array of kinks and antikinks. Although non-
linear marginal stability also occurs in the regime

~ ~ ~

egime y) —„,
I will for simplicity only report results typical for the case
r& —'

]2'
For the uniformly translating profiles P„(x —Ut)

relevant for Eq. (5.1) with y & —', one can predict the
nonlinear-marginal-stability value U (b) by solving the or-
dinary differential equation for P„,

—
U = —y + (b +$„)(1—Q„), (5.2)

and requiring that the coefficient C, in the large x behav-

ior P„=g C e ' (Imki &Imkz & . ) vanish [cf. E .
For y ( —,', , one finds that there is indeed a transi-

tion to nonlinear marginal stability at a value of b close to
—,', the critical value for the case y=0 discussed before
(for simplicity, I only consider 0&b & 1). The predic-
tions for v for y =0.08 resulting from this procedure are
indicated in Fig. 7 by triangles.

I have also studied the actual front velocity by numeri-
cally solving the full time-dependent equation (5.1) for

5.0,

2.8—

various values of b and y, using an adaptation of Dee's
program that employs a semi-implicit finite-difference al-
gorithm. In most of these simulations, the initial condi-
tions were taken to be P(x, t =0)=0.1e ", and the
boundary conditions used were $„=$„„„=0at x =0 and

The measured values of the front velocity for y =0.08
are plotted as dots in Fig. 7. As one can see, there is
good agreement between the predicted values of v and
the observed values of the front velocity.

Further evidence for the correctness of the mechanism
underlying nonlinear marginal stability is shown in Fig.
8, where I draw the leading-edge profile observed in a nu-
merical solution of Eq. (5.1) with y=0.08 and b =0.1.
At the resulting velocity of v =2.715, a linear analysis
identifies three modes e ' that decay for x ~ ~
(Imk )0), an imaginary one k, =0.438i and a pair
k = —k*=kg 3 1 .45 +2.05i. In Fig. 8, the solid line is a fit
of the last two modes to the first two data points on the
left. Clearly, the fit is excellent over the whole interval,
showing that the slow mode e ' (shown with a dashed
line) is indeed absent in the leading edge. This again
confirms that we have properly identified the mechanism
for nonlinear marginal stability.

Figure 8 also illustrates that the stable uniformly mov-
ing profiles P„(x —

U t) can show oscillations about /=0,
in contrast to the profiles for y =0. The latter are always
unstable if they do not fall off monotonically, i.e.,
overshoot the state /=0.

I now turn to a discussion of the other two model equa-
tions that I studied numerically, and which exhibit, to my

nowledge, t e first examples of nonlinear marginal t-
i ity in a pattern-forming system. In view of the above

results and the general arguments presented before, I first
investigate the model equation

By B' B4= —2 — +(e—1)P+bP

For b =0, this equation reduces to the well-known Swift-

& 24—

2.2—

2 —V" y=0

— V" y =0.08

0.1
I

0.2
I

0.5
b

FIG. 7. Predicted and observed values of the velocity of
fronts in Eq. (5.1) with y=0.08. The triangles indicate the pre-
dicted values based on solving Eq. (5.2), as described in the text.
The ddots are the velocities observed in numerical solutions of
Eq. (5.1). The dotted line is the analytic result for U at y=O,
Eq. (4.4). The values of u* for y=0 and @=0.08 are indicated
on the left.

f3H
I

00

FIG. 8. Plot of the leading edge of the profile observed in E .
(5.1) for =0.08y= . , =0.1. The observed velocity is v =2.715.

e serve in q.

The crosses denote the values of the profile on the grid points in
the simulation, while the solid line is a fit to the two modes k&

and k3 (see text). The dashed line illustrates the slowest mode
1
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U
*= —(2+ & I +6e)( —1+& I +6@)'/

3&3
(k")*=

—,'(3+&1+6e)'

(k')* = —( —1+&1+6@)'/I

2&3

(5.4)

(5.5)

Since it is observed that nodes where p =0 never disap-
pear once they are created, one can calculate the wave-
length k of the pattern generated by the front from
the conservation-of-nodes ' condition 2tr/A, *=to"*/u*
—(k"*). This yields in the linear-marginal-stability re-
gime

Hohenberg equation, which plays an important role in
understanding Rayleigh-Benard convection and other in-
stabilities. For e(0, the state /=0 is unstable for a
band of wave vector around 1. As a result, for e) 0 the
equation admits a family of steady states that are periodic
with a wavelength of about 2m. The amplitude equation
describing Eq. (5.3) in the limit e~0 will be discussed in
Sec. VI.

It is well known from numerical ' as well as rigorous
analytical studies that front propagation into the unsta-
ble state /=0 of the Swift-Hohenberg equation (b =0) is
governed by linear marginal stability. According to (2.1),
the velocity u' and wave number k* are in this regime
given by
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(5.6)

I have investigated the equation for b )0, and found
indeed a transition to nonlinear marginal stability at
some nonzero value of b. A possible transition is most
easily located by monitoring the local value k in the lead-

ing edge of the profile, since in the linear-marginal-
stability regime this local value is constant and equal to
k given by (5.5), while immediately above the transition,
k will be a linearly increasing function of b. I have deter-
mined the local value of k by first locating the nodes in

the leading edge to get Rek; Imk can then be obtained
from the function values at the midpoints between the
nodes. Figure 9 shows my results for Imk at e= —,'; the

transition from linear to nonlinear marginal stability at a
value b, =1.S2+0.08 is immediately obvious. The error
bars in this figure indicate the variation in k in that part
of the leading edge where the extrema in P range between
0.002 and 0.0002 in absolute value. Note that in the
linear-marginal-stability regime (b 51.5) the measured
values of k' appear to be below k'*. This is due to the
importance of corrections to the exponential behavior in
this regime. Indeed, at the linear-marginal-stability point
two roots coincide, so that P is asymptotically of the form

P —C, e '" "+Craxe ', which implies that the locally
measured value of k behaves as k* —i /x (see Sec. VIII
for further details). In the nonlinear-marginal-stability
regime, on the other hand, the front profile is purely ex-
ponential for large x, and the estimated error in k is of
the order of the size of the dots. In Fig. 10, I plot the
leading-edge values of Imk and the velocity U observed on
the curve v(k') defined by the requirement t)cu'/t)k"=0
(cf. Fig. 2). Again, we see how in the nonlinear-

FICx. 9. The measured value of k' in the leading edge where
the maxima of P are between 0.0002 and 0.002 in absolute value,
for solutions of Eq. (5.3) with e= —'. The solid line indicates the
linear-marginal-stability value. See text for an explanation why
the error bars for b ~ 1.5 are large. Results are based on numer-
ical solutions with 19600 grid points at a spacing of 0.03. The
time step was 0.01 and measurements were made at time
E =205.
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FIG. 10. v as a function of the observed values of k' in the
leading edge, for Eq. (5.3) with e= —'. The solid dot marks the
marginal-stability value, and the open dots the observed veloci-
ties and values of k' at the indicated value of b. The curve is a
plot of the function v (k') obtained by solving Bcu'/Bk"=0. The
inset depicts the observed velocities as a function of b.
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marginal-stability regime b ) b the rC

e y t' e second
a ing

inset; since v

is also

sta ility point value given b E .n y q. (2.1), one gets

v =v*+ Re
2k dk

(bk) + (5.7)

where Ak" and Ak' are to lowowest order related by

Im
d2

dk
Ak "+Re Ak'= (5.8)

