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The electrons in the cathode-fall (CF) region of a helium dc glow discharge have been modeled at
the kinetic level with a self-consistent electric field using a “‘convective-scheme” (CS) (propagator or
Green’s-function) solution method. The CS is both straightforward to implement and numerically
efficient. CS electron calculations using one spatial and two velocity variables are shown to match
Monte Carlo simulations of swarms in uniform E/N and in the CF. The CS predictions are also
shown to match experimental swarm results. A self-consistent CF solution is obtained through a
slow relaxation of the electric field to that indicated by Poisson’s equation. The electric field
configuration as predicted by the CS agrees well with optogalvanic measurements. The discussion
emphasizes both the physical nature of, and the difficulties associated with, a self-consistent-field

calculation.

I. INTRODUCTION

Interest in modeling glow-discharge properties has in-
creased with the application of glow discharges to plasma
processing. Understanding of the cathode fall (CF) is
crucial to a global understanding of the discharge, as this
region largely determines the stability of the discharge
and the details of many plasma processes.

Efforts to model the CF are hampered by the lack of
hydrodynamic equilibrium in the region due to the rela-
tively strong electric field gradients and the presence of
the cathode, which both absorbs and emits particles.
Nonhydrodynamic conditions call into question the use
of ionization and diffusion coefficients,! which are mea-
sured in swarm experiments at very low current densities
and in spatially invariant electric fields. The absolute
electron number density scales out of the solution when
an a priori electric field is imposed and the behavior of
other charged species is ignored, as is done in many
Monte Carlo simulations. In contrast, a fully kinetic
solution of the electron behavior in the cathode-fall re-
gion eliminates the use of empirical coefficients, and a
self-consistent-field calculation couples the behavior of all
charged species into the problem through Poisson’s equa-
tion.

An overall approach to a self-consistent model of the
CF region has been described in a previous paper.’
There, a simple distribution function was assumed, and
two moment equations, together with Poisson’s equation,
were integrated to demonstrate the validity of the pro-
posed framework. This work implements a kinetic
description of the electrons within a similar framework.
The kinetic description is based on the convective scheme
(CS), which is introduced to gaseous electronics in this
paper.

This paper will begin with a brief discussion of several

39

methods that have been used to model weakly ionized
plasmas. In this way the CS will be couched in terms of
more familiar approaches. The strengths and weaknesses
of these methods will be discussed, as well as the similari-
ties and differences between these approaches and the CS.
The formal CS solution will then be presented in Sec. III.
This section has a brief calculation to illustrate the gain
in efficiency of the CS over an explicit finite difference
calculation and presents a useful near-steady-state ap-
proximation. Section IV will then step through the
essentials of a simplified CS example in two dimensions.
This model is presented for pedagogical purposes, but
would also be a most realistic model of ion transport
when charge exchange collisions dominate. This is fol-
lowed by a detailed description of a more sophisticated
CS implementation in three independent variables, a
model appropriate for the electrons in the CF of a helium
dc glow discharge. A swarm in uniform E/N and a CF
calculation using fixed electric field configurations will
then be presented and compared with Monte Carlo simu-
lations and experimental results. Finally, a CF calcula-
tion with a self-consistent electric field will be presented
and discussed in Sec. VI. Factors influencing the accura-
cy of the predicted electric field configuration will be dis-
cussed, along with some of the obstacles that must be
overcome to allow a realistic negative glow (NG) model
and a self-consistent electrode-to-electrode calculation.

II. RELATED SOLUTION TECHNIQUES

The “convective scheme” (CS) presented here, which is
based on a propagator or Green’s-function method, com-
bines aspects of a variety of techniques which have been
applied to the CF problem. Details of the techniques
relevant to the CS, along with recent or notable illustra-

6356 ©1989 The American Physical Society



39 SELF-CONSISTENT KINETIC MODEL OF THE CATHODE . ..

tive published work, will now be discussed.

Fluid equations have been used extensively to model
the cathode fall.>»* Three coupled differential equations
are generated from the zero, first, and second velocity
moments of Boltzmann’s equation. No form of the distri-
bution function is assumed; the first three moments of the
distribution function are proportional to the number,
momentum, and energy densities, respectively. However,
fluid equations will not distinguish between various distri-
bution functions as long as they have identical zero, first,
and second moments. Fluid approaches can produce
reasonable results, but errors associated with this approx-
imation are difficult to estimate.

In a related approach which is computationally similar
to fluid equations, a distribution function with n free pa-
rameters is assumed and substituted into Boltzmann’s
equation. The first n velocity moments of Boltzmann’s
equation are integrated to obtain n coupled differential
equations.” The authors used this technique to illustrate
an overall method of tackling the CF.?

Segur and Keller® have manipulated Boltzmann’s equa-
tion into a purely integral form and solved a CF problem
with an imposed electric field. The method involves
finding a matrix of ‘“probability coefficients” for every
electric field of interest and yielded results consistent with
Boeuf and Marode’s Monte Carlo results in the case of
isotropic scattering.”?

