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Capillary waves of a vapor-liquid interface near the critical temperature
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An attempt is made to develop the picture of an interface near the critical temperature as an in-
trinsic Fisk-Widom interface broadened by capillary waves. We propose a method for determining
the free parameters appearing in the capillary-wave theory by requiring that the capillary waves
smoothly renormalize the surface tension from the bare to the experimental value. We evaluate the
effect of the capillary waves on the width of the interface and make a comparison with experimental
reflectivity measurements obtained by Wu and Webb [Phys. Rev. A 8, 2065 (1973)] for SF6 and also
with the renormalization results of Jasnow and Rudnick [Phys. Rev. Lett. 41, 698 (1978)].

I. INTRODUCTION

The interface between coexisting vapor and liquid
phases is commonly pictured as an intrinsic interface
broadened by the presence of thermally excited capillary
waves. ' A phenomenological theory of the intrinsic in-
terface is provided by the mean-field or van der Waals
theory which, for fluids near the critical point, has been
extended by Fisk and Widom. An outstanding problem
is how to combine the theory of an intrinsic interface
with the capillary-wave theory to obtain a quantitative
description of interface properties such as surface ten-
sion, interfacial thickness, and interfacial structure.

A major difficulty is the lack of a suitable first-principle
theory in which the capillary waves are incorporated.
The usual approach presupposes a theory which yields an
intrinsic interface with a "bare" surface tension, and then
considers the effect of the capillary waves on this inter-
face. ' In order to make the theory well behaved a
short-wavelength cutoff has to be imposed. Neither the
bare surface tension nor the cutoff can be obtained from
the capillary-wave theory itself, but must follow from the
underlying theory yielding the intrinsic interface. The re-
normalization theory can in principle provide an answer,
as shown by Jasnow and Rudnick. ' '" In practice, how-
ever, it appears difficult to implement the renormaliza-
tion program to obtain accurate results for three-
dimensional fluids.

Introducing a column model, Weeks has proposed a
conceptual justification for adding the capillary waves to
an intrinsic interface. However, as noted by Kayser,
this column model contains an ambiguity concerning the
relationship between the amplitude of the capillary waves
and the bulk correlation length. This ambiguity becomes
apparent in the calculation of the contribution of the
capillary waves to the surface tension. As will be further
elucidated in Sec. II, the column model assumes the ex-
istence of two different cutoffs: one as the minimum al-

lowable capillary wavelength, and another specifying the
minimum height unit in the columns.

In this paper we shall treat the vapor-liquid interface
near the critical point as a fluctuating Fisk-Widom inter-
face. We propose a method for determining the two
cutoffs mentioned above by requiring that the capillary
waves smoothly renormalize the surface tension from the
bare to the experimental value. The result is a
wavelength-dependent surface tension varying from the
bare surface tension, associated with the capillary waves
at the short-wavelength cutoff, to the experimentally ob-
served surface tension in the long-wavelength limit. We
then evaluate the effect of the capillary waves on the in-
terfacial density profile and make a comparison with ex-
perimental reflectivity measurements' and with the re-
normalization results of Jasnow and Rudnick. ' "

The results presented in this paper pertain to tempera-
tures near the critical temperature where the properties
of the fluid can be represented by their asymptotic criti-
cal power laws. ' They cease to be valid, however, at
temperatures so close to the critical temperature that
gravitational effects associated with the large compressi-
bility become important. ' ' An analysis of the capillary
waves when these compressibility effects become
significant will be presented in another publication. '

II. CAPILLARY-WAVE MODEL

We consider the gravitational field directed in the neg-
ative z direction and take the plane z =0 at the Gibbs di-
viding surface of the interface, where the density p is
equal to the critical density p, . Our picture is similar to
that of Weeks, Huse et al. ,

' and Kayser in which the
capillary waves account for fluctuations larger than the
bulk correlation length g, so that the capillary-wave
Hamiltonian involves a coarse graining over length scales
up to or slightly larger than g'. For this purpose Weeks
proposed a column model in which the space is divided
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where kz is Boltzmann's constant and T the temperature,
and where the square brackets indicate functionals rather
than functions. The second step then requires the evalua-
tion of the grand-canonical sum

(z I'I ')
exp( F;„,[N, ]/—ks T),

!N, ! i

where z, is the activity of the system.
It is advantageous to transform (2.2) to a continuum

description by introducing the density field n (r) defined
as

(2.2)

n(r;)=N; /I'I (2.3)

where r; represents the location of the center of cell i.
Then

g N, = g(I'I ')n(r;) = f dr n (r) (2.4)

and

into rectangular columns with base width I. As pointed
out by Kayser, to effect the coarse graining correctly, so
as to obtain the appropriate scaling relations near the
critical point, the columns must be subdivided into cells
with height I'. We thus consider the space divided into
cells with volume l I" ', where d is the dimensionality of
the system. Although we are interested in the d =3 case,
we keep the dimensionality d unspecified initially in order
to elucidate the role of d. The cell lengths l and I' are ex-
pected to be of the order of g, but we postpone a more de-
tailed discussion of the size and shape of the cells to Sec.
V.