The latter result is obtained b e"p 'g

hE . (57) d
Two snapshots of the front

2.75 ho i Fiig. 11; o ho h

CD

n in i; w t e nonlinear part of

the front tends to sho s arpen for increa
h 1

Hoh
s u ied the analo

oh b tio ofE . i

a'y
Qx 2

a'y +(e—1)+dP —P' . (5.9)

2m 2~ 1 d2co
Re (b,k")—

2
AV+

V

=O(hk)', (5.10)

w ere we used Eq. (5.7) for b, u.
second-order term

o e cancel-

11, «hk
ly translating fro t

~

p

igure 13 shows the d
o the emerging

5.9) with e= —'. A
e ata for v and k f

s before, the u
'

crea
with d is born

crease o ve quadratic increa
orn y our simulations.
th 1 t h

ran ei
c ange in A. o

cha
d

b' 'b'u' 60%
in eed ver

e er

o and 20%%uo, respectivel A.e y, varies by

The mmeasured values of k ' as a f
ualitativel th

ares own in

y, e results rese bl
e transition to

m et ose

d =0 63+
1 th A. f }1

v, aso the

differ for d )d f
generated by the fr

rom the value A.
* i ~ ~ ~

stabilit o
th nd side aroun

' '

y point given by E . (2.1,q. . ),
nd the marginal

40 50
i

60 70
I

80

0.36—

0.34—

I

70
T

SO
I

QO 100

0.30—

0.28—

0.26—

0.24—

/

/
/

/

/
/

/
/

/

/
/

/

/
/

FIG. 11. To
X

op: Snapshot of the fr
o the Swift-Hohenb

e ront profile in the
o

' - en erg equation, E .
e extension

e= —.As Figs. 9 and 10 show is rs ow, this value is
and

marginal stabi1i ity. Bottom:
ran-

he sharpness of the fronte ront at this value ofb.

/

/
/

l

0.5

0.22

il

0.20
t il

I

0.0 1.0 1.5

FICx. 12. A. As Fig. 9, but for E .or q. (5.9) instead of E . 5.o q. 5.3).



WIM van SAARI.OOS 39

(a) t
/

t

21"

2.5—

2.3—

0 05

(b)

0.99—

0.98—
il 0 ~ ~ ~

l

0.5
I

1.5

FIG. 13. (a) Measured front velocity for Eq. (5.9) with E= —'.
The horizontal line denotes the linear-marginal-stability value.
The arrow indicates the transition from linear to nonlinear mar-
ginal stability. (b) The wavelength A, of the pattern generated
behind the front for Eq. (5.9) with e= 4. These measurements

are made after a time of 205, at which point the wavelength was
still found to be decreasing slightly, especially near d =0.6.
Note the scale of the graph: the deviation from the expected be-
havior is less than 0.4%%uo.

only 2% in the parameter range we investigated. In fact,
with such small variations, my numerical simulations are
not accurate enough to test the cubic variation of A. with
Ak, as the pattern wavelength was still slowly changing
when the measurements were made at time 205.

The numerical results presented in this section provide
convincing evidence for the correctness of our picture for
the nonlinear-marginal-stability mechanism. Unfor-
tunately, especially for pattern-forming systems like (5.3)
and (5.9), we see at present no way to predict the oc-
currence of nonlinear marginal stability analytically far
away from threshold.

VI. BEHAVIOR CLOSE TO BIFURCATION POINTS

Although our understanding of the mechanisms of
front propagation into unstable states appears to be quite
complete, we cannot in general predict the occurrence of
nonlinear marginal stability for pattern-forming systems
like (5.3) and (5.9) without performing a fully nonlinear
analysis of the dynamics of the relevant equations. For-
tunately, ho~ever, this type of front propagation is most
relevant close to a threshold for instability: experimental
systems are most easily quenched into an unstable state
when one works close to the instability threshold. More-
over, in the important case of systems with slowly vary-
ing (control) parameters, global instabilities occur when
the systems are locally weakly unstable in an extended re-
gion. Close to an instability threshold, many aspects of
pattern-forming systems can be understood by studying
the appropriate amplitude equation. ' The amplitude
equation that describes the near-threshold behavior of
systems with a pitchfork bifurcation '—including Eq.
(5.3) and (5.9)—is a complex extension of Eq. (4.7). Let
us therefore first rewrite Eq. (4.7) as

(jrA ()2' +eP+c, P —c2$, cz )0, (6.1)
Bx

and reformulate our results in a language more suitable
for a bifurcation analysis. For positive e, this equation

aa
(6.2)

it is easy to show that the state /=0 is the absolutely

-0.25
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Cecp
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FIG. 14. Bifurcation diagram of the steady states 4) =const of
Eq. (6.1). Solid lines denote stable states and dotted (dashed)
lines unstable states whose front propagation is governed by
linear (nonlinear) marginal stability. (a) Supercritical bifurca-
tion for c, &0. (b) Subcritical bifurcation for c, & 0. To the left
of the arrow, the steady state /=0 is the absolutely stable state,
to the right of it this state becomes metastable.

reduces, upon rescaling of P, x, and t, to an equation of
the form (4.7) with d =c&/Qecz. In many applications,
however, the equation arises in the above form with e a
small control parameter that can change sign, and c& and
c2 of order unity. The nature of the bifurcation at @=0 is
then determined by the sign of c&. For c& negative, the
homogeneous steady state /=0 that is stable for e. & 0 bi-
furcates to two stable states /%0 at e=0; this so-called
supercritical (forward) bifurcation ' is depicted in Fig.
14(a). For c2 & 0, the bifurcation is a subcritical ' (invert-
ed) one: now there are three steady states /=const in the
range —

—,
' &ec2/c& &0. The two stable states for e &0

are drawn with a solid line in Fig. 14(b). To depict the
unstable states, we have used the convention that they are
drawn with a dashed line if fronts propagating into these
states are governed by nonlinear marginal stability, while
a dotted line is used when the fronts are governed by
linear marginal stability. For e) 0, the results shown in
Fig. 14 follow directly from those derived earlier for Eq.
(4.7): for the supercritical bifurcation (c, &0), fronts
propagating into the unstable state P =0 are always
governed by linear marginal stability (provided the initial
conditions are sufficiently localized), and U*=2i/e. If
the bifurcation is subcritical, however, nonlinear margin-
al stability always governs front propagation into the un-
stable state /=0 sufficiently close to threshold. The tran-
sition to marginal stability occurs at a value
ec2!c,=(i/3/2) =

—,'. Thus the transition towards linear
marginal stability will occur toward smaller e for decreas-
ing c, , i.e., when the bifurcation becomes more weakly
first order.

Regarding the stability of the stable states for e & 0, we
note that with the aid of the fact that this equation can be
derived from a Lyapunov functional

'2
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] EC2 3c)&0, ——(
2 4

(6.3)

The fact that this velocity is negative for ec2/c& (—
—,',

expresses that in this range the domain where /=0 grows
rather than shrinks, since /=0 is the absolutely stable
state. The profiles P(x —

U t) can be obtained from Eq.
(4.13}.

Although these predictions for the subcritical bifurca-
tion will be quantitatively correct only for weakly subcrit-
ical bifurcations (c, small) that are accurately described
by Eq. (6.1), I expect this picture to be qualitatively
correct in general. For a supercritical bifurcation, the
lowest-order nonlinearity reduces the growth rate away
from the unstable state, and the analysis of Sec. IV shows
that linear marginal stability will be operative for
sufficiently small e, with U -&e. For a subcritical bifur-
cation, a front velocity v —&e must be incorrect for small
e, since the finite driving force from the nonlinear terms
will yield a finite front velocity U for e~O This .effect is
stronger, the more first order the transition is.