The method of explicit finite differences has been
directly applied to Boltzmann’s equation. The method
has been used by Kitamori et al. to study relaxation
properties of spatially invariant problems.’ Time evolu-
tion information is available, as the calculation is iterated
in time until a steady-state solution is found. The method
is numerically intensive because of a stringent limit on
the time step, the Courant-Friedrichs-Lewy (CFL) cri-
terion.! The time step must be small enough that no
particles in the calculation cross more than a single mesh
in a time step Az. The limit is numerical (depending upon
the nature of the imposed numerical mesh) rather than
physical (limited by some physical process), though the
choice of mesh size was presumably based on physical
grounds.

In principle, an explicit finite difference calculation
could integrate the spatial coordinate z away from a point
where the velocity distribution is known, rather than
iterating in the time variable. This would reduce the
number of variables in a CF calculation by one. Finding
such a point is problematic, and any changes to the elec-
tric field (such as occur during iteration to a self-
consistent field) would require a recalculation of the en-
tire distribution function for all z. An implicit finite
difference calculation would not be restricted by the CFL
constraint, but such a scheme relies heavily on the
efficiency of solving tridiagonal matrix equations. Unfor-
tunately, the collisions in the kinetic problem imply that
the matrices are not tridiagonal, and much of the compu-
tational efficiency is lost.

Hybrids of these methods have been used extensively.
A common hybrid is the expansion of the angular part of
the distribution function of / Legendre polynomials to ob-
tain / coupled differential equations.!""'> The number of
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independent variables in Boltzmann’s equation is thereby
reduced at the expense of increasing the number of equa-
tions.

Monte Carlo simulations have been used to describe
the electron behavior in the CF.”!*!* These simulations
exactly track the kinetics of the sampled electrons, but
self-consistent calculations demand good number density
statistics at all spatial locations in the discharge. State-
of-the-art Monte Carlo calculations’ track each individu-
al electron avalanche until the electrons hit an electrode,
so no information is available on the time evolution of the
discharge, and any adjustments of the electric field re-
quire a complete recalculation of the distribution. How-
ever, where the steady-state solution is important and
good electric field and cross-section data are available,
Monte Carlo simulations can generate results in excellent
agreement with experiment.'’

The CS to be presented here produces a distribution
function which is a solution of the appropriate kinetic
equation.'® The CS is perhaps closest in spirit to
particle-in-cell simulations, but no random numbers are
needed. When the CS is used with small time steps, the
CS is mathematically identical to the method of finite
differences'® (specifically, a donor cell or “up-streaming”
method). Its implementation is very physical and intui-
tive, similar to a Monte Carlo scheme. It is a fully kinetic
solution and therefore free of the errors that hamper fluid
calculations and approaches that involve the assumption
of a parametrized form of the distribution function. Un-
like explicit finite differences, CS time steps are not re-
stricted by the Courant-Friedrichs-Lewy criterion, but
rather by the nature of the collisions. Specifically, the CS
time step must be less than the smallest collision time in
the energy range of interest. As implemented, the CS as-
sumes no particles have undergone more than one col-
lision during a time step, so inaccuracy arises once a time
step becomes a large fraction of an average collision time
(and a non-negligible fraction of particles have in reality
undergone more than one collision during the time step).

III. CONVECTIVE SCHEME

A general description of the CS method for systems of
rate equations is given by Adams and Hitchon!” and for
kinetic equations by Hitchon et al.'® The details of a
particle mover for one space and one velocity variable are
covered in Ref. 16. This paper will emphasize the gen-
eralizations necessary for a CF calculation—an addition-
al velocity coordinate, a non-Cartesian phase space, a de-
tailed treatment of the important electron-atom collision
processes, and convergence to a self-consistent solution.
This section outlines the formal CS solution, demon-
strates the efficiency of the CS relative to finite difference
calculations, and presents a near-steady-state approxima-
tion that simplifies scattering calculations.

A. Formal solution

Formally, the CS requires the determination of the
fraction p of particles in a cell of phase space at (r’’,v'’)
that move to a new cell of phase space at (r',v’) after a
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FIG. 1. Illustration of the ion convective scheme. Problem is
one dimensional with two phase-space variables z and v,. Force
(electric field) is assumed constant. Scattering shown is analo-
gous to resonant ion charge exchange; particles completely stop
after a collision. Note that the mesh straddles the v, =0 axis to
avoid possible singularities.

time At —the Green’s function. (For consistency, doubly
primed variables will always denote values before a move-
ment or collision, and singly primed variables will label
the values affer the same.) Once this probability is
known for all (r”,v"’) and (r’,v’), the distribution of par-
ticles f at an advanced time ¢+ At may be determined
given the distribution at time ¢,

f(r’,v’,t+At)=fdr"dv"p(r’,v’;r",v”;At)
Xf(r",v',¢t) . (1)

When implemented on a numerical mesh, the integral be-
comes a sum over all cells of phase space in the mesh.

The task of evaluating p may seem daunting until it is
realized that only two mechanisms can remove particles
from a particular cell of phase space in the kinetic prob-
lem.

(i) Unscattered particles in a cell will move along
characteristic trajectories specified by the initial position
r'’ and velocity v’ associated with the cell, the electric
field E along the trajectory, and the time step Atz.

(i) Scattered particles will “jump” from the initial cell
(r”,v'"") to a new cell at the same spatial location (r'=r'')
but with a new velocity v’ defined by the nature of the
collision.

These two processes are illustrated for a phase space
with one spatial and one velocity coordinate in Fig. 1,
which will be described in more detail in Sec. IV.