The cell division is employed to evaluate the partition
function in two steps: first, sum over all configurations
subject to the constraint that cell i contains N; particles,
and then sum over all distributions I N; j. Let us assume
that the first step leads to the constrained partition func-
tion Z [N, ], which we write as the product of an ideal-gas
contribution, and a factor accounting for a constrained
free energy F;„,(N; ) due to the interaction

Z[N ]=(I'I ') ' ' exp( F,„,[N —]/k&T), (2 1)

where f;„,=F;„,/V is the interaction free energy per unit
volume. In (2.6) we have deliberately not yet replaced the
sum over [N, I by a functional integration over n(r); as
pointed out by Kayser this additional step requires some
care.

The sum in (2.6) can be performed by first determining
the density distribution fi'(z), which optimizes Q[n (r)],
and then incorporating the influence of the fluctuations
hN; =N; —1V; around this optimum profile
= I'I ' 8'(z; ). The basic assumption of the column
model is that the capillary waves of the optimum profile
are the most important fluctuations when the cell distri-
bution is chosen appropriately. A capillary fluctuation
can be represented by a displacement Z(rj) of the origi-
nal profile, where r~ is a vector perpendicular to the z
axis specifying a location in the dividing surface

Z (r,~)= I'h, , (2.9)

where h; =h (r;~) is the height of the column at r, ~ in
terms of the number of cells in the column. Thus the
sum in (2.6) can be replaced by the contribution of the
optimum profile and the sum over all integer height dis-
tributions Ih; I. We then obtain

Z
g

2 rZcw (2.10)

where 2s, is the partition function associated with the in-
trinsic profile, such that

k&T ink, = f dr Q[n(z)], (2.11)

while Zcw is the partition function associated with the
capillary waves

Zcw = g e"p
Ih; I

H[h, ]
k~T

(2.12)

The capillary-wave Hamiltonian H [h,. ] is the energy of a
fiuctuation Z(rj ) and is generally taken to be of the form

(2.8)

In order for this expression to signify a new cell occupa-
tion, we impose the condition that Z (r;~) be a multiple of
I':

gN;!=g
1 I H[Z]= f dr~I ~V~Z(rj}~ +XoZ (r~}] .

2
(2.13)

=exp g N, ln
N;

=exp f drn(r)ln n (r)l'I"

with

z, n(r}
Q[n (r)]=n (r)ks T ln

As a consequence, (2.2) can be written in the form

Zs, = g exp f drQ[n(r)] k&TI¹I

(2.5)

(2.6)

(2.7) h (q~) =g h exp(iq~. r,~),
J

(2.14)

Here crb is the bare surface tension (surface tension of the
intrinsic interface) associated with the optimum profile
fi'(z). The term in (2.13) involving the squared gradient
represents the contribution to the free energy from the
enlargement of the interface area in a capillary wave,
while the second term in (2.13) accounts for the gravita-
tional energy of the wave. In Sec. IV we shall derive a
capillary-wave Hamiltonian of the type (2.13) on the basis
of the Fisk-Widom theory.

With the explicit form (2.13) for H, the capillary-wave
partition function can be readily evaluated. One intro-
duces normal modes
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which diagonalize the Hamiltonian (2.13). The wave
number q~ must fit into the lattice cells. For a square sys-
tem with length L, q can assume the values

Zn . L L
q = m withm = ——,. . . , +—.

21' ' 2l
(2.15)

The other components of q~ must satisfy similar con-
straints. The total number of modes is (L/1) ', which
equals, of course, the number of columns. Thus q~ is con-
strained to a Brillouin zone B of area (2n/1) '. The
summation over the normal modes has been carefully dis-
cussed by Kayser. The result is

L d —1

lnZcw= — d, f dq~ln
2(2~)d

O.b(q~+A, o)(1') 1"

2vrk~ T

(2.16)

k~T
dq~ln

2(2 )d
—1

ob(q f +ho)(1') 1

2+k~ T

(2.17)

We conclude that both dimensions l' and l of the cells
appear in the contribution her of the capillary waves to
the total surface tension o. =o.

t, +ho. This is not the
case for the mean-squared displacement ( Z ) of the in-
terface due to capillary waves which is given by

(Z') = d, dq,
1 k~T

(2w) ' & crb(q~+Ao)
(2.18)

In (2.18) the base length 1 of the cells enters through the
boundary of the integration over the Brillouin zone, but
the integral does not depend on the height l' of the cells.
The reason why the influence of the shape of the cells on
the surface tension has been overlooked in the literature
may be that one was primarily interested in (Z ).

