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The structure factor of gallium has been measured by neutron scattering at temperatures 326 and
959 K and densities 0.0525 and 0.0490 at./A (6.08 and 5.674 g/cm'). The domain of measured

o
wave vectors ranges from 0.26 to 16.2 A . The precision of the experiments allowed us the deter-
mination of an effective pair potential between the gallium atoms at these two thermodynamic
states.

I. INTRODUCTION

Neutron and x-ray diffraction experiments' in the
temperature range 200—1300 K have shown that the
structure factor of liquid gallium has a very small value
at low wave vectors and that the main peak is dissym-
metric. These features, common to other liquid metals
(germanium, bismuth, etc. ), are particularly pronounced
in the case of gallium.

Although several studies were devoted to the theoreti-
cal interpretation of the structure factor of this liquid
metal in terms of an effective pair interaction, ' up to
now no quantitative agreement could be obtained be-
tween the theoretical and experimental structure factors.
However, this work gave evidence for the necessity of
disposing of experimental values of the structure factor
over a large domain of wave vectors. Indeed, wave vec-

0
tors smaller than 2 A ' are essential for a correct esti-
mate of the repulsive part of the effective interaction at
short distance while large wave vectors are necessary to
obtain a precise evaluation of the first peak of the pair
correlation function between gallium atoms, or,
equivalently, of the localization and number of atoms in-
side the nearest-neighbor shell of a given atom. Then, the
limitations on the wave-vector spacing and range of the
published neutron-diffraction results seemed to render
the determination of an effective pair interaction in liquid
gallium difficult. For these reasons, we performed new
measurements using the spectrometer available at the In-
stitut Laue —Langevin, Grenoble, which enables to cover
the wave-vector range 0.2—16 A ' with an excellent pre-
cision. These new measurements allowed us, by use of an
inversion procedure, to determine an effective pair in-
teraction in gallium at —300 and -950 K independent of
any theoretical assumption on the electron-ion interac-
tion, screening effects, etc.

The paper is organized as follows. In Sec. II we de-
scribe the experimental measurements and the various
corrections which have been applied to obtain the struc-

ture factor from the raw experimental data. In Sec. III
an effective pair potential is calculated by inversion of the
structure factor. The limitations of the inversion pro-
cedure which relies on the use of numerical simulations,
are discussed in detail. Section IV includes comparison
of the present measurements with previously published
results at nearby thermodynamic states. The main results
of this work are finally summarized in a brief conclusion.

II. EXPERIMENTS AND DATA CORRECTIONS

The neutron-diffraction experiments were performed
on the D4B diffractometer at the Institut Laue —Langevin
(Grenoble, France). The sample, sealed under vacuum
in a cylindrical quartz cell, was 99.9999%%uo pure gallium.
The cell had inner and outer diameters of 8.92 and 10.2
mm, respectively. The neutron beam was illuminating a
5-cm sample height as defined by B4C slits placed a few
centimeters before the sample and masking the sample
top and bottom.

The temperature of the sample was regulated to +0.3
K by a cylindrical foil vanadium furnace of thickness 0. 1

rnm and diameter 23 mm. The sample and the furnace
were placed under vacuum in the standard D4B bell jar
with thin alurninurn windows.

The wavelength k of the monochromatic neutron beam
0

was 0.7041 A which allowed us to reach a maximum k
value of —16 A ' [k =4m. sin(9)/A. , 28 diffraction angle].
The intensities were measured with two 64-cell, He mul-
tidetectors. The first multidetector was placed at 1.50 m
from the sample covering an angle of 6.4' (28) (64 incre-
ments of 0.1'), the second multidetector placed at 0.75 m
from the sample was covering 12.8' (20) (64 increments
of 0.2'). The efficiency of each multidetector cell was
measured to an accuracy better than 0.1%. The two
detectors were simultaneously counting the scattered
neutrons during monitored periods of about 100 sec and
displaced, respectively, in steps of 1.5' and 2 in order to
cover the angular ranges 1.68' to 64.78 and 46.4 to
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diameters or total scattering cross sections never exceed-
ed twice the statistical error. The corrected intensities
I (28) are given in Figs. 2(a) and 2(b).