B. Time step

The two particle-moving mechanisms outlined in Sec.
IITA can be implemented independently of each other
provided that the distribution function changes on a time
scale much longer than the time step and provided that
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no particle undergoes more than one collision per time
step. The latter condition can be approximately enforced
by limiting the time step At so that the fraction of parti-
cles that undergo two collisions in a time step is negligi-
ble,

[Nor(vwAt]F<<1 2)

for every speed v of interest. The left-hand side of Eq. (2)
is proportional to the error of the CS, but the full CS er-
ror is further reduced to the extent that scattering into a
cell replaces scattering out of the cell.

The advantage of the CS over its finite difference
cousin can then be seen by examining Fig. 2. Here, the
mean collision time is plotted versus impact energy for
electrons in the background gas of interest here (helium)
at a density of N=11.2X10'® cm™3. The important
feature of Fig. 2 is that the collision time minimizes at
some energy (here around 80 eV) and then generally in-
creases with increasing impact energy. This minimum
governs the allowable CS time step; here we choose a
time step of At <<0.12 ns consistent with the energies of
a normal helium CF (up to 140 eV) and the neutral num-
ber density of interest. This CS time step does not
change, even if electrons of very high energy are con-
sidered.

Contrast this time step limit with the Courant-
Friedrichs-Lewy (CFL) criterion!® that governs explicit
finite difference methods: No particles may cross more
than one cell in a time step. The limit applies to all in-
dependent variables in the problem; for a spatial variable
x, even the fastest particles may not move more than the
width of a single spatial cell Ax,

Atcpp <AX /U,y (3)

In a kinetic calculation, the spatial grid spacing is
chosen to be at most the order of the minimum mean free
path A: Ax <{A)=(No;(v)) '=0.012 cm in this case.
The total scattering cross section in o (v). With a max-
imum speed of interest v, =~7.0X 10® cm/s, correspond-
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FIG. 2. Mean collision time for electrons in helium at
11.2X10' ¢cm ™3 or 3.16 torr at 273 K. Minimum in the mean
collision time within the energy range of interest governs the
time step of the convective scheme.
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ing to a normal CF potential energy in helium of around
140 V, the limiting time step from Eq. (3) is
Atcpp <0.021 ns. In practice, Atcpp <<0.021 ns unless a
high-order scheme is used. Similar CFL limits exist for
all other independent variables; for instance, the time
step must also be limited to guarantee that no particles
are accelerated through more than one cell in any veloci-
ty variable during At.

The advantage of the CS becomes even more apparent
if electrons of higher energies are of interest, since
Atcpy o« T /%, where 7., is the maximum kinetic energy
of interest, while the CS time step remains fixed.

C. Nearly-steady-state approximation

An initial examination of the scattering shown in Fig. 1
might seem to imply that the spatial movement of the
particles in the initial cell must be considered when the
particles scattered out of the cell during the time step are
reinserted into the mesh. This might be true if the num-
ber of particles in a cell varied greatly over a time step.

This complication is not necessary here. In this work,
particles scattered out of a cell initially at (r’’,v’’) are re-
placed at (r'=r",v’) instead of being distributed along
the same spatial trajectory that the initial cell traversed.
The justification for this approximation rests upon the as-
sumption that the number of particles at the initial loca-
tion of the cell is roughly constant— particles may flow
into and out of the cell during a time step, but in such a
way as to approximately preserve the number of particles
in the cell. The number of particles in a cell is certainly
constant once a steady-state solution is obtained; provid-
ed the distribution changes on a time scale which is long
compared to a time step, it is approximately true even
during the transient solution. It would not be true, for
example, if the CS were being used to study the expansion
of a shock front, where particle densities vary greatly
over a single spatial mesh cell and over a single time step.

IV. CONVECTIVE-SCHEME IMPLEMENTATION

A. Two-dimensional example

A simplified but complete CS model will now be exam-
ined. This model would be entirely reasonable for ions in
their parent gas (dominated by charge exchange), but is
simple enough to be described in one figure (Fig. 1). For
simplicity, a uniform electric field is assumed. A few
terms will be defined to clarify the description of the CS.
The CS requires a numerical mesh; some of the con-
siderations in choosing a mesh will be described. The
focus of this section is to step through an entire iteration
(time step) of the CS.

To avoid confusion, the following naming convention
will be observed for cells.

(i) The initial cell will refer to the cell in which the par-
ticles are initially located (either at the beginning of a
time step or just prior to a collision). The size and shape
of the cell in the phase space mesh is part of the
specification of the initial cell. Particles within a cell are
assumed to be uniformly distributed within the cell; that
is, the phase-space density of a cell is assumed constant.
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As previously mentioned, initial variables will be doubly
primed.

(ii) The moved cell will refer to the location, size, and
shape of the cell, after either a ballistic particle move-
ment or just after a collision. The size, shape, and densi-
ty of the moved cell may differ from that of the initial cell
depending upon the nature of the phase space, and the
moved cell does not, in general, correspond to any single
cell of the mesh. The phase-space density of the moved
cell is also assumed constant. Variables associated with
the moved cell will be singly primed.

(iii) The final cells are those cells of the mesh that are
overlapped by the moved cell. For example, the moved
cell may be larger than the initial cell or a final cell due to
phase-space considerations. The larger moved cell could
then overlap many final cells.