III. THEORY OF FISK AND WIDOM
FOR THE INTERFACE

The free-energy density 4 is related to the function Q
in the expression (2.6) for the grand-canonical partition
function by Q(p) =pp —4(p), where p is the chemical po-
tential and p the mass density. Here we consider 0 and
4 as a function of the mass density p(r) rather than the
number density n(r). In the squared-gradient theory,
employed by Fisk and Widom, %' is assumed to have the
form

Note that l' appears in the result because the displace-
ment Z had to be translated into a dimensionless height
variable h in order to perform the Gaussian integration
over h (q~).

Equation (2.16) shows that lnZcw is proportional to
the area L" '. Thus the capillary waves yield a contri-
bution Ao. to the surface tension given by

k~T
5o.= — 1nZcwLd —1

P(p(r) ) =p, p(p, ) P—(p, ) —W(p(r) )+—,
' A

~ Vp(r) ~'

+gz(p(r) —p, ), (3.1)

where p(p) and P(p) are the chemical potential and the
pressure P, respectively, of the homogeneous system with
density p at the given temperature T, while g is the gravi-
tational acceleration constant. The function W(p) is an
even function of Ap=p —p„where p, is the critical den-
sity; it is defined by its derivative

BW(p)
Bp

=1 (P) —V(p, ) (3.2)

and the condition that 8' vanishes at the densities p, p
and p~; of the vapor and the liquid at coexistence. The
squared gradient term in (3.1) represents the interaction
between cells with different densities. The coefficient A is
related to the correlation length g and the "symmetrized"
compressibility y=(BP/Bp, )r of the homogeneous system
with density p by

~ =0'/x. (3.3)

The last term in (3.1) represents the additional contribu-
tion from the gravitational field. In the theory of Fisk
and Widom the effect of the gravitational field is neglect-
ed, and the interfacial density profile is restricted to den-
sities between p„, and p~; . For these intermediate densi-
ties the coefficient 3 is identified with

2~ =kcoex/Xcoex (3.4)

b p =b p* /i b p,"„„i,
W = Wq,*.,„/P, jap,'.,„~',

g =gpcXcoexkcoex/Pc ~ ~pcoex~

(3.6b)

(3.6c)

(3.6d)

In terms of the these tilde variables, the free energy can
be written in the dimensionless form

In this paper we adopt the convention that the index coex
means that the value is that of the homogeneous system
at coexistence.

The quantitative predictions of the theory of Fisk and
Widom depend on the form chosen for the function W(p)
in the coexistence region. It is argued ' that cells of a
volume gd lead to an effective free-energy density for
which the Fisk-Widorn function may be a reasonable ap-
proximation. Fluctuations on scales less than g" renor-
malize the mean-field equation of state to the scaled equa-
tion of state, and the expression for 8' adopted by Fisk
and Widom yields a smooth interpolation between the
compressibility factors outside the coexistence region.

To discuss the theory of Fisk and Widom, it is con-
venient to introduce dimensionless quantities. For this
purpose we define

b T*= ( T —T, )/T„y* =yP, /p, ,

(3.5)

where p„T„and P, are the density, temperature, and
pressure of the critical point. As a next step we define

z =z/g. ..„, (3.6a)
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p, u(p, ) P—(p, }
dr%' p r = +R& —8' Ap & + —,

' hp & +gZhp &
kg Tc kg Tc

(3.7)

with

R ~
=g,"„„(b,p,'„„)P, /y,*„„k~T, . (3.8)

The theory of Fisk and Widom is applicable at temper-
atures sufficiently close to the critical temperature so that
the properties of the homogeneous phases at coexistence
satisfy the asymptotic power laws'

d'lbpl —AP+g Z
dZ

(3.12}

In the squared-gradient theory the interfacial density
profile is obtained by optimizing (3.7) with respect to bp.
The density profile then satisfies the differential equa-
tion'

with
(3.9a

(3.9b) (3.13)

R~=g B P, /I kiiT, , (3.10)

(3.9c)

where v, P, and y are universal critical exponents, such
that d v =2@+y, while g, B, and I' are system-
dependent amplitudes. Substitution of (3.9) into (3.8)
yields d'l~pFwl

dZ
=~@(~PFw» (3.14)

Fisk and Widom did not consider the explicit effect of the
gravitational field. Instead of (3.12), the density profile
hpFw of the Fisk-Widom theory satisfies the differential
equation

and we note that R& is a universal constant as follows
from two-scale-factor universality. '

The nonclassical expression adopted by Fisk and Wi-
dom ' for 8 has the simple form

which has an integral of motion

d APFw + W(bp ) =0 .
dZ

FW (3.15)

—w(ap) =, I
&pl" ' —

I
&pl'+1 g+1 &+1 2 5—1

Associated with the Fisk-Widom interface is a so-
called bare surface tension o.b. Defining a dimensionless
surface tension as