These results bear immediately on a large class of
pattern-forming systems that exhibit a stationary bifurca-
tion whose near-threshold behavior is governed by the
complex amplitude equation

stable state for ec2/cf ( —
—,', ; for larger e, the other

stable state with /%0 is the absolutely stable one. For
e(0, the analysis of Sec. IV still yields an exact front
solution, and since the interfacial profile between two
stable states is unique, the velocity is given by the same
formula. Taking into account the difFerent scaling of
space and time in Eqs. (4.7) and (6.1), one finds for the ve-
locity of the front between P =0 and the stable state /%0,

c,
[—1+2(1+4ecz/c, )'i ],

C2

c, , =Q(4/3)ecz+ k3 =k~ =k5 =0 . (6.5)

Let us apply these results to the two extensions of the
Swift-Hohenberg equation that we introduced. In Ap-
pendix D, I show that for Eq. (5.3) one has

16b
C ] p7 5 1

&
k 4 &

k ] k 3 k 5 0 (6.6)

and for Eq. (5.9)

C ] d C 2 9 k, =k 3
=k 4

=k 5
=0 ~ (6.7)

Thus the above results imply that the transition to non-
linear marginal stability occurs at

b, (e)= &27/38+ O(e' ), (6.8)

when Eq. (5.3) is used, and

d, (e)=&(40/27)e+ (6.9)

when Eq. (5.9) is used. In Fig. 15, I compare these pre-

2.0—

other terms, viz. , of order e ~ . Hence, whenever one of
the coefftcients k3, k&, and k5 is nonzero, Eq. (6.4) does
not reduce to Eq. (6.1) in lowest order, and we can only
conclude that the transition occurs at a critical value
c, ,(e}=O(e' ). For k3=k4=k~=0 and c2&0, on the
other hand, Eq. (6.4) is, in lowest order, nothing but the
extension of (6.1) to complex P; one can convince oneself
that the transition in the complex equation occurs at the
same parameter values as in the real equation (6.1). We
thus get

1.2—

—i k&e +kz —(k3+k4)I+I'
Bx Qx 3 Bx

—(k3+k~)N + 0 ~ ~ (6.4) 0.4

Note that terms even in the complex amplitude N are
generally absent for translationally invariant systems, as a
translation corresponds to a multiplication of 4 by a
phase factor e '~. The coeKcients k, through k5 are
chosen so as to conform to the notation by Cross et al.
When for a particular system c, &0, earlier work as well
as the above arguments show that front propagation is
governed by linear marginal stability for small enough e.
From the above discussion, we anticipate that the transi-
tion will occur for c, of order e' (provided c2&0).
Since spatial variation in N is on the scale e ', we see
that in this regime, where c&=O(e' ), the terms
~N~ M&/Bx and @ 8@*/Bx are of the same order as the

0.125 0.25 0.375 0.5

FIG. 15. Values of the dimensionless quantities b, ( e)
(squares) and d, ( e ) (triangles) at which the transition from
linear to nonlinear marginal stability occurs in Eqs. (5.3) and
(5.9), as obtained from the numerical simulations. The uncer-
tainty in these values is of the order of the size of the symbols.
The arrow indicates our prediction for b, (@=0), the solid line
our prediction (6.9) for d, (e) to lowest order in e, and the
dashed line the approximation (D23) for b, (e). Each numerical
data point was determined on the basis of a plot such as Fig. 9
for numerical solutions at time 205 with 19600 grid points, a
spacing of 0.03, and a time step of 0.01.
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dictions with my numerical results for a number of values
of e. Clearly, the lowest-order prediction for d„shown
with a solid line, agrees to within the numerical error
with the numerical data for e ~

—,'. The data for b, (e) also

appear to be consistent with our result for @=0, which
is indicated by the arrow. We also plot with a dashed
line the approximation obtained by neglecting the
k4 ~

tp
~

t)4/t)x term so that c, , =Q(4/3)ec2 (the
coefficient cz is given in Appendix D). Although the
coe%cient k4 is rather small, this approximation only ap-
pears to be reasonably accurate for quite small e.

VII. DIFFERENCE WITH EXCITABLE DYNAMICS
IN CHEMICAL WAVES

As mentioned in the Introduction, apart from the ex-
perirnents by Hanna et al. ,

' most aspects of traveling
waves in chemical systems are not associated with front
propagation into linearly unstable states, but with bista-
bility. Although these differences can be extracted from
the literature, ' ' we feel it worthwhile to underscore the
distinction some more.

The general structure' ' ' that leads to excitable dy-
namics and chemical waves is the following model for
two coupled chemical reactions:

e =e D, +f(u, w),Bu 8 u

Bx

Bw =e D~ +g(u, w),
Bx

(7.1a)

(7.1b)

Wp-

Wrnin--

(o}

f {u,w= wo)

' A~C

(c}
f {U~ W Wmin~

B

FIG. 16. (a) Schematic behavior of the function f used in
model (7.1) for excitable behavior. The solid line indicates the
values of u and w where f vanishes. (b) Assumed behavior off
as a function of u for fixed w. (c) When w =w;„as indicated in

(a), two zeros of f(u, w =tUo) merge. For wo (w„;„,f (u, wo)
has only one zero.

with e(&1. The presence of the small coeKcient in front
of the time derivative of u in (7.1a) implies that the dy-
namics of u is on a much faster time scale than that of w.

In lowest order of approximation u is therefore driven
rapidly (on the fast time scale) to one of the stable zeroes
of f (u, w) while w essentially remains unchanged. Typi-
cally, it is assumed that the zeroes of f (u, w) fall on a
curve in the u-w plane such as the one sketched in Fig.
16(a). The branches on which 3 and B lie are supposed
to be stable with respect to small perturbation in u, so
that f ( u, w = const) is of the form sketched in Fig. 16(b).

For simplicity, we illustrate the basic ingredients that
lead to traveling pulses in the simplest case where Dz =0.
Suppose w is initially constant. As argued above, u will

rapidly be driven to one of the stable zeros of f (u, w).
Suppose also that u is driven to point A in Fig. 16(a) in
one region and to point B in the other region. In general,
one of these states, say 3, is metastable, while the other
one (B) is stable. Therefore, a frontlike wave will start to
propagate into state A. Clearly, at this level we en-
counter front propagation into a metastable state due to
bistability instead of front propagation into a linearly un-
stable state.

On the slow time scale, w is changing according to Eq.
(7.1b); thus the value of wo in Fig. 16(a) is slowly drifting
in time. Consequently, points 3 and B are slowly moving
up or down the curve, while the front solution between
these two states adiabatically follows this time depen-
dence. We refer to a detailed discussion of the ensuing
dynamics to Refs. 18 and 19, and focus only on one par-
ticular aspect of relevance to the rest of this paper. Sup-
pose g in (7.1b) is such that w is decreasing in time, and
follow w till the value w;„corresponding to the
minimum of the left branch of zeros of f ( u, w)—see Fig.
16(a). At this point, f (u, w =w;„) is of the type
sketched in Fig. 16(c). Since the point 3 is now unsta-
ble, one can view this particular front between A

' and B'
as a front propagating into an unstable state. We have al-
ready encountered such an example where a stable and
unstable point coalesce before in Sec. VI [Eq. (6.1) for
ecz/c i

= —
—,'], and one can show that the front velocity

is just continuous and smooth upon approaching this
point. In practice, this particular aspect is not of much
relevance, since as soon as w is driven slightly below this
minimum, the term f on the right-hand side of (7.1a) be-
comes nonzero, and u is driven rapidly to a value close to
B', this is the dynamics most relevant to excitable
media ' '

VIII. APPROACH TO THE ASYMPTOTIC VALUE

We will now derive the rate of approach of the front
velocity to the asymptotic linear-marginal-stability value
U *. Apart from work by Bramson on equations of the
form (3.3), not much attention has been paid to this ques-
tion. While our analysis applies only to the leading edge
of general front propagation equations, our expression is
consistent with one of the rigorous results by Bramson
in the special case of Eq. (3.3). Our expression is different
from the one usually given in the pinch-point
analysis.