The first step of a CS solution is to choose an appropri-
ate phase-space mesh that can accurately describe the im-
portant physical processes. The considerations are much
the same as for a finite difference solution method. Ions
in their parent gas,are dominated by charge exchange
collisions; such ions simply stop after an ion-neutral col-
lision in the cold gas approximation (resonant charge ex-
change), and no energy is directed into the transverse
direction. If plane-parallel geometry is assumed, two
variables are sufficient for the ions—the distance from
the anode z, and the ion velocity along the discharge axis
v,.
A CS calculation is started by placing particles into the
mesh; how this is done depends on the problem of in-
terest. If the physical source of new ions is assumed spa-
tially uniform and the ions start from rest, then new ions
would be placed in the mesh in the cells corresponding to
tAv, /2 and uniformly distributed in z. The number of
ions injected is determined from the ionization rate and
the CS time step.

The CS now determines the fate of the ions in the mesh
after a single time step At. As previously indicated, all
particles are first moved as though no collisions occur.
Then all collision rates are calculated and the scattered
particles are redistributed.

The collisionless particle movement is a straightfor-
ward step and is shown for the ion phase space and a uni-
form electric field directed in the positive z direction in
Fig. 1. Each cell of the mesh is considered in turn. The
location z'’, and velocity v, associated with the initial
cell, combined with the electric field E (z), and the time
step At, completely specify the location z’ and velocity v,
of the moved cell. The equations shown in Fig. 1 assume
a constant electric field: E,, with an ion acceleration of
a=q,Ey/m_, where g, is the ion charge and m , is
the ion mass. The position of the moved cell after a time
step At is calculated, and the particles from the initial cell
are distributed to final cells in proportion to the overlap
of the moved cell with each of the four final cells. Realis-
tic field configurations require a numerical integration.
Each initial cell is examined in turn until all particles
have been moved to their final positions.

The charge exchange collisions of this example are par-
ticularly easy to handle in the CS. Each cell of the mesh
is examined in turn; the number of particles in a particu-
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lar cell and the velocity associated with the cell are
known. When combined with the neutral number densi-
ty, the cross section, and the CS time step, the number of
particles scattered out of the cell of interest can be found.
These particles are removed from the initial cell and add-
ed to the two cells that straddle the v, =0 axis at the
same spatial location (see Fig. 1). A nonzero background
gas temperature could be handled by inserting the scat-
tered ions with a Maxwellian velocity distribution. The
scattering calculation is simplified by the fact that each
cell of the mesh may be examined independently.
Scattering rates are typically independent of spatial loca-
tion and electric fields; in this case, the scattering proba-
bilities can be calculated once for each velocity of interest
on the mesh and then used for subsequent scattering cal-
culations.

Once all cells of the mesh have been moved and then
scattered, various moments of the distribution such as the
number density and flux are calculated. If the calculation
is self consistent, the electric field is recalculated. A new
iteration is then started in this example by again injecting
ions uniformly throughout the discharge in accordance
with the assumed ionization rate.

B. Three-dimensional electron model

A CS model of the electrons in a helium discharge will
now be described, building upon the simpler ion model.
The physical assumptions here are the same as described
in Ref. 2. Briefly, the discharge is assumed to be plane
parallel with negligible radial diffusion and an electric
field directed along the axis of the discharge: E=EZ.
The positive z axis points away from the cathode. This
coordinate is reversed from that defined for the ions in
Sec. IV A.

An adequate CS model of the electrons demands a real-
istic description of the angular scattering processes. An
extra independent variable is therefore added to the mod-
el to describe motion transverse to the discharge axis.
The independent variables are now the distance from the
cathode z, the speed v, and p, the cosine of the angle 6 be-
tween the velocity vector and the z axis (= cosf). The
discharge is azimuthally symmetric, so the azimuthal an-
gle @ does not appear.

A mesh equally spaced in speed (rather than energy) is
chosen for good resolution of the low-energy particles.
To improve numerical accuracy, the mesh is finer near
pw=1 (forward-directed particles) than near pu=-—1
(backward-going particles). Specifically, a new integer
variable £ which labels cells is introduced which has lim-
its 0 <& <&, .- Then u at the boundary of the cells is cal-
culated from u=1—2(£/&,.,)% The electric field moves
unscattered particles monotonically to higher u, and the
use of the variable £ improves the resolution in the region
near =1 in the mesh. (Note that this variation in mesh
size is implemented with no difficulty, whereas the time
step of a finite difference scheme would have to be re-
duced to accommodate the fine mesh near u=1 and
again ensure that no particles could transverse more than
one of these smaller cells in a time step. Additional cod-
ing difficulties would also arise. The CS mesh size can be
varied at will to more accurately describe regions of in-
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terest with no such ill effects.)

As with the ion example, the electron CS calculation is
started by placing electrons in the mesh. Here electrons
are placed in the cells of the mesh immediately adjacent
to the cathode with an assumed distribution function so
as to satisfy a current balance condition at the cathode.
The details of this injection are not important to the CS;
they will be discussed later as part of the self-consistent
calculations.

1. Unscattered electrons

The ballistic movement of the electrons is more com-
plex than that of the ions described previously. The com-
plications arise out of the nature of the electron mesh,
which has a variable Jacobian.