(3.11) 2~kcoex

k~T,
(3.16)

where 5=1+y/p. Note that W and BW/Bbp indeed
vanish at the phase boundary lbpl =1, while the prefac-
tor on the right-hand side of (3.11) is determined by the
condition that 8 W/Bbp (= —1) be continuous at the
phase boundary.

one obtains for the Fisk-Widom interface'

o b =4KR@, (3.17}

where the coefficient 4K is determined by the integral

+„d'2—
4K= f dz=2 f [ —2W(bp)]' dip

dZ 0

1/2

=2 2
$2

1/2

=0.576 . (3.18)

P=0.325, y=1.240, (3.19)

Just as R&, two-scale-factor universality implies that o. ,
and hence o b, are universal. '

In our actual calculations we continue to use the ex-
ponent values adopted in related previous publica-

ons 14 1 5 24

I

calculated for the following amplitude ratios:

g+( 2+P, /ks T, )'~ =0.2699+0.0008,

I +/I =4.77+0.30,
3+ I +/B =0.0594+0.0011,

(3.20a)

(3.20b)

(3.20c)

which imply 5=1+@/P=4.815 and v=(y+2P)/3
=0.630, in good agreement with the theoretical values
predicted for three-dimensional Ising-like systems. ' '

To determine R@ we make use of the theoretical values

so that

Rp=(1.58+0. 14)R
g

(3.21)

Here, g+, A+, and I + are the amplitudes of the critical



6350 J. V. SENGERS AND J. M. J. van LEEUWEN 39

power laws for the correlation length, specific heat, and
compressibility of the homogeneous system at p =p,
above the critical temperature, while R

&

=g+ /g
Brezin et a/. have reported R&=1.91 from a renormal-
ization calculation to second order in @=4—d. Tarko
and Fisher found R

&
= 1.96 from an analysis of the

series expansions for the three-dimensional Ising model,
while the analysis made by Ritchie and Essam implied
R&=1.93. We have therefore adopted the compromise
value

IU. CAPILLARY WAVES OF THE
FISK-WIDOM INTERFACE

To treat the capillary waves we consider fluctuations
around the optimum profile hppw of the squared-gradient
theory

~p ~pFw+~pl (4.1)

the value of ob is surprisingly insensitive to the value of
6.

R r
=g+ /g = 1.93+0.03,

so that

(3.22) and expand (3.7) to second order in hp, :

p, p(p, )
—&(p, )1 yd ( ))

pep pc pc

R~=0.22+0.03 . (3.23)

Experimental values for the universal surface-tension
amplitude (3.16) have been reported by Moldover and
co-workers ' ' and by Gielen et al. ,

with

+
z (cr&+ho ),L 2

(4.2)

o.,„,=(0.386+0.03)R
~

(3.24)
b cr =

—,
' R ~ J d F[ V(z )( b p, ) +

~
V b p, ~ j . (4.3)

The potential V(z ) is given by

BbP(bp„)
V(z)= (4.4)

BhpFw

The last equality in (4.4) holds for ~bp~ ~ 1 and has to be
extended appropriately for ~Ap~

~ 1 when effects from the
gravity term in (3.12) become important. '4 '5 The
minimum of V(z) occurs for z=0 and has the value
—I /(5 —1 ).

Expression (4.3) can be diagonalized by considering the
Schrodinger-type eigenvalue equation

(3.25a)

(3.25b)

(3.25c)

r /r =4.9~+0. 1S,

3+ I + /B =0.0581+0.0010,

R ~
= 1.96+0.01 .

Adoption of the latter values would imply R&=0.222
+0.016, o.

b =0.128+0.009, and 0 ezp& 0 100 0 009.
The analysis presented in this paper is still based on the
estimates given by (3.20) and (3.22), except that we have
used the results of Liu and Fisher to reduce the error esti-
mates of R

&
and O.

b to

+ V(z) y„(z)=X„y„(z) .
dz

(4.5)

Expanding Ap& in the eigenfunctions

1
bp, =g d, dqiu„y„(z)exp(iqi r, ),

(2n)
(4.6)R ~,

=0.22+0.02,
o.

b =0.126+0.013 .

(3.26)

we rewrite (4.3) as3.27

The actual values of R&, o.b, and o.,„,depend on the
accuracy of the available universal amplitude ratios. Sub-
sequent to this work, Liu and Fisher have therefore
reconsidered the numerical results for the three-
dimensional Ising model to obtain

In comparing the bare surface tension given by (3.17)
and (3.21) with the experimental surface tension given by
(3.24), we note that

0 pp / g b
=0. 82+0. 1 5 (3.28)

The macroscopically observed surface tension o.„, is
smaller than the bare surface tensions o.

b associated with
the Fisk-Widom interface. In this paper we adopt the
point of view that this difference is due to the presence of
capillary waves, which lead to a reduction of the surface
tension, as further discussed in Sec. V.