It is useful to first note the following. For a profile
moving at an arbitrary velocity, the asymptotic special

Ik
I

X Ik&X
decay of a profile is of the form P =C, e +C2e
+ . - . However, the linear-marginal-stability point is
exactly the point where the root k' is degenerate (two
roots coincide), and this implies ' that the spatial falloff
at the velocity U* is P =C, e'" "+Craxe'" "+ . . Upon
writing xe ' =e ' '", we see that this implies that in
the leading edge, the local wave number q =Bu /dx
defined before Eq. (2.2) will vary for large x as

(8.1)

In Sec. II, we wrote the local wave number q as a func-
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tion of u ' to bring out the structure of the equation for
general front profiles. However, in considering the
lowest-order terms in expanding (2.2) around the linear-
marginal-stability value, we can return to a comoving
variable x ' =x —

U *t since to lowest order u ' =k ' x '

+O(lnx'). Furthermore, (8.1) shows that spatial deriva-
tives q can be neglected compared to the term propor-
tional to q„ in X (in this and Sec. IX, the subscript x will
denote a partial differentiation with respect to x ). Thus
upon writing q =k*+p(x', t), the dominant terms from
Eq. (2.2) are [cf. also Eq. (3.26) of Ref. 9]

u= . Im( ,'f*—p+f"p, )
1

(k')*

1 1dcu
(k')* 2 dk

Im —— (p ip—)

t2

1+0
2(k')*t

(8.7)

Since this is the velocity in a frame moving with speed
U*, the final result for the front velocity is

Pt =
fqq ~ =k "PPx fq ~ =k*Pxx (8.2)

3
U =U

2(k')*t
(8.8)

As explained just before Eq. (2.2), the function
f(q, q„, . . . ) is obtained from substituting the ansatz
P=e'"' '" into the linearized dynamical equation. This
implies, however, that there are various relations between
the derivatives f ~ „„f ~ „„,etc.—in fact all informa-

X

tion about the linearized equation is contained in the
dispersion relation tv(k), and in Sec. IX, we will indeed
show that [cf. Eq. (9.4)]

1 1 d co

q=k* 2 qq
g

2 dk2q=k*

We can therefore write (6.2) as

(8.3)

CO

pt
1

ppx 2 pxx (8.4)

1 x'
p(x, t)=, gx' t

g(0)= —i . (8.5)

Equation (8.1) shows that the relevant-time-independent
solution should be p = —i /x', and indeed it is easy to ver-

ify that this is a steady-state solution of Eq. (8.4).
Equation (8.3) is a complex version of the well-known

Burgers equation. As in the Burgers equation we ex-
pect that the long time decay of p(x, t) towards the solu-
tion p= —i /x' will be governed by a self-similar solution
of the form

It is interesting that this expression only depends impli-
citly on the dispersion relation cu(k) through (k')*. Note
also that U approaches U' from below due to the partial
cancellation of the first and second term on the right-
hand side of (8.2). Thus the naive statement of Sec. II
that the velocity gradually slows down to U' is incorrect
for long times.

A few comments are in order. First of all, although
our derivation started from Eq. (2.2) which is only valid
when the dynamical equations involve first-order time
derivatives only, one can easily convince oneself that
higher-order time derivatives would not affect the simi-
larity solution (8.5). Hence the results (8.8) should hold
for more general equations as well.

Furthermore, Eq. (8.8) has been derived in the leading
edge only, and it is not a priori clear why the rate of con-
vergence of the velocity should be the same everywhere
on the profile. Nevertheless, Bramson has proved pre-
cisely this for uniformly translating profiles of Eq. (3.3),
governed by linear marginal stability. In other words, he
has shown that with localized initial conditions,
P(x+v(t), t) converges to a steady-state profile P, (x)
uniformly in x. For u (t), he finds u (t) =2 —3/2t + .
Since (k')*=1 for equations of the form (3.3), our result
(6.8) is consistent with Bramsom's rigorous result. Our
expression and the result of Bramson for (3.3) are in
disagreement with the expression for the long-time
asymptotic of the profile P often quoted in the pinch-
point analysis, ' and a similar expression obtained by
Kamenskii and Manakov,

—]/2 tk x —ice t-t e (8.9)
The unique function g that satisfies the boundary condi-
tion g(0) = —i turns out to be the following exact solu-
tion of (8.4):

p(x, t)= —,+1 d co

dk2

—
1

x
(8.6)

Of course, this solution is only physically relevant when
the second term is small compared to the first, i.e. , for
x ' It « 1 (remember that x ' is the coordinate in a frame
moving with velocity v*). We can now obtain the en-
velope velocity in this comoving frame, defined by
v = —Imu, /Imq =Imf (q, q, , . . . )/Imq. Upon expand-
ing about the marginal stability point (2.1), we get with

f (q =k) =co(k), (8.3) and (8.6) to lowest order

which implies

1
V =U

2(k')*t
(8.10)

We believe that this is due to the fact that, in spite of
claims to the contrary, Eq. (8.9) is not valid uniformly
in x. Indeed, Eq. (8.9) is also inconsistent with the spatial
dependence one expects because two roots coincide,
P-xe'" ". In Appendix C, we discuss this in more de-
tail, and show how Eqs. (8.6) and (8.8) appear to emerge
from a more careful analysis in the pinch-point approach.

I have tested the above predictions through numerical
simulations. In Fig. 17, I plot u versus t for Eq. (4.1)
with b =1. The numerical results clearly favor the ex-
pression derived by Bramson and me over Eq. (8.10). In
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We note finally that the convergence to the asymptotic
velocity is very different in the nonlinear-marginal-
stability regime. Indeed, since the "invasion mode" re-
sponsible for nonlinear marginal stability corresponds to
an isolated unstable mode for profiles with velocities less
than u, we generally expect an exponential relaxation to-
wards U,

1.97
v =U +De (8. 1 1)

1.96

1.95

with a relaxation rate 6 which will depend on the initial
conditions. For example, when the nonlinear-marginal-

ik1x
stability profile overtakes a profile that falls off as e
and whose speed is v, , a simple analysis in the tails shows
that the relaxation rate is

6=k', (U —v, ) . (8.12)

1.94—

I

0.02 0.04
I I I

0.06 0.08 0.1
I

0.12

FIG. 17. Front velocity U as a function of 1/t for Eq. (4.1)

with b =1. The dots are our data points measured at /=0. 05,
the squares the ones at /=0. 5. The solid lines are the predic-

tions of Eqs. (8.8) and (8.10}. The simulations were performed

with 3600 grid points with spacing 0.08 and time step 0.01.

these simulations, I have also checked Bramson's result
that the velocity converges uniformly in x, by comparing
the front velocity observed at the point where
P(x, t) =0.05 with the one at P(x, t) =0.5. The latter data
are only plotted with squares for t ') 0.06; for longer
times, these data fall right on top of the dots. Data for
Eq. (5.1) with y=0. 08, b =1 are presented in Fig. 18; al-
though the convergence to the asymptotic result appears
to be somewhat slower (possibly because for y close to —,', ,
three roots are nearly equal), the data are reasonably con-
sistent with Eq. (8.8).