Inelasticity (or Placzek) correction" has been evalu-
ated following a method developed by Yarnell et al. '

I(28)=I (28)—I (28 )M 1+3 —4B sin 0~
(2. l)

where 3 and B are constants depending on the detector
efficiency and the mass and temperature of th I ( fesamp e c.

a e ); 28M is a value of the diffraction angle for which
1~2e! ) is expected to be equal to its asymptotic large
wave-vector limit.

The inelasticity correction on the self-scattering term is
well established for monatomic heavy elements, it is

—I2
smoothly angular dependent the r t' [I (28)a 10

( 8)]/I (28M) varies from about 0.008 at 28=50' to
0.04 at 20=120'20'. Errors on the angular dependence of
this correction are inferior to 0.001. However, we have
fully neglected possible inelasticity correction on the
coherent scattering part of the spectrum.

Two further corrections are required, those for multi-
ple scattering (quasi-isotropic) and incoherent scattering
(isotropic). The multiple-scattering correction can be es-
timated by the method of Blech and Averbach' and
amounts to 16.4% of the average intensity level. On the
contrary, the incoherent cross section o.;„,is not available
with sufficient precision to estimate the latter correc-
tion. ' In fact, most of the existing values for o.;„, (cf.
Table II) except the one from Koester et al. ' would lead

SO d
to values of S(k) incompatible at low k with th l fwi e vaue o

( ) educed from compressibility measurements.
For this reason we did not attempt to determine the

scattered intensity and S(k) in an absolute manner using
a vanadium standard for normalization. Instead, we used
a self-normalization procedure in which the structure fac-
tor is determined from the relation,

TABLE II. Experimental values of coherent scat tering
length b, coherent scattering cross section o.„h, and incoherent
scattering cross section a;„,.

CT 0".coh inc coh+ ~inc
( 10 ' cm) (barn) (barn) (barn) ~inc/( ~coh+ +inc )

0.725
0.729
0.7288
0.72
0.7288

6.61
6.678
6.67
6.51
6.675

0.09
0.392
0.03
0.99
0.47

6.7
7.07
6.7
7.5
7.145

0.0134
0.0554
0.004 47
0.133
0.0658

14(a)
14(b)
14(c)
14(d)
14(e)

2.0— 959K (b}

1.0

and high k values, we estimate the error due to the self-
normalization procedure to be about equal to the statisti-
cal error. The structure factor is given by Eq. (2.2). The
results for 326 and 959 K are shown in Figs. 3(a) and 3(b)
and tabulated in Ref. 16, Tables IIIa and IIIb.

From a spline fitting procedure we estimate that the
average statistical error associated to each S(k) data
point there are about 1000 experimental values

'
va ues in one

)] is equal to 0.002 (two standard deviations) for both
temperatures. It is, of course, more difficult to assess the
magnitude of the systematic errors. We have seen that

(k) I(k) —X
I(oo)—X

(2.2) 0.0
0.0

I

4.0
I

8.0

H ere X denotes the (k-independent) correction from mul-
tiple and incoherent scattering.

The value of X is obtained by applying (2.2) for k=0,
and identifying S(0) with the isothermal compressibility
of gallium' gz according to the relation

&26K (a}

S(0)=pks TXr (2.3)

(p density, ks Boltzmann constant, T temperature).
In Eq. (2.2), I(0) has been approximated by the extra

polation of I(k) to zero k wave vector Since th. e intensi-
ties are very weakly dependent on k at low k (k & l A

iO

TABLE I. Linear total absorption coefficients p& and pz- for
container and sample and parameters 3 and B of Eq. (2.1) for
inelasticity correction.

0.0
0.0

I

4.0
I

8.0 Q.O

326
959

0.0525
0.0490

0.207
0.207

0.430
0.402

T Density p' p,
'

(K) (atoms/A ) (cm ') (cm ')

1.23 X 10 0.0133
3.62 X 10-' 0.0142

FIG. 3. (a) Structure factor S,„~,(k) for liquid gallium at 326
K (density 0.0525 atoms/A ) measured in the range k=0.26—16
A . (b) Same as Fig. 3(a) but for 959 K (density 0.0490
atoms/A ).
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each correction taken separately does not introduce er-
rors greater than about twice the statistics. However, we
have neglected possible cross terms (between container
corrections and multiple scattering, or between multiple
scattering and inelasticity, etc.) and we have assumed
that to first approximation the results were independent
of the order in which these corrections were performed.
Several hypotheses were also introduced: the isotropicity
of the multiple scattering, the neglect of coherent inelasti-
city corrections, and the neglect of neutron-electron in-
teractions. Since self-normalization was introduced, all
constant-level errors in the data have been eliminated.