The ion CS model is considerably simplified by the fact
that the ion phase space is Cartesian, and the size and
shape of the cells do not change throughout the mesh. In
general, the moved cell overlaps four final cells. The
same cannot be said for the electron model; the Jacobian
for this mesh is (approximately) 27v% A moved cell may
fall completely within one final cell or may overlap many
final cells. The CS accounts for this apparent variation in
cell size by independently moving the center of each face
of the initial cell to properly calculate the location and
size of the moved cell. As before, the particles in the
moved cell are distributed to each of the final cells in pro-
portion to the volume of phase space occupied by the
moved cell in each of the final cells.

2. Scattered electrons

The scattering calculations for the electrons are illus-
trated in Fig. 3, and described here. All scattering pro-
cesses are assumed isotropic, with the anisotropic
differential elastic cross section being replaced with the

Unscattered particles
(Initial cell) > <~

FIG. 3. Schematic of the electron collision operator. Elec-
trons leaving a scattering event are distributed isotropically; an-
isotropic elastic scattering is described through the elastic
momentum-transfer cross section. Electrons involved in an ion-
ization event are distributed according to the differential energy
scattering cross section. Ionization energy is 7,,,. Excitation
energy for the single process shown is 7,. Individual mesh cells
have been omitted for clarity.
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isotropic elastic momentum-transfer cross section. The
assumption of isotropic inelastic scattering for electrons
in a normal helium cathode fall is supported by the work
of Den Hartog et al.!> A detailed investigation of the
effects of anisotropic scattering in nitrogen is presented
by Phelps and Pitchford.'® Although the present electron
scattering calculations use isotropic scattering, it should
be noted that any anisotropic distribution can be included
in the CS.

The isotropic elastic momentum-transfer cross section
is the simplest to examine. In this process, particles
scatter from one polar angle '’ to another ' at the same
speed (v'=v""). Particles scattered out within each cell
(z",v",u"") are replaced at the same spatial location z’
and speed v’ as the unscattered particles, but distributed
evenly (isotropically) in the cosine of the polar angle p'.

Excitation collision processes are similar, but the scat-
tered particles are replaced isotropically at a final speed
v’ that is determined by the energy of the kth excitation
process 7,: v'>=v"?—21,/m. The phase space of the
electron mesh compresses as one moves toward lower ve-
locities. This is again handled by calculating the posi-
tions of the faces of the moved cell when scattering from
one speed (v’’) to another (v'); scattered particles lose a
fixed energy 7, rather than a fixed speed.

Ionization processes produce scattered particles over a
range of speeds 0<v'?<v"?—2r, ,/m, where 7, is the
ionization threshold energy. The number of particles
scattered to each speed in this range is found using the
differential energy ionization cross section. The scattered
particles are then distributed isotropically as before.

As in the ion model, relevant moments of the distribu-
tion are calculated and (if self-consistent) the field is ad-
justed. As a final note, some moments are not found by
integrating over the mesh. To improve the accuracy of
finding moments like the average electron velocity (v, )
and the electron current density j,, the electron flux
across the z boundaries within the mesh is tracked during
the unscattered movement of electrons and used to calcu-
late (v, ) and j,.

V. FIXED ELECTRIC FIELD CALCULATIONS

A. Swarm experiment calculations

The CS is now used to model a swarm experiment in
helium at a uniform reduced field of E/N =282 Td
(where 1 Td=10"" Vcm?. The gas density N is
3.53X10'"® cm 3. The cross sections are taken from La-
Bahn and Callaway'® (elastic) and Alkhazov?® (inelastic).

Figures 4(a)—4(d) show the predicted relative density n,
the average z velocity (v, ), the average electron energy
(7)), and the effective Townsend first ionization
coefficient a. The CS predictions are plotted, along with
results from Doughty’s Monte Carlo,?! which uses the
full anisotropic elastic scattering cross section. The
Monte Carlo simulation should otherwise be directly
comparable to the predictions of the CS.

The exact nature of the equilibration region near the
cathode depends upon assumptions made about the dis-
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tribution of electrons liberated from the cathode surface.
A perfectly absorbing anode is assumed in both calcula-
tions, producing the observed absence of backscattered
electrons near the anode. Assumptions about the nature
of the electrode boundaries are common to both the CS
and Monte Carlo methods, but do not affect the predicted
swarm values.

Results from swarm experiments of Kiiclikarpaci
et al.?? are also displayed in Fig. 4. Kiiciikarpaci’s re-
sults are in general agreement with an older but extensive
set of swarm data compiled by Dutton.?> Care has been
taken to ensure a proper comparison of the average ve-
locity {v,) from the CS with the experimentally obtained
drift velocity v;. The average velocity attributed to
Kiiciikarpaci in Fig. 4 was found using the drift velocity
vz, Townsend ionization coefficient @, and longitudinal
diffusion D; from Ref. 22,

<UZ)=%=vd—DLa . 4)

The electron flux I' and density n are well-defined mo-
ments.