To illustrate this, we plot in Fig. 19 in[U (t) —
U ] versus t

from numerical solutions of Eq. (5.1) with y =0.08,
ik1 x

b =0.25, and with initial profiles that fall off as e
The behavior is clearly consistent with Eq. (8.11), and the
measured values of the slope agree within about S%%uo with
the values predicted from (8.12), except for the data at
k', =0.78 for which U, is close to v, where the discrepan-
cy is about 50%. We think that this is due to the ex-
istence of long transients, as well as the discrepancy be-
tween the numerical value and predicted values of U .

IX. SIMPLIFICATION OF THE OPERATOR L
IN EQ. (2.3)

In Ref. 9, I concentrated my analysis on the first term
on the right-hand side of Eq. (2.2), the idea being that this
would be correct as long as the linearized operator X
would be stable. I pointed out that this stability could be
checked explicitly for any given equation.

I have only realized later that, in fact, X has quite a
simple structure: the requirement that X be stable is ac-
tually nothing but the requirement that we always pick
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FIG. 18. As Fig. 17 but for Eq. (5.1) with b =I and y=0.08.
The solid line is our asymptotic result (8.8).

o I I

12 16 20 24 28 32
TIME

FICx. 19. Plot of 1 [ (tn) —UU "] vs time to illustrate the ex-
ponential decay towards U . The different data correspond to
runs with different initial conditions, which were of the form

P cc exp( —k 'x ), with k ' as indicated.
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the absolute maximum of co' as a function of k" in solving
(2.1b), Bcv'/Bk"=0 for fixed k ". With hindsight, it is obvi-
ous that some simplification should occur: essentially
all necessary information about the linear dynamical
equation we started out with, is contained in the disper-
sion relation to(k}. Although we perform a nonlinear
transformation P

=e'"' '" to bring out the general prop-
erties of the equation, the terms X should nevertheless be
simply related to those of cv(k). We now show this ex-
plicitly.

When considering linear perturbations 5q around a
solution q = k, we get for X, upon transforming back to
the (comoving) x' coordinates as in Sec. VIII,

Bq'
l d N

dk'

~

~

( i—) df ( i—) d co

q- 3f aq3 3t dk3q=k
(9.4)

Bf
8"q

Bx q=k

~

)n dn+1

(n + 1)t dkn+1

Using these relations in Eq. (9.2), we get

&~q = fq l, =k—~q,. f, ~q— (9.1) , nt dkn
(9.5)

Since Xq enters Eq. (2.2) in the form q, =Xq, the require-
ment that the linearized operator be stable implies that
for perturbation 5q -e'~' with Q real, the eigenvalues 0
that satisfy

if) = f, —
I, =, t'Q—' f, l, =—, i''Q'—

X XX
(9.2}

gneiu

Bx
eiu inq n+ in —]qn —2 Qn

Bx

n
+

A2
~ n —2 n —3 ~q
I q

~ ~ ~

c)x

gn —
1

i +h. o.ax" (9.3}

Here,

n

k =n!/(n —k)!k!

and h.o. stands for terms of higher order in q, q, etc.
Equation (9.3) is easy to prove by induction with the help
of the relation

n+1
k

n

k k —1

By straightforward differentiation of (9.3), the following
relations for the derivatives off immediately follow:

should have ImA (0 for all Q.
To arrive at the relations between the derivatives of f,

consider the effect of the differential operator 8"/Bx" in
the dynamical equation. When we perform the transfor-
mation P=e'"'"'I, we generate terms involving q =u,
q„etc. To evaluate (9.2), we need only the terms in f
linear in q, q, etc. For the linear terms arising from
the operator 8'/Bx ", we get

and since for an analytic dispersion relation co(k) one has
Im(d "tv/dk"=8"cv'/(Bk")", we finally have

1 8 coImO= g, Q" .„,~! a(k")"
(9.6)

Since the expression on the right-hand side is nothing but
the deviation of the growth rate cu' from the extremum at
which Bcv'/Bk"=0 for arbitrary changes Q in k", the re-
quirement that X be stable for all Q, amounts to the
statement that the relevant solution is the wave number
k" corresponding to the absolute maximum of cv' (for
fixed k"). This choice already underlies our picture, and
hence the condition on X is essentially trivial. ' Of
course, we could go even further and also relate the non-
linear terms in X to the properties of co(k) by further un-
doing the nonlinear transformation to the variable
u (x, t), but we see no particular reason to do so.

X. CONCLUDING REMARKS

In this paper, I have shown that the transition from
linear marginal stability to nonlinear marginal stability
can be readily described within our dynamical picture for
front propagation into unstable states. The resulting ap-
proach yields a physical interpretation and extension of
the results of Aronson and Weinberger' and Ben-Jacob
et al. A transition to nonlinear marginal stability
occurs when the linear-marginal-stability profile becomes
unstable to a nonlinear invasion mode. For uniformly
translating front profiles of the form P(x —vt), the con-
nection between stability and velocity selection can be
demonstrated quite convincingly in general. While our
physical picture and numerical calculations support the
idea that the same dynamical mechanism controls veloci-
ty selection in general pattern-forming systems, I do not
know how to prove this mathematically. As a first step
towards this goal, it would be useful to extend the
analysis of Collet and Eckmann of the Swift-Hohenberg
equation [Eq. (5.3) with b =0] to the modified versions of
this equation that exhibit nonlinear marginal stability.

As we have illustrated with two examples, close to the
threshold for instability of pattern-forming systems, de-
tailed predictions can be made by inspection of the prop-
er amplitude equation. When the bifurcation describing
the onset of instability is a pitchfork bifurcation, front
propagation into the unstable state close to threshold is
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determined by whether the bifurcation is subcritical (in-
verged) or supercritical (forward). If the transition is of
first order (corresponding to a subcritical bifurcation),
front propagation into unstable states is generally
governed by nonlinear marginal stability, while if the
transition is continuous (corresponding to a supercritical
bifurcation), linear marginal stability holds.

Have all possible mechanisms of front propagation into
unstable states now been identified? In other words, is it
the case that the propagation of fronts emerging from
sufficiently localized initial conditions is governed by ei-
ther the linear or the nonlinear-marginal-stability mecha-
nism? From the work of Aronson and Weinberger, ' we
know that the answer to this question is affirmative for
second-order partial differential equations of the type
(3.3); within our picture, it is hard to see how one could
get a velocity selection other than through linear or non-
linear marginal stability, suggesting that these are indeed
the two generic mechanisms. Again, however, it remains
to be proven whether or not this is true.

To my knowledge, the only published experiments in
which the predictions of Aronson and Weinberger' for
Eq. (3.3) have been tested experimentally in the regime
we refer to as nonlinear marginal stability, are those of
Hanna et al. ' on a chemical wave in an iodate-arsenous
acid system. The composition wave in their experiments
is accurately modeled by an equation of the type (4.1) in
the limit 6 « 1. In this limit one is far into the
nonlinear-marginal-stability regime, so that U is a lot
larger than v*. The observed wave speeds are consistent
with the value of U for their parameters, and hence their
experiment can be viewed as providing a direct and accu-
rate test of what we refer to as nonlinear marginal stabili-
ty.