Smoothly angular-dependent systematic errors are
diScult to be traced and are probably the dominant ones.
However, these errors will essentially produce oscillations
at very low r values in the pair distribution function g (r)
and will be taken care of by the data analysis which
forces g (r) to be equal to zero at small r We .believe that
for the present study the most severe problems would be
those related to abrupt systematic errors over narrow an-
gular ranges. Such an error has been found in the data
around 0.8 A ' [see Fig. 2(a)] and comes from yet un-
mastered background correction problems. Since it is
very localized it has been smoothed in the data treatment
(cf. Sec. III).

—c,„,(r)+B,„,(r)], (3.1)

h „&(r)=g,„,(r) —1. c,„,(r), the direct correla-
tion function, is given by

c,„,(r) = f [1—I/S, „,(k)]e'"'dk .1

(2m) p
(3.2)

B,„„,( r ) is the "bridge" function. The latter is not
known. To obtain an estimate of v,~(r), one assumes that
B,„,(r) is approximately given by the bridge function
BHs(r, g) of a hard-sphere system with packing fraction
g, given by the Lado criterion

~BHs(r n)
[g,.„(r)—gHs(r n)]

an
(3.3)

With B,„~,(r)-BHs(r, g), Eq. (3.1) is referred to as the
modified hypernetted chain equation (MHNC) in analogy
with the HNC equation in which the bridge function is
neglected.

Thus an initial estimate yo(r) of Ijv, ft(r) is obtained
from the relation

hypothesis of the existence of an effective potential allows
us to write g,„,(r) in the form

g,„~,(r) =exp[ P—v,ft(r)+h, „~,(r)

III. THEORETICAL ANALYSIS

A. Determination of an efFective two-body potential

yo(r) = —ln[g, „,(r)]+h,„,(r)
c,„,(r) +B—H(sr, g) . (3.4)

The theoretical analysis of the experimental structure
factors S,„,(k) developed in this section is made within
the framework of a simplified description of liquid metals
considered as classical liquids of atoms interacting by an
effective two-body potential. This potential takes into ac-
count the direct interaction between the ionized atoms of
the metal and the screening effect of the conduction elec-
trons. It can be calculated, in principle, by a quantum-
mechanical theory of liquid metals but in practice its
evaluation is dificult and necessitates numerous approxi-
mations. '

The effective potentials proposed in the literature de-
pend on a dielectric function characteristic of the con-
duction electrons and on parameters introduced to de-
scribe in a simplified way the ion-electron interaction. '

The appropriate choice of the dielectric function and the
parameters is obtained from comparison of experimental
properties, e.g. , the structure factor, with those calculat-
ed by means of the effective potential. ' This scheme
for determining the effective potential v,tr(r) by fitting the
structure factor assumes that the analytical form of the
theoretical potential is susceptible to approximate the
real effective potential in a precise way and that the
methods for calculating S(k) from u, tr(r) are reliable.
These assumptions can lead to imprecisions on v,z(r)
which were discussed in Ref. 20. In this work we attempt
to determine v, tr(r) by inversion of S,„,(k). In order to
do so we employ the method of Ref. 21, which we sum-
marize briefly.

From the known S,„,(k), the pair distribution func-
tion g,„~,(r) is calculated by Fourier transform (FT). The

By performing a numerical simulation on a system of
atoms interacting by yo(r) one determines the corre-
sponding pair correlation function go(r) and structure
factor So(k). From these two functions, a second esti-
mate y, (r) of Pu, fr(r) is calculated according to the for-
mula

y, (r)=q&, &(r)+1 [gn, &(r) jg,„z,(r)]

+c, &(r) —h, &(r) —c,„„,(r)+h,„,(r), (3.5)

written for the ith estimate of Pu, fr(r) obtained from nu-
merical simulation with the interaction y, ,(r). This
iterative process converges and leads to the correct esti-
mate of Pv, z(r) This poi.nt has been demonstrated in
Ref. 20 by inversion of S(k) for model systems with
known potentials.