The agreement of the predicted and experimental
values is excellent. Kiiciikarpaci quotes an accuracy of
+5% in v; and £15% in D; at this relative high E /N.
The experimental uncertainties for a are larger; Dutton
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FIG. 4. Comparison of results of a swarm calculation. Solid
lines denote the CS calculations and crosses are from the Monte
Carlo calculation of Doughty (Ref. 21). Dashed lines indicate
the experimental swarm values from Ref. 22 (see text).
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discusses the problems in detail. The semiempirical in-
elastic cross sections from Alkhazov have an uncertainty
of £25% at low impact energies and =15% at higher en-
ergies where the Born approximation is reliable. The
differential elastic cross section from LaBahn and Calla-
way has an estimated accuracy of £5%.

B. Cathode fall

In this section the CS will be used to model the CF in
the j, =0.190 mA cm ™2 near-normal glow discharge of
Doughty et al.?* and Den Hartog et al.'’

An electric field configuration is imposed based on the
field experimentally measured using optogalvanic detec-
tion of Rydberg atoms.?> A linear field is assumed in the
CF based on a least-squares fit to experimental electric
field data.!>?* The field is 897 V/cm at the cathode and
extrapolates to zero at 0.382 cm from the cathode. The
gas density is 11.2X 10! cm™3. A realistic model of the
NG is beyond the scope of this paper, so a weak NG field
was assumed (10 V/cm directed toward the cathode).
This field configuration allows comparison with the
Monte Carlo calculation, as the Monte Carlo calculation
is unable to handle trapped particles (and therefore a field
reversal). It also shortens the computation time required
by sweeping electrons out of the NG region and into the
anode.

A comparison of the results of the CS and Monte Carlo
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FIG. 5. Comparison of results for a near-normal glow

discharge from the CS and Doughty’s Monte Carlo calculations
(Ref. 21). The parameters and imposed electric field correspond
to the j, =0.190 mA cm ~? discharge of Ref. 24.
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methods is shown in Fig. 5; the agreement here, as in the
swarm calculations, is excellent. This fixed-field calcula-
tion should be an accurate indication of electron behavior
in the CF. It should also be a reasonable model of the
high-energy electrons that stream through the NG from
the CF to the anode. It does not describe all of the NG
electrons because the assumed NG field configuration
does not allow a realistic anode sheath to form which
would contain the highly mobile electrons within the NG
plasma. A more detailed consideration of the NG will be
presented along with the self-consistent CF calculations
of Sec. VIC.

A brief review is in order. The CS method has been
shown to accurately match the predictions of a fixed-field
Monte Carlo code, where individual particle trajectories
are followed exactly, unhampered by any mesh. Com-
pared to an explicit finite difference solution, the CS algo-
rithm is more efficient and free of numerical instabilities
(it is inherently an integral, rather than a differential for-
mulation). It is accurate during the time evolution of the
system. Because the Green’s function for the Boltzmann
equation has an obvious interpretation, the CS method is
very intuitive to implement, much in the spirit of Monte
Carlo simulations.

VI. SELF-CONSISTENT ELECTRIC FIELD
A. Scope of solution

As mentioned in Sec. I, a self-consistent calculation of
the CF demands an accurate description of all charged
species. Here, singly charged ions (He" ) are assumed to
be the only charged species present other than the elec-
trons, and the ionic current is assumed to be the
difference between the fixed discharge current and the
electron current predicted by the CS [Eq. (6)]. Ion behav-
ior is parametrized using the experimentally known mo-
bility from Helm;?® the details of this treatment and its
justification in the CF are presented in Ref. 2.

Lawler?” showed that the mobility parametrization of
the ions should be adequate in the high-field part of the
CF, but that the ion model is suspect near the CF-NG
boundary. His calculations indicate that ions moving
through rapidly changing fields (as exist near the CF-NG
boundary) require several mean free paths to reach the
speed indicated by the mobility, depending upon the ac-
tual field configuration and ionization source. The ion
model does not describe the random thermal motion of
the ions, which is important in low-field regions such as
the NG. Because inertial effects are discounted, it cannot
be expected to realistically model a possible field reversal
in the discharge. The field must reverse somewhere in
the discharge to allow the formation of an anode sheath
and prevent a quick escape of NG electrons to the anode.
Evidence placing the field reversal near the CF-NG
boundary was recently reviewed by Den Hartog et al.'®
Microwave Doppler-shift measurements have indicated a
slow ion drift toward the anode in the NG of a Kr-D,
glow discharge,?® indicative of a weak reversed field in
the NG.

The numerical problems associated with a field reversal
are strictly a function of the crude ion transport model.
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A field reversal could be handled with ease if the CS were
also used to describe the ions.

A self-consistent model of the CF-NG boundary and
the NG will not be considered in this paper for several
reasons. The physical assumptions appropriate in the
NG differ markedly from those of the CF. Several mech-
anisms have been discounted in the present CS model of
the CF that may be important in the NG, including ener-
gy transfer during elastic collisions, a nonzero neutral gas
temperature, electron-ion recombination, Coulomb col-
lisions, and the role of metastable atoms. A discussion of
these and other mechanisms in a helium afterglow can be
found in a comprehensive paper by Deloche et al.?