I believe that the most important implications of this
work will turn out to be for various pattern-forming in-
stabilities found in fluid dynamics and other fields. Ex-
periments on pattern-forming systems that focus
specifically on front propagation into unstable states are
scarce: the only two I am aware of are those of Fineberg
and Steinberg, ' who found their fronts in a Rayleigh-
Benard cell to agree with the linear-marginal-stability
predictions, and those of Ahlers and Cannell" on vortex
fronts in Taylor-Couette flow. The front speeds they
measured were smaller than U*, and therefore were nei-
ther consistent with linear nor with nonlinear marginal
stability (since v ) v

* ). Neither can their results be attri-
buted to initial conditions with too slow spatial decay,
since this should also give rise to velocities larger than
U . Extensive numerical studies' of the full hydro-
dynamic equations always give results consistent with
linear marginal stability, and thus have failed to resolve
this discrepancy.

The difficulty in performing the above experiments lies
in preparing the system in the unstable state: since both
the Rayleigh-Benard and the Taylor-Couette instability
correspond to a stationary bifurcation, this had to be
done by suddenly changing the control parameter. At a
convective instability, on the other hand, a system is un-
stable, but the growing perturbation is convected away
fast enough that the disturbance is not growing locally.

As a result, unstable systems can occur naturally —i.e.,
without the need of careful experimental control —near
convective instabilities. The following examples illustrate
the relevance of our work for such systems.

(i) Rayleigh-Benard convection in binary Iluid mixtures
is at present under active experimental and theoretical in-
vestigation, ' ' because of the rich variety of standing-
as well as traveling-wave patterns observed. It is well
known that the transition to the traveling-wave pattern
is subcritical for almost all parameter values. It would
therefore be extremely interesting to extend the earlier
front propagation experiments of Fineberg and Stein-
berg' to binary mixtures, as our arguments imply that
the fronts near the transition should be governed by non-
linear marginal stability. They should thus propagate as
ajnite speed v much larger than the velocity v* which
becomes vanishingly small at the transition.

Since traveling-wave patterns have a nonzero group ve-
locity, Cross has argued that in a finite cell the nature of
the convective state is intimately connected with the
front-propagation behavior. Cross predicts and verifies
numerically for a model amplitude equation with saturat-
ing nonlinearities (corresponding to a supercritical bifur-
cation), that when the group velocity s of the waves is less
than the linear-marginal-stability value U*, an extended
traveling-wave pattern is established in the whole cell (in
this case the conductive state is absolutely unstable). For
s ) v*, on the other hand, only confined regions of travel-
ing waves exist in his model, since the conductive state is
then only convectively unstable. Since in reality the ex-
periments exhibit a subcritical bifurcation, ' one would
expect the relevant criterion for the pattern selection to
be whether s is larger or smaller than vt (as always, our
picture implies v )v*). However, recent experiments by
Fineberg et al. appear to give a crossover at a value of s
which is somewhat less than U*. Clearly, more work is
needed to understand this discrepancy.

(ii) As is long since known, (low of a fluid past a
cylinder leads to the creation of a von Karman vortex
street at sufficiently high Reynolds numbers. It was,
however, only recently that the transition to vortex
creation was argued to be associated with a linear abso-
lute instability in the wake behind the cylinder. This pre-
diction was based on a linear-stability analysis of the
equations in the wake with the aid of the "pinch-point"
analysis of Bers. As we have discussed in the Introduc-
tion, this is equivalent to what I refer to as a linear-
marginal-stability analysis. The work in this paper thus
shows that the argument of Triantafyllou et al. is only
self-consistent if the wake instability is supercritical.
Fortunately, velocity fluctuations in the wake studied
with laser Doppler anemometry by Mathis et al. are in
agreement with the bifurcation being supercritical.
Hence the experiments nicely justify the assumption un-

derlying the theoretical analysis, and together, theory
and experiment provide an elegant and consistent picture
of the onset of the von Karman vortex street. Ideas simi-
lar to those described above have been applied to the gen-
eral problem of vortex shedding of bluff' bodies.

(iii) Experimentally, plane Poiseuille flow is often found
to become unstable at Reynolds numbers R ~ 1OOO,
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whereas early stability analysis predicted the basic para-
bolic profile to be linearly stable up to R of about 5770.
Moreover, recent investigations show that the Aow is
linearly only convectively unstable for all R ~ R,
=5772. 22. Clearly, the experimental instability must be
due to nonlinearities, a suggestion first made almost 40
years ago; indeed, Stewartson and Stuart later showed
that the instability at R, corresponds to a subcritical bi-
furcation, and subsequent analytical ' and numerical
work has confirmed the nonlinear nature of the instability
of plane Poiseuille Aow. Although it is still under investi-
gation whether the approach in this paper can provide
new insight into this problem, it should be clear that this
example, when rephrased in the context of front propaga-
tion, conforms to the unified picture advocated here:
since the bifurcation is subcritical, nonlinear fronts prop-
agating into the unstable parabolic velocity profile for R
near R, will propagate with speed v, not v*, as assumed
in a linear analysis. If it turns out that v is large, the
How is absolutely unstable against the intrusion by non-
linear fronts, even though it is only convectively unsta-
ble linearly.

The above examples not only illustrate that nonlinear
marginal stability may be of immediate importance to ex-
periments on binary mixtures, but also that the viewpoint
advocated here puts several other instabilities in Quid dy-
namics in a new perspective. We hope that this work will
stimulate further studies of these questions.
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APPENDIX A: INSTABILITY OF FRONTS
WITH v &v

where G is a linear operator obtained by linearizing P in
F around P„. For large x, P„and + will be of the form

P„=g C, e ', 0&Imk &Imk +, ,
J

4=gB e ', 0(ImK &ImK, +, ,
J

(A4a)

(A4b)

where the sums run over all roots k and E with a posi-
tive imaginary part. For physical reasons, we only allow
sufficiently localized perturbation of P. Thus 4 has to
fall off' faster than P„ for large x. Note that K, is the
root K, with the smallest imaginary part corresponding
to the slowest spatial falloff. In view of the counting ar-
gument of Appendix A of Ref. 9 and the fact that (A3) is
linear in +, there will in general be one particular eigen-
value II'(v) that satisfies the additional constraint B, =0;
since 8& =0, the corresponding eigenfunction will obey
the boundary condition that 4 decay faster than P„, at
least when ~0'~ is small enough so that ImKz ) Imk i.

Because of translation invariance of Eq. (A 1), Eq. (A3)
will always admit a zero eigenmode. For this mode, then
we have K, =k and B =C, . Thus, since the velocity v

just marks the point where the coefficient C& vanishes [cf.
Eq. (3.2)], the eigenfunction defined by B, =0 has to coin-
cide with the translation mode, and II'(v )=0. Thus,
since 0' goes through zero at v =v, either the front solu-
tions for v ) v or those for v &v will be unstable. The
discussion in Sec. III shows that the instability occurs for
v&v .

APPENDIX B: SUMMARY OF STABILITY-
ANALYSIS ARGUMENTS

perturbation in P of the form %(x')e ' obeys

d% d'4
(Q+g, Q + . )0—v, +g, + =G%,

dx dx 2

(A3)

In this appendix we demonstrate that the point where
v =v is also a marginal stability point for uniformly
translating profiles P(x —vt). For equations of the type
(3.3), the stability analysis can be done explicitly by trans-
forming the linearized equation to a Schrodinger-type
equation; the argument given here holds for any
translation-invariant equation that admits uniformly
translating profiles.