It should be noted that the actual value o.,„„,/o.
b given

by (3.28) depends on the choice of the phenomenological
interpolation function for 8 proposed by Fisk and Wi-
dom, and hence we do not know how reliable this value
is. However, there is limited freedom if one sticks with a
similar interpolation which meets all the requirements.
One way to investigate the dependence of o.

b on the
shape of IV is to vary the value of 5 in (3.11); we find that

ho. = —,'R&g, f dqi(X„+q, )~U„~, (4.7)

assuming that the y„(z ) are normalized.
The Fisk-Widom interface and hence the expression

(4.4) for the potential V(z ) correspond to the limit g ~0.
In this limit the potential V(z) develops an eigenvalue
A o which vanishes as g:

2K
(4.8)

with the corresponding normalized eigenfunction.

1

(4Z)'"yo(z ) = dhpFw
(4.9)

In this limit the lowest mode becomes very easy to excite
with the consequence that Ap, is dominated by this
mode. Thus restricting the excitations to this mode, we
may write
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dbpFw-
bp, (F)= Z(F, ),

dz

with

(4.10)

Z(&, )=(4&) '"—,, f dqivo, exp(lqi ~i) .
(2~)

(4. 1 1)

Substituting (4.10) into (4.1) and treating (4.1) as the first
two terms of an expansion, we write

pew+ Epi =hjvw(z+ Z(F~) ), (4.12)

which is the counterpart of (2.8). Keeping only the slid-
ing mode yo(z ), we find the Hamiltonian of the capillary
waves from (4.7), (4.11), and (3.17),

Hcw/k~T, =
—,'o„ f dr, [lV,Z(&, )l'+&OZ '(I', )],

(4.13)

which corresponds to (2.13). We note that in this picture
of the capillary waves the thermodynamic surface tension
(3.17) associated with the Fisk-Widom interface also ap-
pears as the coefficient of the squared-gradient term in
the capillary-wave Hamiltonian.

lengths near the cutoff this is to be expected, but in the
long-wavelength limit the full surface tension would seem
to be a more appropriate measure for the change of free
energy associated with the surface enlargement by capil-
lary waves. On this large length scale there is no reason
to make a distinction between the microscopic
configurations that contribute to the bare surface tension
and the short-wavelength fluctuations that contribute to
the full surface tension.

The viewpoint of Kayser that the shorter waves renor-
malize the surface tension for the longer waves is very
suggestive. While there does not exist a theoretical foun-
dation for this picture, the idea can be readily implement-
ed mathematically. First, we rewrite relation (2.17) in
terms of the reduced variables

~=~&+,J, dq,'ln
1

2(2m )2 q,'& q,„

o b[(q i) +Xo](l ') 1

(5.2)

(5.1)

putting d =3 and introducing the scaled cutoff parame-
ters

V. SELF-CONSISTENT SURFACE TENSION
AND CHOICE OF CUTOFFS

In the Fisk-Widom free-energy expression the inhomo-
geneity effect is represented by a squared-gradient term
only. As a consequence, the resulting capillary-wave
Hamiltonian (4.13) contains the same bare surface tension
o.

b for all capillary-wave excitations. For short wave-

In addition, we have replaced the Brillouin zone by a cir-
cular integration area of equal area, so that

q,„=2&~/l . (5.3)

As earlier proposed by Kayser, ' a renormalization of
the surface tension is achieved by considering o. as a
function of q, replacing the integration interval by
q (q I (q,„,and inserting o (q

'
) in the integrand:

—2

o.(q )=o.b+ f d(q') ln
8~ q'

[o.(q' )(q') +Zoo b ](1 1')

(5.5)

where q' is the magnitude of the two-dimensional wave
vector q'. Thus the waves with q'&q contribute to the
surface tension associated with the capillary wave with
wave number q. We note that o.

b is not replaced by
o((q') ) in the second term of the argument of the loga-
rithm, since the product Xocrb in (5.1) simply stands for
2g R& in accordance with (3.24) and (4.8). For the sur-
face tension, the term with ko is less important than for
the mean-squared displacement (2.18) as (5.4) converges
for A.O~O. In the Fisk-Widom limit g ~0, the term with
A.o vanishes and we do not need to consider this term
here.