To calculate g,„,(r) by FT of S,„,(k) [first step in the
calculation of Pu, ~(r)], the only use of the values of S(k)
effectively measured is not sufhcient. Indeed, these values
are limited to the range 0.26~k ~ 16 A ' which is still
too restricted to correctly estimating g,„,(r) at small r.
In the case of our experimental results, Figs. 4(a) and 4(b)
show that, by FT, one obtains g(r)'s which oscillate
around 0 for r ~2.3 A as a consequence of the limited
domain of integration in k space. Thus, the functions
S,„,(k) need to be extrapolated at small and large k, in a
way such that g,„,(r)-0 for r ~ 2.3 A, corresponding to
the domain of mutual exclusion of the atoms. These ex-
trapolations and the calculations of g,„,(r) have been
performed by a procedure which is described in the Ap-
pendix and has been already used in Ref. 20. It appears
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where
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y(r)=g(r) —1 —c(r) .

In our case, Eq. (3.8) reduces to

c (r)=er'"' —1 —y(r),
since

y, (r)=0 for r ) r, .

(3.8)

(3.9)

In each simulation run 2.4X10 configurations where
generated by the Monte Carlo method. The statistical er-
ror on g;(r) is of the order of 0.5—1% and induces on
y;(r) an uncertainty of —+0.06 (cf. discussion above).
Tables IV—VI in Ref. 16 present the structure factors
S, (k), and the functions g,.(r) and y;(r) for 326 and 959
K, respectively. It is worthwhile to notice that g,„,(r)
being compatible with S,'„,(k), it is expected that S;(k)
converges to S,'„,(k) and not to S,„~,(k).

B. Results

At 959 K five simulations have been performed start-
ing with the potential yo(r) (henceforth the superscript ii

will denote the high-temperature and l the low-
temperature result). Table V in Ref. 16 shows that go(r)
is already an excellent approximation for g",„~,(r). The
most significant difference occurs in the amplitude of the
oscillations beyond the first peak; in particular, the height
of the second peak is overestimated. The subsequent
iterations correct this defect of go(r); after three or four
iterations the differences between g,"(r) and g,"„~,(r) be-
come of the order of the uncertainties on g,"„,(r) so that
the iteration process has to be stopped after five itera-
tions.

The functions S;"(k) (cf. Table IV in Ref. 16) are also in

good agreement with S,"„,(k), the main differences con-
cern the values of S, (0) and of the first peak of S, (k). In
spite of the excellent agreement between S~(k) and
S,"„„„(k)in the range 0.26 & k & 1.5 A ', S~(0)=0.027 is
considerably higher than S,'"„,(0)=0.015, and the height
of the main peak of S~(k) exceeds that of S,'„„,(k) by
0.01. The potentials p, (r) converge to a potential which
is oscillating with a small amplitude for r) 4 A and is
strongly repulsive for r (4 A.

At 326 K, yo(r) gives by numerical simulation go(r)
very close to g,'„,(r). After five iterations the functions

g (r) oscillate around g,'„,(r) within the estimated errors
and the convergence of the process cannot be improved
by the further iterations. The functions S,'(k} for i ~5
are in excellent agreement with S,'„,(k) for 0.2& k & 1.2
0

A ', as for the high temperature case the k=0 value of
S9(k) (0.0058) exceeds that of S,'„~,(0) (0.0050). The
heights of the main peaks of S&(k) to S9(k) oscillate
around a mean value 2.38 slightly higher than the height
of the main peak in S,'„„,(k) —2.36 (cf. Table IV in Ref.
16 and Fig. 3). The position of the peak of S,.(k) is shift-
ed by 0.08 A ' to lower k values as compared to that of
S,'„~,(k). For i ~5, the variations of q&,

' (r) are small, of.

the order of 1% for r(6.5 A, there is a progressive
enhancement of the positive part of the potential for
6.5 & r & 10 A, y, (r) remains unchanged for r) 10 A. All

these changes of q&,'(r) result from those on g,', (r): they
are of little significance since for i 5, g;(r) coincides
with g,„,(r) within the error bars estimated for this func-
tion.