A more vexing problem is the physical time required to
build up the large density of low-energy electrons existing
in the NG. Recent experiments'>*® on the j,=0.190
mA cm ™2 helium discharge being modeled here indicate a
large density ( > 10! cm™3) of relatively cold ( <0.25 eV)
electrons in the NG. If this density extends over 0.1 cm
(around half) of the NG, 10'° electrons would exist in the
NG per square centimeter of electrode area. If the source
of these electrons is taken to be the electronic current
crossing from the CF into the NG (j,=j,=0.190
mAcm 2 at the CF-NG boundary), and there are no
losses (a best case assumption), it would take a minimum
of 1073 seconds for enough electrons to be generated in
the discharge to obtain the observed NG electron density.
Given the aforementioned CS time step of 0.05 ns (limit-
ed by the electron-atom collision rates in helium), this
translates into a minimum of 2X10° CS iterations. A
self-consistent electrode-to-electrode calculation must cir-
cumvent this problem.

B. Boundary condition at the cathode

While the absolute number density in a fixed-field solu-
tion may be scaled arbitrarily by varying the number of
injected electrons, absolute number densities are required
in a self-consistent calculation for use in Poisson’s equa-
tion. As previously indicated, the driving source in the
CF is the secondary emission of electrons from the
cathode by ion, metastable, and uv photon impact. The
appropriate number of electrons to be launched in the
present model is found using an effective emission
coefficient Yo which determines the ratio of electron
current density j, to ion current density j,,, at the
cathode surface,

‘)/pjion(o):je(o) . (5)

As defined in Eq. (5), y, includes all emission mecha-
nisms and a correction for electrons that are elastically
backscattered to the cathode. The composite value of
v, =0.3 is taken from the experimental results of Dough-
ty et al.?* The determination of v, there is based on op-
togalvanic measurements of the electric field in a helium
CF and the ion mobility as measured by Helm.?®

The ion current density at the cathode is found by
fixing the discharge current density j, throughout the
discharge

jD:jion(Z)+je(z) . (6)

The electron current density at the cathode can be
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found once the total current density j, and the coefficient
v, are specified. The CS is therefore started by placing
electrons into the mesh cells adjacent to the cathode with
a chosen velocity distribution so as to satisfy the condi-
tions of Egs. (5) and (6). The distribution of electrons
ejected from the cathode is also assumed in Monte Carlo
calculations; a flat energy distribution with energies of
less than 10 eV is typical®>”!3!5224 and reasonable in
light of experimental measurements.>!

C. Self-consistent calculations

The self-consistent problem demands an extra condi-
tion on the electric field to completely specify a unique
solution. This condition is discussed in Ref. 2. Within
the present model, the simple ion transport description
requires the ion velocity, and hence the ion current, to
vanish any time the electric field nears zero. The ex-
tremum condition of Ref. 2 should be useful for the more
ambitious electrode-to-electrode calculation and a full in-
vestigation of the CF-NG boundary.

A self-consistent-field calculation is started by first
guessing a field configuration [Fig. 6(a)] and then running
a fixed-field calculation to (near) stability. In compar-
isons with Doughty, his CF field measurements were used
as the initial guess. As in the fixed-field calculation, the

/ Fixed initial field

(@)

Field from Poisson's equation
Old field

Partial relaxation of field

Old field
New field from Poisson

Electric field

Final relaxed field configuration

Distance from cathode

FIG. 6. Schematic of the field relaxation algorithm. Initial
fixed-field configuration is guessed and the convective-scheme
run to (near) stability (a). Poisson’s equation is used to calculate
a new field configuration (b). Old field is then allowed to relax a
fraction r of the distance toward the new field (c). Partially re-
laxed field of (c) becomes the “old” field in (b) during the next
iteration, and (b) and (c) are repeated until stability is again
reached (d). Separation of the old and new fields, as well as the
amount of relaxation 7, have been exaggerated for clarity.
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NG field is assumed to be directed toward the cathode
with a magnitude of 10 V/cm, and the calculated field in
the CF is matched to this value at the CF-NG boundary.

Once the fixed-field solution is found, Poisson’s equa-
tion is combined with the field constraint (j;, ,=0 if
E =0) to calculate an electric field. A search is made for
the spatial location where the electrons carry the full
discharge current, that is, where j, =j,. This defines the
CF-NG boundary. (Such a point may not exist if the
guessed field is too weak; the initial guess must then be
modified.) The calculated field is set to zero at this point
and its behavior in the CF is found by integrating toward
the cathode using Poisson’s equation. The 10 V/cm NG
field is then imposed throughout the NG. A typical re-
sult at this stage is shown in Fig. 6(b).

The field being used in the run (currently the imposed
field) is allowed to relax a fixed fraction r (typically
r=~0.01) of the difference between the field being used
and the newly calculated field at each spatial location z
[see Fig. 6(c)]. A single time iteration of the CS is calcu-
lated with the new field configuration, then the field is
again relaxed. This scheme consisting of a single CS time
iteration followed by a partial field relaxation is contin-
ued until a stationary solution is again found, as in Fig.
6(d).

VII. DISCUSSION OF SELF-CONSISTENT
CALCULATION

The predicted electric field configuration for the
jp=0.190 mA cm ? discharge of Doughty et al.?* is
presented in Fig. 7, along with the field measurements
from optogalvanic experiments. The field decreases in a
nearly linear fashion in the CF, as expected. The experi-
mental and predicted fields are in good agreement in the
high-field part of the CF. Factors influencing the predict-
ed electric field will now be presented.