We are now in a position to discuss our choice for the
cutoffs I and I'. For this purpose we take q =x and re-
place (5.4} by the equivalent diff'erential equation

dcr(x) 1 cr(x)x (1 I')
ln

dx 8~ 2'

Generally one expects that the surface tension will be
lowered by the capillary waves, since they represent de-
grees of freedom not included in the optimization pro-
cedure yielding o.b. This implies that the argument of the
logarithm in (5.5) is less than unity. In particular, it then
follows that at the boundary x =x „=4m./l

2crb(l') ~ 1 . (5.7)

1'=(2ob) ' =1.99+0.10 . (5.8)

Condition (5.7) implies that cr(x) (o b, and that cr(x) will
be an increasing function of x for x ~ x „.On the other
hand o. =o-b independent of x for x )x „. In order to
have the least variation of o. with x, we implement (5.7)
as an equality. Then o(x) merges smoothly (i.e., with
zero derivative) with the Fisk-Widom surface tension o b

at x =x „and

with the boundary condition
o. (x,„)=o ( 4rr /1 ) = cr I, . (5.6)

Note that condition (5.8) does not involve 1 but only 1'
(which would not be the case for d&3}.
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q,„=0.74(+0.3) . (5.9)

The value q „=0.74 corresponds to l =4.8.
The differential equation (5.1), with the cutoff' q

given by (5.9) yields, in effect, an interpolation function
for o. as a function of q from its bare value at q =q
to its macroscopic value for q =0. This function o (q ) is
shown in Fig. 2. We note from (5.5) that for small values
q the surface tension o'(q ) will vary as q lnq. This is
related to the earlier statement dating back to Buff et al.
that the capillary waves contribute to the surface tension
o(0), a term which goes as g lng, as one finds from (5.1)
for small g.

The second length l, or equivalently the upper limit
x „=4~/I, can be adjusted so as to recover, in the
long-wavelength limit x =0, the macroscopically ob-
served surface tension o.„,. For that purpose we in-
tegrate (5.5) from various upper boundaries x,„ to x =0.
The resulting values for o.(0)/crb are plotted in Fig. 1 as
a function of the upper boundary x „.Intersecting this
curve with o,„z,/tabb =0.82+0. 15 as given by (3.28), we
obtain x,„=0.54(+0.4) or for q,„=Qx

can define a scaled reflectivity R as a function of the
scaled wave number k =kg„,„by taking out the Fresnel
contribution (i.e., the contribution of a sharp interface)

R =do~AT*~ ~R (6.3)

where do=(n, 'B/2n, ) is a nonuniversal scale, ~~ which is
not important as one measures in practice relative
refiectivities. ' The scaled reflectivity R(k) is then relat-
ed to the scaled density profile by

2

R(k) f +
dz P e 2ikz-

dz
(6.4)

The capillary-wave theory gives the average profile Ap
as a Gaussian average of the fluctuating profile (4.12)

bp(z) =
zcw f X)Ze bp„w(z+Z), (6.5)

where Hcw(Z ) is the scaled capillary-wave Hamiltonian
given by the right-hand side of (4.13) and Zcw the corre-
sponding capillary-wave partition function. Taking the
derivative with respect to z and performing a Fourier
transform as indicated in (6.4), one finds

VI. REFLECTIVITY R(k)=R„(k)((e '" ) ) (6.6)
The reflectivity of an interface is related to the gradient

of the refractive-index profile. Close to the critical point
the refractive index n varies as

n =n, +n,'Ap*, (6.1)

where n, is the refractive index at the critical point and
n,

' a system-dependent constant. For normal incidence
the reflectivity R is then related to the density gradient
b 34 38

where R„w(k) is the scaled refiectivity of the intrinsic
Fisk-Widom interface,

dhpFw —2' zRzw(k ) = dz e
QO dz

2

(6.7)

and where the average ( ) in (6.6) is to be taken over
a capillary-wave ensemble as indicated in (6.5). Since the
waves are Gaussian distributed we have

R(k)= nc + dip*dz exp —2ikz
2n, — dz

2 (e"" ) =exp( —2k '(Z ') ),
(6.2)

so that

(6.8)

where k =2~n, /k is the wave number of the light. We R (k ) =R ~w(k )exp( 4k (Z ) ) .— (6.9)

The formula for the mean squared displacement (Z ) is
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FIG. 1. Calculated long-wavelength surface tension o.(0), rel-
ative to the bare surface tension oh, as a function of the cutoffx,„=q,„. For x,„=0.54 we recover o,„~t/ob =0.82.

F1G. 2. Reduced surface tension cr =o.g'„,„/k T, sas a func-
tion of q

' =q 'g,'„„.
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given by (2.18) which for d =3 becomes, in terms of the
reduced variables,

2

(z') = '"dq '
4~ q;„0 q q +2R yg

(6.10)

We have again replaced the Brillouin zone by a circular
area bounded by q,„,as given by (5.3). To be consistent
we treat the surface tension o. in the integral as a function
of the wave number q, while A.oo. b has been identified
again with 2R&g. Meunier and Langevin have argued
that reflectivity experiments effectively involve a lower
capillary-wave cutoff

hN

l5

Q
Io

i i )i(l
Io

(T -T)/T

a (e=Q)

~ b (6=o.oos)

o ~c (e=o.olo)

~d (Jasnow et
Rudnick, e=o)

q;„=k sinO, (6.11)

where 2O is the collection angle. ' With q,„given by
(5.9) and the function cr(q ) as determined in Sec. V, we
can calculate the mean-squared displacement (Z ) from
(6.10).