At both temperatures excellent agreement between
g, (r) and g,„&,(r) was yielded for r & r, . The convergence
on y,-(r) was reached within the statistical errors estimat-
ed to be —+0.04—0.07 on the basis of a statistical uncer-
tainty of 0.5—1% on the g;(r) computed by simulation.
This agreement was obtained with a potential p, (r) equal
to zero for r ) r, . This constraint must be taken into ac-
count in a complete interpretation of the results of our in-
version procedure, in particular with regard to the
differences which exist between S;(k) and S,'„,(k).

C. Discussion of the results

In order to estimate the infiuence of the cutoff in y;(r)
on our simulations results, we applied the MHNC ap-
proximation to a model system in which the atoms in-
teract by a potential U, (r) with known analytical form.
This approximation is sufficient to get an order of magni-
tude estimate of the variations induced on g (r) and S(k}
by the cutoff of the potential.

The potential that we have chosen uses the empty core
model of Ashcroft' for the ion-electron interaction and
the local-density approximation for the dielectric func-
tion e(k) of the conduction electrons. The latter corre-
sponds thus to a local field of the form 6 (k) =bok /kF
where kF is the Fermi moment of the electrons. In the
expression of e(k) the electron-sphere radius r, and hence
kf, is considered as a parameter. By adjusting the set of
parameters in U, (r) and using the MHNC approximation
for calculating the structure factor, Aers et al. succeed-
ed in obtaining a representation of the experimental
structure factor of germanium at T= 1253 K and
p=0.0461 atoms/A . In particular, the potential U, (r}
reproduces the shoulder which exists on the right side of
the main peak of S(k) at this temperature and thus seems
well adapted for an analysis of S,„~,(k) of gallium which
shows the same characteristic.

The potential v, (r } is a function of four parameters: r„
the radius R p and the depth A p of the empty core poten-
tial, and the constant bp of the local field. In the MHNC
approximation the packing fraction g entering in the
hard sphere bri-dge function BHs(r, i}) is also an adjust-
able parameter. Using U, (r), only a qualitatively repre-
sentation of S,„~,(k) was possible for gallium. The best fit
was obtained at 959 K and p =0.049 atoms/A for
l'& = 1 ~ 1625 A Rp =0 4156 A Ap =0.1 A / Z b
=0.210, g=0.3547, and at 326 K p=0.0525 atoms/A
for T = 1.575 A R p =0.4329 A 3p =0 bp =0.195, and
i}=0.4042 (e electron charge, Z valence of gallium equal
to 3).

When the Oz equation is solved with the MHNC clo-
sure and potential cutoffs at 40 or 11.6 A, the only values
of S(k) which are modified are those in the vicinity of the
main peak. The variations are of the order of 1—2%. At
326 K the maximum of S(k) is 2.40 with a cutoff of 40 A
and 2.44 with a cutoff of 11.6 A and its position is shifted
towards small k by 0.02 A ', while at 959 K the values of
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the maximum are 1.80 and 1.81, respectively, and the
shift of the peak position is negligible ( -0.01 A ).

In the extension procedure of g;(r), S;(k) is obtained
from the solution of the QZ equation with y, (r)=0 for
r ) r, and the conditions (3.6) and (3.9) as closure rela-
tions. As for the MHNC equation the cutoff is taken into
account by Eq. (3.9) and its effect on S;(k) can only be
similar.

Then, the difference between the height and the posi-
tion of the main peak between S',„~,(k) and S;(k) (i) 3)
can be interpreted as essentially due to the cutoff intro-
duced in the numerical simulations. Both in the case of
the calculation of S(k) with a cutoff for the potential
U, (r) and in the case of the computation of S;(k), the
variation of the height of the main peak is 0.02—0.04 and
the shift of the position of this peak is towards low k. At
329 K, the shift (-0.08 A ) is more pronounced than
the shift resulting of the cutoff of U, (r) But t. his seems a
consequence of an amplitude of the oscillation in U;(r)
larger than in U, (r) for r) 4 A; indeed the shift is larger
at 329 K than 959 K temperature where the effect of the
long-range part of the potential becomes weak.