Consider a dynamical equation of the form (in case of
more than one field, P denotes a vector)

(A 1)

The uniformly translating profile P„(x —vt) then obeys
the ordinary differential equation

dP„d P„dP„d P„—v +g v + =F
dx dx " dx

(A2)

and in the frame x'=x —vt moving with velocity v, linear

In this appendix, I expound on the remarks made in
Sec. III concerning the stability of the nonlinear-
marginal-stability profile P(x —v t). As in Appendix A, I
will restrict myself to the case of uniformly translating
profiles. For the special case of Eq. (3.3), see also the pa-
per by Ben-Jacob et al.

First consider the stability of arbitrary profiles
P(x —vt) with vWv . According to the counting argu-
ment of Ref. 9, Appendix A, almost all eigenfunctions 4
obeying Eq. (A3) will have B&%0 [cf. Eq. (A4)]. With the
condition K'& & k'& in Eq. (A4) the behavior of these eigen-
functions with 8, =0 can be obtained by comparing the
dynamics in the leading edge only. The stability of these
modes follows from the fact that v „&v on the branch
drawn with a solid line in Fig. 2 (cf. also Ref. 9, Sec.
III B), and is illustrated graphically in Fig. 3. The partic-
ular eigenfunction with B i

=0 and 0=A' has been ana-
lyzed in Appendix A. We have shown that Q' goes
through zero at v and argued that this implies that
profiles with v ( v are unstable to this invasion mode (cf.
Fig. 4). The reason that the argument that vs, & v implies
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stability does not apply here is already apparent from
Fig. 4(c): the asymptotic behavior of the mode with
B, =0 corresponds to a point on the different branch of
the curve v (k'), and cannot be obtained by linearizing
the local wave number q around k, .

The stability of the nonlinear-marginal-stability profile
P(x —v t) follows from an essentially similar considera-
tion. Again, almost all eigenfunctions 4 have 8,%0.
With the requirement that these satisfy K', ) k', (u =v )

it is easy to convince oneself with a construction as in
Fig. 4(c) that P(x —u t) is stable with respect to such per-
turbations. Note again that linearizing q about k2 and
concluding that the front profile is unstable, in view of
the fact that u, ) u along the dashed branch in Fig. 4(a),
is incorrect, since the perturbation with 8,%0 corre-
sponds to large perturbations in q' on a different branch
of u (k'). Of course, there is also a mode with
8, (u =v )=0. However, this must be the zero eigen-
mode corresponding to translation invariance, and hence
the nonlinear-marginal-stability profile P(x —v t ) is
stable.

whose zeros determine the dispersion relation cu(k) in the
comoving frame

D( cu, k}=0~co=co(k) . (C3)

(C4)

D(cu, k) =(k —k„(cu))(k —kl(cu})R (cu, k),
so that

(C5)

The first (second} sum in (C2) is over all the poles k, (kI )

that are in the upper (lower) half plane for co~i ac . It is
argued ' that the asymptotic behavior of G in (Cl) is
determined by the point in the complex plane where a
root k„and a root kI coalesce. This happens at a point
cu', k " where D (cu, k) =0 has two double roots, or
D(cu', k')=0, cd/c)k~, =0. Using Eq. (C3), it is easy
to see that this coincides with our marginal-stability
equation (2.1) in the comoving frame. Near this point,
we may write [cf. Bers, Eqs. (22) —(24)]

( k —k *
) =C ( cu —co* ) —2E ( cu —co" ) ( k —k *

) +

APPENDIX C: DERIVATION OF EQS. (8.6)
AND (8.8) FROM THE PINCH-POINT ANALYSIS

k„=k*+C(cu—co*)'i E(cu —cu—*)+ .

k, =k*—C(cu —co*)' E(cu —cu—*)+
(C6a)

(C6b)

G(x', t)= dcue'"'I(x', cu),= 1

2K L

with [cf. Hers, Eq. (19)]

(C 1)

In this appendix I show that terms that are commonly
neglected in the pinch-point analysis ' appear to lead
to the proper asymptotic expressions (8.6) and (8.8) for
the local wave number and velocity. The analysis there-
fore indicates that the usual expression (8.9) is not valid
for all x, an observation already made by Lifshitz and Pi-
taevskii.

Apart from some slight changes in notation, we will
essentially follow Hers. In the comoving frame
x'=x —U*t, we want to derive the asymptotic expression
for the Green's function G (x', t), which is given by

2 3
C4 d co

dI 2 3 dI 3
(C7)

With these results, we can write for (C2)

I(x', cu) = i e(x)e ~ 1k*+c(~ co*)' —E(cu co*j]x'— —

2C(cu —co*) R *[1+@(cu—co*) ~ + ~ )
~ ~z x i [k —C(cu —co ) —E(co—tc) )]x'

2C(cu —co*)' R*[1—S(cu —cu")' + . ]
(C8)

with

Note that in (C4) we can make the identifications

—i k„(co)x'

I( ', )= e( ')g
tk, (u)x

e' ~ aD/ak[„
S Cag

R* ~k
(C9)

(C2)

Here I. is some contour in the cu plane, e(x) is the unit
step function, and D =D (cu, k) is a function of cu and k

I

To evaluate G, let us for concreteness take x') 0 (the case
x'(0 can be worked out analogously). Upon substitu-
tion of (C8) for x') 0 into (Cl), we get upon expanding
the term in the denominator

~ tk x' —I ~*t e 1/2 1/2G(x', t) = iC(m —co )
/ x' —i(Ex+t)(co—qg )

4vrCR * L (cu —co*)'
(C10)

where the L is around the branch cut at co*. Upon
neglecting the terms proportional to S, C, and E, this ex-
pression reduces to the one usually given, ' which in
turn leads to the result (8.9). The present expression is
the one needed to arrive at the proper results (8.6) and
(8.8).

Let us take the branch cut along the line where
arg(cu —co* ) = 3m. /2, and for simplicity assume that
Ex'+t is real and positive (the extension to the general
case is straightforward). By transforming to the variable
u =e' (Ex'+t)'~ (cu —co" )'~, we then obtain from
(C 10)
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ik x' —ice t +i~4
G (

i t)
e ic x' l4(Ex'+t)

2~CR '(Ex'+ t)'

SC
2(Ex'+ t)

(C 1 1)

(Cross et al. use B, fo. r my C;.) From this expansion,
we then identify the coefficients in Eq. (6.4) for the com-
plex amplitude function

4(X, T) = e—' AD(X, T)+eA i(X, T)+e A2(X, T)+

In the limit t~~, x' fixed, this result agrees with the
one usually obtained, Eq. (8.9). However, if we assume
that the second term in large parentheses is the dominant
one and put this term in the exponent, we get for the de-
viation p of the local wave vector from the value k*

(D4)

a„-a.+6'"a~, (D5)

To arrive at the expansion, one divides the gradient 8
into two parts,

p(x', t)= —,+-i 1 Cx'
x' 2 t

l d co

dkz

x «1
t

x
(C12)

with the first term acting only on the rapidly varying
part. The differential operator in (D 1) then becomes

(a„+q ) +4e' a a +e(6a a +2q a )

(D6)

where we used Eq. (C7). This result is equivalent to Eq.
(8.6). Similarly, because the t ~ prefactor of the second
term in large parentheses in Eq. (Cl 1) leads to a —

—,
' Int

term in the exponent, one recovers the result (8.8).
The above analysis illustrates that we also arrive at our

asymptotic expressions (8.6) and (8.8) if we view the
second contribution to the term between parentheses in
(Cl 1) as the dominant one. Nevertheless, the analysis is
still not totally satisfactory, as this term is formally only
of order unity if x'It =0 (1), and is only large for x ~ ~
if E is sufficiently small (E =0 for the two-model equa-
tion that we studied numerically). I have not been able to
resolve this issue any further.