Reflectivity measurements of a vapor-liquid interface
near the critical point at various wave numbers k have
been reported by Wu and Webb for sulfurhexafluoride. '

To make a comparison of (6.10) with these experimental
data, we have adopted the critical-region parame-
ters' ' ' presented in Table I. From (6.3) and (6.9) it
follows that one can deduce experimental values for the
mean squared displacement of the interface due to the
capillary waves from the experimental reflectivity data
R empt as

—C (6.12)

(Z '),„„=l 1+2 (6.13)

for T, —T ~ 1 K and independent of k. The actual values
deduced from the experimental reflectivities obtained at
=4880 A, which corresponds to k =0.1405X10 m
are shown in Fig. 3. In the analysis we have restricted
ourselves to temperatures within 1' from T, for two
reasons. First, for T, —T & 1 K, one must expect correc-

TABLE I. Critical region parameters for SF6.

T, =318.69 K
p, =730 kg m
I', =3.761 MPa
n, = 1.091
B =1.62
r =o.o46
r =0.0096
/~ =0. 189 nm

=0.098 nm

where C is an adjustable constant which converts the rel-
ative reflectivities into absolute reflectivities. For each
experimental run, i.e. , for each k, the values of
In(R,„,/Rzw ~

AT'
~

~) deduced from the original experi-
mental data ' could be fitted to a linear function of
k =k g„,„well within the experimental accuracy, thus
yielding C. For (Z ),„,we find

tion terms to the asymptotic power laws (3.9). Second,
for T, —T ) 1 K, the values deduced for (Z ) from the
experimental reflectivities become very inaccurate.

A comparison with (6.10) is complicated by the fact
that the collection angle O, and hence the lower cutoff
q;„, is not well known for these experiments. ' As was
done by Meunier, we have evaluated (6.10) for 9=0,
O =0.005, and O =0.010 rad, and the results are
represented by the solid curves (a), (b), and (c) in Fig. 3.
For O=O, the cutoff is determined by gravity through

I~'+'gI p,
BP,

=1.10X10 '
~b, T*~ (6.14)

For O=0.005 and O=0. 010, the value of the integral
(6.10) is determined by the experimental cutoff'. [The un-
certainty in the cutoff wave number (5.9) affects the
values calculated for (Z ) by less than 0.5.] Curves (a)
and (c) are expected to provide upper and lower bounds
for (Z ). From Fig. 3 we note that the theory provides
values for (Z ) of the correct order of magnitude, but
the expected temperature dependence of ( Z ) is not
seen in the experimental data. In fact, the absence of this
temperature dependence justifies the procedure described
above for determining the constant C.

Since the experimental cutoff q;„=k sinO depends on
k =kg, at a given k the mean squared displacement
( Z ) should depend on temperature, and at a given tem-
perature it should depend on k, although the range of ex-
perimental k values may not have been suKciently large
to resolve the latter effect. When 8=0, (Z ) should still
depend on temperature through the temperature depen-
dence of g as given by (6.14). It would be desirable to
perform new reflectivity measurements (including turbi-
dity corrections) in which the reflectivity is carefully in-

FIG. 3. Mean squared displacement (Z') as a function of
( T, —T)/T, . The circles represent values deduced from the ex-
perimental reflectivity data at k =0.1405 X 10' m ' obtained by
Wu and Webb (Refs. 12 and 41) for SF6. Curves (a), (b), and (c)

represent the values calculated from (6.10) with q;„=k sin0 for
0=0, 0=0.005, and 0=0.010 rad, respectively. Curve (d) indi-

cates values calculated from the theoretical formula of Jasnow
and Rudnick (Ref. 10).
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vestigated as a function of the collection angle 0. When
q;„=k sinO, (Z ) should vary with temperature as
(2v/4~o. ,„~,)in~a, T*~. When q;„=0, the cutoff is pro-
vided by gravity and (Z ) should vary with temperature
as [($5+v)/4~cr, „,]ln~b, T*~.

Beysens and Robert have recently calculated the
reflectivity with the traditional capillary-wave formula
with a constant surface tension, so that (6.10) is approxi-
mated by

(Z') = 1

4~o ~ q
(6.15)

They estimated the short-wavelength cutoff l, and hence
q „, from the experimentally observed interface thick-
ness (which includes capillary-wave efFects), obtaining
values for l ranging from 8 to 10 in our notation. No at-
tempt was made to identify o.„ in (6.15) with the Fisk-
Widom surface tension. We note that also, with the ap-
proximate equation, ( Z ) should be expected to vary
with temperature.