As the effect of the cutoff on S(k) is very localized near
the main peak, the effect on g (r) is distributed on a large
domain of r. For a given value of r between 2.3 and 11.6
A, it is smaller than 0.001 as it is established in solving
the OZ equation with the MHNC closure for the poten-
tial v, (r).
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FIG. 5. Pair distribution function g9(r) and interaction tp9{r)
at 326 K. The insert gives the long range part of y9(r) [statisti-
cal error on y9(r) is —+0.04—0.07].

r
FICi. 7. Comparison between the bridge functions of a hard-

sphere system at q =0.41 (dashed line) (Ref. 25) and those calcu-
lated for liquid gallium using the effective two-body potentials
+9(r) and yz( r) (triangles, 326 K; crosses, 959 K).
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At k=0, the values of S9(0) and S~(0) are 0.0058 and
0.022 to be compared with the values obtained from the
compressibility 0.0050 and 0.015. To be significant such
a comparison must take into account the experimental er-
rors on S,„,(k) for k ~0.4 A '. In absolute value these
are —5X10 (326 K) and —3X10 (959 K) (cf. Table
III in Ref. 16). On the basis of the sole neutron scattering
measurements, the estimated values of S,„~,(0) have a
similar error and are compatible with the values of S9(0)
and S~ (0) obtained from the inversion procedure.

From the preceding discussion and the results present-
ed in Tables IV—VI in Ref. 16 one can conclude that the
potentials gent(r) and qr&(r) permit, by simulation, to ob-
tain a faithful representation of g,„~,(r) and S,„~,(k) pro-
vided the effects induced by the potential cutoff on the
main peaks in S9(k),S~(k} and the asymptotic region of
g9(r) and g~(r) are taken into account.

As seen from Figs. 5 and 6, the potentials obtained for
the two temperatures are qualitatively similar. They are
positive up to r-4 A and oscillatory beyond this dis-
tance. The period of the oscillations is about 8 A and
differs from the theoretical estimate eked

' by a factor of 2
or 3. When q&, (r) is compared with g, (r) we remark that
the first-nearest-neighbor shell is located inside the repul-
sive part of the potential and not at the minimum. From
a quantitative point of view the comparison between
gt(r) and y&(r) (cf. Table VI in Ref. 16) shows that the
potentials depend strongly on the thermodynamic state.
In particular the temperature dependence is not con-
tained only in the trivial factor (kz T) . The ratio
pt(r)ly5(r) has a value of the order 4—5, very different
from its a priori expected value (T"/T'= —'„",=2.94) for
r & 4 A for r) 4 A some values of the ratio can be very
large, but these large values are due to a dephasing of the
oscillations or to the statistical error (evaluated to be
—+0.04—0.07 cf. discussion above). In the theory of the
effective potentials for liquid metals, the potential de-
pends on the density through k~, for instance in the
long-range part of the potential the period of the oscilla-
tions is mkF as mentioned above. In our measurement
the density varies by 10%, the corresponding variation of
k~ ( —10%) seems too weak in order to explain the devia-
tion of the ratio g9(r) lp~(r) from its expected value 2.94

0

by 30—50 % for r (4 A. A dependence on temperature of
the potential v,~(r) thus cannot be ruled out.

Figure 7 shows the bridge function extracted from Eq.
(3.1). At short distances r ~ 3 A, they are qualitatively
similar to B (rH, sq) at ri-0.4. Beyond this distance, they
decrease slowly in an oscillatory way at 326 K and mono-
tonously at 959 K. In this region of r values, they cannot
be represented by the hard-sphere bridge function

B(Hrs, g) which is essentially zero for r) 4 A. The im-
0

portance of the bridge function for r) 3 A explains the
impossibility of reproducing quantitatively S,„,(k) by
the MHNC equation and the effective potential V, (r).

IV. COMPARISON
WITH PREVIOUS EXPERIMENTS

The two experiments realized with the D4B
diffractometer at Institut Laue —Langevin enabled the

structure factor of gallium to be measured over a wide
range of wave vectors (0.26—16 A ') with a high degree
of precision. These measurements provide new informa-
tion on the behavior of S(k) for k(2 A ' at ordinary
temperature and for the whole wave-vector range at high
temperature. By comparison of the present results with
those of gallium tabulated in Ref. 2 obtained by x-ray
diffraction at temperatures 323, 473, 823, and 1073 K,
the following discrepancies can be noted.