—(du0+1)u0 —2buaui =0 for O(e ~ ),
a,u, + 'u, +4a, a, u, +(6a.'a'+2q,'a')u,

+4a axu0 —2buauq bu, —(3d—u 0+ 1)u,

(D9)

for O(e ), (D10)

where =8 +qa acts only on the rapidly varying part.
Upon substitution of these expansions into Eq. (D 1), we
get
D u0=0 for O(e'~ ),

u i +4a„ax u0 bu 0 =0—for O (e),
u + u +4a„a Uu, +(6a a +2q a )u

APPENDIX D: AMPLITUDE
EQUATION EXPANSION

In the appendix we follow Cross et al. in deriving an
amplitude equation expansion for the generalized Swift-
Hohenberg equation,

Bu =[e—(a +qa) ]u+bu +du —eu (D 1)

u =e' u0+eu&+e u2+e u3+ (D2)

with the functions u, separated into rapidly varying parts
exp(inqax) and slowly varying parts, depending on the
slow variables X =e' x, T =et,

For q0=1, d = —1, e =0, this equation is equivalent to
Eq. (5.4), and for q0 = 1, b =0, e = 1, to Eq. (5.9).
Throughout this appendix, I will choose my notation to
follow as closely as possible the one used by Cross
et al. , who studied the case b =e =0, d = —1.

Our goal is to derive the first few terms in an expansion
for u of the form

a u + u +4a a Clu +(6a„a~ +2q2a2 )u

+4a„a u +a u —2bu u —2bu u —(3du +1)u
—3du, u0+eu0=0 for O(e ~2) . (D 1 1)

Since exp(iqax)=0, Eq. (D7) shows that for u0, only
A0(X, T) can be nonzero; all other terms in (D3), 00, B0,
etc. , have to vanish. Then, (D8) is solved for arbitrary
A, and by taking

(D12)

with higher-order terms (C, , Di, etc. ) equal to zero.
Since the term involving 32 does not give any contribu-
tion in (D9), the requirement that the terms involving

exp(iqax) satisfy (D9) gives the first nontrivial solvability
condition,

ar AD
—4qaax A0 —

AD
—d

~ AD~ A0

2b
(Oi A0+ A DBi )=0

v'3

u, = O, (X, T)+ —[A, (X, T)e ' +c.c. ]
3

+ [B,(X, T)e ' +c.c. ]V'3

+ [C, (X, T)e ' +c.c.]+V'3 (D3)

Upon introducing X=(2q0) X and using (D12), this be-
cornes

a~, a'~, 38 b+ A0+ d + i AD i A0 . (D13)
BX 27 q4

The only other nonzero terms in the expansion of u 2 are,
according to (D9),
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02= (ApAi +ApAi),2b

qp 3
(D14) If we write N in (D4) in terms of X and T and substitute

this expansion into Eq. (6.4), Eqs. (D13) and (D17) show
that one should make the identifications

1 . q 2b
82 =

12iq pc)~B, + —Ap A,
9 4 x

Sb&3 . 2b&3
6 &Apag Ap+ Ap A, , (D15)

C2= (dAp+2b&3ApB, )= d+ Ap .
2b

192qp 192qo 9qo

(D16)

38b' 1
c) =d+, k2=

27qp 2qp

16b

81qp

(D18)

I now turn to (D10). The solvability condition for A i

reads

4qp~ Ai+4iqpB Ap —Apo2 —Ap824 ~ . 3 2b 2b

3 3

Ap ]6jb aAp
, +, [A, /' +A,

aX 2qp aX 81qo aX

+ d+, (ApAi +2IApl'A, ) .
27q 0

(D17)

(A, o, +8, A*, ) —2dI Apl A, —A, =o .2b 2

With the aid of Eqs. (D12), (D14), and (D15), this be-
comes
aA,
aT

We see that k~&0 for b&0. As explained in the text, this
implies that the amplitude equation does not become of
the form (6.1) in the transition region where c, =0 (e'~ ).
As a result, I cannot predict the transition value exactly
to order e'~ for b&0.

With b&0, the number of terms rapidly proliferates: it
is easy to see that 03, B3, C3, and D3 are all nonzero and
given by rather complicated expressions. However, the
only coefficient left to calculate is c2 in Eq. (6.4), and to
do so, I only need to get the prefactor of the terms

~
A p ~ Ap in the solvability condition for A 3 that one ob-

tains from (Dl 1). Only powers of Ap and A p in 03, 8&,
C3, and D3 can contribute to this term; retaining only
these contributions, I then find from (D10)

1042b 3
~

~g
2b 3

~

729qp 3qp

03= —0, + —iB, i
+d( Ap8*, + Ap 8, +2i Api 0, )+0, —BTO, +

qp 3 3

2&3bd
27q p

(D19)

83= 1

9qo
—a,B,+ A,*C,+ B,O, +dA,'O, +2d

~ A, ~'8, +8, +

193bd &3
2534 8

qo

631&3b 2 2 &3
i Api Ap — Ap+o. t. ,

3 24qp 27qp
(D20)

where o.t. stands for the other terms that I do not need.
Retaining also only those terms that can give rise to
powers of Ap and Ap, the solvability condition for A2 is,
according to Eq. (D11), of the form

the form
~
A p ~ Ap, which correspond to a term ek7 ~4~ @

term in Eq. (6.4). Upon collecting the terms of the type
~ Ap ~ Ap, we finally get for cz in Eq. (6.4)

aA2 2b
~3TAp= + Aq+ —(Apo3+ Ap83)ax' 3

C2= 10 d ~ 150 679b 4

e)
192q 52 488q p

13 903b d

7776qp
(D22)

+d ( Ap C~+0, Ap+ 2~8, i Ap+28, 0, A p )

10 4ei ~ Ap~ Ap+0 (D21)

Upon substitution of the appropriate expressions, the
terms proportional to 03 and 83 also generate terms of

In the case b =0, e =1, qp=1, we thus get in the limit
d~0, c2= —", , while for qp=1, e =0, d = —1,
b =27/38, we get c2=2.714. If we ignore for the latter
set of parameters, the fact that k4 is nonzero, and use the
estimate ace/c, =

—,
' for the transition to nonlinear mar-

ginal stability, we get from this and Eq. (D18)
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b (e) 27/38+0. 802+e . (D23) k P t)Q/Bx k e' (c,P
—2c ttt /3)

cia czar c, (c,P c—zP )

This result is plotted in Fig. 15 with a dashed line.
I finally give an idea of the magnitude of the

k4~@~ (t)N/t)x) term in (6.4) in the regime where we ex-
pect the transition to nonlinear marginal stability, i.e., for
ec2/c, = —,'. To do so, we compare the magnitude of this
term to the terms c, ~N~ 4 —cz ~

@~ 4' for the exact solu-
tion (4.12) of the real equation (6.1). Taking e cz/c ]=

—,',
we get with (4.12)

1 /2

=k4+3/4cz =0.074 .
C)

(D24)

Thus, although the effect of the complex term
ik4~@~ t)@/Bx will lead to a phase shift in N, I originally
expected that the threshold to nonlinear marginal stabili-
ty is given rather accurately by (D23) for the value of k4
found here in (D18).
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