Jasnow and Rudnick have derived an expression for
the reflectivity of the interface using renormalization
techniques. ' " Their result has the same form as (6.9)
but with

(Z ) =c, ln[c (a/2g„, „)'~ +'i /h a'"+ ' ] (6.16)

Here c, =0.44, c2=1.73, and a is a microscopic length
parameter, awhile ho represents the external field, such
that

(6.17)

(Z ) = —c, ln(qog), (6.18)

with

2(ps+ vjiv
qo=

' —p/v

B
(6.19)

This expression for qo is identical to the formula present-
ed in a previous paper, except that 2g had been re-
placed by g'+, previously. General renormalization argu-
ments show that the coeflicient qo must be a universal
constant, although this is not apparent from the expres-
sion (6.19) found by Jasnow and Rudnick. ' Estimating a
as I /2p„where m is the molecular mass, we find from
(6.19) for SFb q0=2. 1. The results then obtained from
(6.18) for (Z ) are shown in Fig. 3 as curve (d). The
theoretical result of Jasnow and Rudnick corresponds to
q;„=0, and therefore cannot be compared directly with
the experimental reflectivities; it should be compared
with curve (a) obtained from our equations. Equation
(6.18) implies that (Z ) should vary with temperature as

(The correlation length g employed by Jasnow and Rud-
nick must be identified with 2g„,„.) In terms of the
scaled gravity g given by (6.14), the expression (6.16) of
Jasnow and Rudnick becomes

c, (P5+v)ln~b, T*~, and the coefftcient c, =0.44 is to be
compared with I/4rrcr, „,=0.77 in our results. [In Ref.
24 the symbol Q in Sec. 5 should be replaced with R&,
and Eq . (5.5) should read c, = 1/4mo. „=0.61 with
cr b 4KR ~.]

VII. DISCUSSION

The capillary-wave theory is a mesoscopic description
of the system, and therefore needs a phenomenological
input. It has been widely appreciated that the bare sur-
face tension and a short wavelength cutoff are required to
make the capillary-wave Hamiltonian complete. These
two parameters are, of course, not unrelated: the smaller
the short wavelength cutoff, the larger will be the
difference between the bare and the experimentally mea-
sured surface tension. In addition to these parameters, a
third constant is needed to relate the amplitude of the
capillary waves to the bulk correlation length, as earlier
pointed out by Kayser. This additional constant enters
in the effect of the capillary waves on the surface tension,
while it does not enter in the calculation of the correla-
tion functions of the interface.

We have determined these parameters by taking the
Fisk-Widom value for the bare surface tension, and re-
quiring that the difference between the bare and the mea-
sured surface tension are due to capillary waves. We
have made this renormalization of the surface tension by
capillary waves more precise by using the principle that
the capillary waves with shorter wavelengths contribute
to the surface tension "felt" by capillary waves with
longer wavelengths. This principle has no firm theoreti-
cal foundation but it is intuitively attractive. Within the
traditional capillary-wave model the infIuence of the
shorter waves on the longer waves is absent, because the
capillary waves are noninteracting. A consequence of
our renormalization procedure is a dispersion of the sur-
face tension; in the long-wavelength limit o(q) —a.(0)
behaves as q lnq. We emphasize that our choice of pa-
rameters leads to the minimum dispersion in the surface
tension.

Having fixed the free parameters of the capillary-wave
model by tying them to the behavior of the surface ten-
sion, the mean squared displacement of the fluctuating
Fisk-Widom interface can be calculated without further
fitting parameters, and the results have been compared
with the reflectivity data of Wu and Webb' for sulfur
hexafluoride. The calculated reflectivities appear to be of
the same order of magnitude as those observed experi-
mentally, but the capillary-wave theory predicts a varia-
tion of the reduced mean squared displacement (Z )
with temperature that has not yet been observed experi-
mentally.

Meunier has recently proposed a mechanism for cou-
pling between capillary waves by considering higher-
order terms in the capillary-wave Hamiltonian (4.13).
His theory yields a dispersion of the surface tension
(which differs from that obtained in this paper) and a nat-
ural cutoff for the capillary waves. In this picture the in-
terface is described as a thin interface with capillary
waves, even near the critical temperature. It is di%cult to
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see how a fluctuating sharp interface at all temperatures
below T, is smoothly connected with the continuous
profiles above the critical temperature. '

Schmidt has recently reported new elliptici. ty mea-
surements of liquid-liquid interfaces of binary mixtures
near the critical point of mixing, which he analyzed with
the aid of the equations presented in this paper. In con-
trast to the results found by us for SF6, Schmidt con-
cludes that the theory overestimates the ellipticity
coefficient of the interface. It is difficult to imagine that
the structure of the interface of liquid mixtures near the
critical point of mixing would be dift'erent from that of a
vapor-liquid interface near the critical point. Measure-
ments of both the reflectivity and ellipticity for the same

system, combined with a critical examination of the rela-
tionship between the observed ellipsivity and the struc-
ture of the interface, could possibly contribute to the
resolution of this issue.
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