The slope of the predicted field in the CF is not directly
dependent on the sophisticated kinetic treatment of the
electrons; the electron density » is a negligible fraction of
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FIG. 7. Self-consistent electric field configuration as predict-
ed by the convective scheme for the j,=0.190 mA cm 2
discharge of Ref. 24. Experimental field points are optogalvanic
measurements from the same reference.
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the ion density n ., in the CF, so the ion density dictates
the slope through Poisson’s equation,

dE _ e

= = . 7

dz €, "+ @
The electric field is E, €, is the permittivity of free space,
and e is the unit charge (e >0). Combining Poisson’s
equation with the current balance condition [Eq. (5)],
continuity [Eq. (6)], and the mobility (u ) parametriza-
tion of the ion velocity v, ,

v, =up,(E)E, (8)
yields a constraint on the electric field at the cathode,

pdE__ o ©)

w1 +7,)

These considerations partially dictate the electric field
configuration independent of the CS.

An accurate determination kas been made of the elec-
tron current throughout the discharge, based on the de-

(a)

FIG. 8. Distribution functions from various spatial locations
within the self-consistent CS calculation shown in Fig. 7. Dis-
tances from the cathode are (a) z=0.028 cm (near the cathode),
(b) z=0.243 cm (midst of CF), and (¢) z=0.489 cm (midst of
NG).
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tailed kinetic description of the CS. This, in turn, yields
an accurate prediction of the ion current at all z through
the continuity requirement [Eq. (6)]. The location of the
CF-NG boundary is then fixed by requiring j,=jp
(jion =0) at the boundary.

The calculated electronic current is dependent upon
the absolute accuracy of the ionization rate. The ioniza-
tion cross section is from Alkhazov,?® and the uncertain-
ties have already been discussed. Two simplifying as-
sumptions in the CS also affect the ionization rate. Asso-
ciative ionization is not included, and all electrons leave
scattering events with isotropic distributions. The first
assumption underestimates the total ionization; the
second overestimates it because the isotropic assumption
results in more backscattered high-energy electrons that
are more likely to undergo additional ionization events.
Anisotropic elastic scattering is already present in the
Monte Carlo simulations, and some of the effects of an-
isotropic inelastic scattering can be included by assuming
that the two electrons leaving an ionization event scatter
elastically after the event with no recoil from the ionized
atom.” The Monte Carlo calculation indicates that the
net result of these two assumptions is a slight underes-
timation of the ionization rate in the CS predictions in
this near-normal discharge. An underestimation in the
ionization rate corresponds to an overestimation of both
the electric field strength in the CF and the length of the
CF.

To emphasize the fully kinetic nature of this self-
consistent calculation, distribution functions at three spa-
tial locations in the discharge are presented in Fig. 8.
Electrons that have survived unscattered from the
cathode dominate Fig. 8(a), which is taken from near the
cathode in the CF. Figure 8(b) is taken from the midst of
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FIG. 9. Isotropic portion of the self-consistent electron dis-
tribution as a function of position within the discharge and elec-
tron speed. Vertical extent of the distribution function is trun-
cated to show the unscattered beam of electrons from the
cathode. Only every other mesh point in z is plotted for clarity.
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the CF, showing the expected buildup of inelastically
scattered electrons. Electrons streaming through the NG
from the CF to the anode are shown in Fig. 8(c); this re-
gion is dominated by electrons that have undergone
several inelastic collisions. The distribution differs some-
what from a pure Maxwellian—high-energy electrons are
depleted relative to a Maxwellian due to inelastic col-
lision processes, and close inspection of Fig. 8(c) reveals a
slight anisotropy of the NG electrons. These electrons
are sometimes called “beam” or “‘ballistic” electrons be-
cause they are distinctly nonhydrodynamic electrons in
the weak NG electric field; they are primarily responsible
for excitation and ionization events in the NG.

Finally, the isotropic part of the distribution function
versus position in the discharge and electron speed is
shown in Fig. 9. The vertical scale of the graph has been
truncated at one-tenth the largest magnitude of the distri-
bution function to more clearly show the beam electrons
that have survived unscattered from the cathode.

VIII. SUMMARY

A convective-scheme method has been introduced to
gaseous electronics in this paper. The method is more
efficient than explicit finite difference schemes and able to
accurately describe the time evolution of a plasma. The
CS is very straightforward to implement, similar to
Monte Carlo simulations. The CS was used to model two
fixed-field discharges: a swarm experiment and the CF of
a dc glow discharge. Predictions of the CS were shown
to be consistent with Monte Carlo simulations. The
swarm predictions were compared with experimental re-
sults, and uncertainties in both the experimental swarm
results and the cross sections used in the CS were dis-
cussed. Self-consistent-field calculations of the CF were
then presented. The field predicted by the self-consistent
calculations was in excellent agreement with optogalvan-
ic experiments. The accuracy of the electric field
configuration was shown to depend on the detailed kinet-
ic calculation primarily through the CS’s prediction of
the electron current. This, in turn, fixed the location of
the CF-NG boundary and yielded the predicted electric
field configuration.

The problems hampering the present model near this
boundary would be avoided with an improved ion trans-
port model. Physical and numerical considerations
necessary for a realistic model of the NG were outlined.
The efficiency of the CS should eventually allow a fully
kinetic treatment of both the electrons and ions and a
complete electrode-to-electrode calculation, including a
detailed description of the true nature of the CF-NG
boundary.
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