At 326 K, our measurements of S(k) are systematical-
ly lower for k ~ 2 A ' than the values given in the tabu-
lation at 323 K, in particular they are lower by a factor of

0 0
2—3 for k —1 A '. For k) 2 A ' the agreement is good;
however, in our measurements S(k) is slightly more
structured, the amplitude of the first peak and the subse-
quent oscillations being increased by —1—2%%uo.

Our measurement at low temperature seems to be com-
patible with that of Narten, ' taking into account the tem-
perature difference ( —3 K), with that of Takeda et al.
(as far as one can judge from their Fig. 1) and also with
the results of the Ref. 4.

At 959 K our results are incompatible with those given
in Ref. 2. In the domain k(2 A ' they are lower than
those tabulated at 823 K and for k) 2 A ' the height of
the first peak in our measurement is S%%uo smaller than that
quoted for 1073 K. Similar differences occur for the am-
plitude of the oscillations beyond the first peak (k) 3
A }. Part of these discrepancies is likely to be due to
ion-electron correlation present in the x-ray experiment.
Our experiment provides thus a new estimate of S(k) for
gallium at high temperature.

V. CONCLUSION

The inversion procedure for S,„„,(k) establishes that
the effective potential is positive and repulsive in the
domain of distances corresponding to the first-nearest-
neighbor shell. This result is in agreement with the small
value of S(0) and the compressibility of gallium. The
period of the oscillations of the potential beyond the
repulsive part at short distances does not agree with the
simplest theoretical prediction (ok~ ). Th.e effective po-
tential depends appreciably on the thermodynamic state.

The inversion method of Masserini and Reatto ' which
involves no adjustable parameter and no assumption on
the theoretical form of the effective pair potential turns
out to be quite adequate to take account of S,„„,(k) and
g,„,(r) of liquid metals provided precise measurements
of S,„~,(k) are available over a large range of k wave vec-
tors.
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APPENDIX: COMPUTATION OF gexpt( «) ~

At small k, S,„~,(k) has been represented by the poly-
nomial

S (k) = [S(0)(k —k)+ kS (k )]/k

+a(k —k )k (k «k ), (A 1)

with k =1.3 A . Here S(0} corresponds to the value
derived from the compressibility of gallium at 326 and
959 K and S(k ) denotes the value of S,„,(k) at k =k
The free parameter a has been determined from a mean-
square fit of S,„,(k) in the domain 0.26«k «1.3 A
The smoothing of S,„,(k) is necessary because of the rel-
ative errors in S,„~,(k) at small k. For k & k, S,„,(k) is
smaller than 0.027 at 326 K and smaller than 0.07 at 959
K so that in this domain of k an absolute error of 0.002
corresponds to a relative error of —10—20%%uo. These er-
rors are tolerable for a calculation of g,„,(r) but not for

c,„,(r), FT of 1 —1/S,„,(k).
A first estimate of g,„,(r), namely, g, (r), is obtained

by FT of S,„,(k) extrapolated and smoothed for k & k
This estimate is modified by requiring g, ( r) =0 for r & 2.3
A. The modified function g,'(r) gives, by FT, S,(k) cal-
culated for k&64 A '. The values of S, (k) for k) 16
A ' are used to extend S,„,(k) beyond the known exper-
imental values, giving a function S,„,(k), with values be-
tween 0 and 64 A '. The FT of S,„,(k} does not give a
distribution function gb(r) which vanishes for r 2.3 A.
When the oscillations in this domain are discarded by im-
posing gb(r) =0 for r &2.3 A, then the FT of gb(r) is not
compatible with S,„,(k) at small k. This inconsistency is

progressively suppressed by effectuating recursively the
following operations: from Sb(k) identical to S,„~,(k) for
k «1.8 A one obtains, by FT, g, (r); after imposing

g, (r)=0 for r&2.3 A, one calculates S,(k) and a
modified function by imposing S,(k) =S,„~,(k) for k & 1.8
A from which by FT one gets gd(r), etc. The function

S,'„,(k) which results from this iterative process is equal
to S,„,(k) for k &1.8 A ' and gives, by FT, a function

g (r) which satisfies ~g (r)
~

«0.001 for r & 2.3 A.
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