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The interaction between an intense radiation field and atoms that undergo collisions in an atomic
vapor is studied. With the assumption that velocity-changing collisions are state independent and
weak, we obtain an analytic expression for the time-dependent density-matrix elements by solving a
quantum-mechanical transport equation using a dressed-state approach. Our analytical calculation
is used to predict the form of the signal in an extended-pulse photon echo. The results show good
agreement with an experiment carried out by Yodh et al. [Phys. Rev. Lett. 53, 659 (1984)]. It is
found that the decay rate of the echo signal decreases rapidly with increasing duration of the second
pulse in the pulse excitation sequence. A comparison between theory and experiment is presented
and a physical interpretation of the results is given.

I. INTRODUCTION

The interaction between radiation and matter involv-
ing various relaxation processes in gases and solids has
been studied extensively both theoretically and experi-
rnentally using optical coherent transient techniques.
Transient experiments, such as the photon echo, the
stimulated echo, and optical nutation can be particularly
useful in investigating atomic collisional processes. '

Our present work relates directly to an experiment car-
ried out by Yodh et al. " using a variation of the conven-
tional photon-echo technique. The general methods
developed here can be further used for studying relaxa-
tion phenomena in other transient experiments.

In the experiment of Yodh et al. , a two-pulse excita-
tion scheme was used to produce the echo. In contrast to
the excitation scheme of a conventional photon echo, the
duration of the second pulse in this extended-pulse pho-
ton echo (EPPE) was comparable to the atomic lifetime.
The collisional decay rate in this experiment is found to
decrease rapidly when the duration of the second pulse
increases, an effect which cannot be correctly accounted
for by the conventional optical Bloch theory. "

It is the purpose of this paper to analyze the experi-
rnental result. The physical system under consideration
consists of an ensemble of two-level atoms (optically ac-
tive) that interact with an external radiation field and col-
lide with perturber atoms. Over the last 20 years, pro-
gress has been made in two parallel, but independent ap-
proaches to modeling physical systems involving stochas-
tic processes such as velocity-changing collisions. The
first one, in which the atomic velocity appears in the
Bloch equations' as a stochastic variable, is somewhat
more general. After solving the Bloch equations for the
density-matrix elements as a function of velocity and
time, a statistical average over the whole collision history
must be made. With this approach, it is possible to
choose var ious stochastic models characterized by corre-
lation functions describing different types of fluctuations.
However, when solving transient problems, such statisti-

cal averaging procedure can be extremely difficult. ' A
discussion of this method is not the subject of the work.
The second approach rests on a critical assumption that
the stochastic fluctuation arising from velocity-changing
collisions in a vapor can be described by an impact, or
Markovian approximation, ' namely, the atom-perturber
interaction occurs on a time scale that is instantaneous
with respect to all other time scales in the problem except
for the optical period. The velocity of an atom depends,
at most, on its value immediately before a collision. In
this spirit, the statistical averaging procedure can be for-
mulated in a manner that leads to a transport equation in
which the stochastic process of velocity-changing col-
lisions is characterized by both an additional decay term
and an integral source term. All variables appearing in
the equations are well-defined quantum-mechanical quan-
tities; consequently, the equation has been termed a
"quantum-mechanical transport equation" (QMTE). '

As in the theory without collisions, the echo signal can be
obtained by solving the QMTE in each time interval of
the excitation scheme. Essentially, the QMTE can be de-
rived in two representations, using either a bare-state pic-
ture (BSP), ' or a dressed-state picture (DSP). ' In
the BSP, the atom-field interactions are represented in
terms of a basis using atomic eigenstates. In the DSP, a
new basis is formed using atom-field eigenstates. In gen-
eral (for arbitrary field intensity and collision kernels), the
QMTE in both representations remains in a coupled
differentio-integral form which is very difficult to solve.
However, for certain types of physical systems encoun-
tered in many experiments, further approximations and
assumptions with respect to the field intensity, duration
of excitation pulses, and collision models can be made.
As a result, the quantum-mechanical transport equation
is simplified and some analytic solutions can be obtained.

Previous work has shown that echo problems can be
solved by applying the QMTE in the following limiting
cases.

(I) The role of velocity-changing collisions on photon
echoes has been studied by a number of authors for
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excitation pulses which are of short duration [hereafter
referred to as conventional photon echoes (CPE)]. In this
approach, all relaxation eFects can be neglected during
the atom-field interactions. In field-free time intervals,
the QMTE can be solved for a specific choice of collision
kernel.

(2) In contrast to the conventional photon echo, the
second pulse is extended to be comparable to the atomic
lifetime in an extended-pulse photon echo (EPPE). Re-
laxation effects (including velocity-changing collisions)
can no longer be neglected in the second pulse interval.
To obtain the echo amplitude, one must solve the coupled
differentio-integral form of QMTE in the second pulse re-
gion, for which no simple analytical solution is available.
A formal method for solving the QMTE, expressed as a
series in powers of the excitation field amplitude, has
been given. ' The method is useful practically when the
order of iteration is low, implying that the field strength
(in frequency units) is small compared with the inverse
pulse duration of the excitation field. We applied the per-
turbation solution of the QMTE to the extended-pulse
photon echo in a comparison paper. ' Although the per-
turbative picture does not usually mirror the experimen-
tal situation, it can help one to view the underlying phys-
ics of the collisional modification of the echo signal as a
function of the second pulse's duration.

(3) Kryszewski and Nienhuis have discussed a
method for solving the QMTE in the study of light-
induced drift for a somewhat more general collision ker-
nel proposed by Keilson and Storer that can model both
"weak" and "strong" collisions. The idea of their
method is to expand the density-matrix elements in terms
of eigenfunctions of the Keilson-Storer kernel and to
solve the resulting equations for the expansion
coefficients. Although there is no restriction on field in-
tensities for employing the method, the solution remains
in the form of a recurrence equation in Laplace transform
space that can be solved only numerically. With a
specific initial condition, the solution is in the form of a
continued fraction which also requires a nontrivial nu-
merical computation.

In this paper, we discuss a new method for solving the
QMTE analytically for the strong-field limit and apply
the result to the extended-pulse photon echo. In Sec. II,
the approximations and assumptions of the theory are
discussed. The relationship between dressed- and bare-
state representations is established, and the QMTE is
written in both the bare-state (BSP) and dressed-state
(DSP) pictures. In Sec. III, a solution of the QMTE in
the dressed-state picture in the strong-field regime is ob-
tained and the solution is used to obtain an expression for
extended-pulse photon echo amplitude in Sec. IV. A
comparison between the strong-field result and the exper-
iment is given in Sec. V.
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where g is a Rabi frequency, given by

9 i2EO

2A
(2.3)

y; (i =1,2) is the spontaneous emission rate of level i, y2,
is the spontaneous relaxation rate from level 2 to leve1 1,
y, & =yz, =(y, +y2)/2, and p, z is a dipole moment ma-
trix element.

(3) With regard to collisions, the following assumptions
are made.

(a) Collisions are not sufficiently energetic to induce
transitions between states 1 and 2.

(b) The duration of a collision r, is assumed to be
smaller than any (i) relaxation times (i.e., y, 2r, «1,

the laser field while undergoing collisions with perturber
atoms (see Fig. 1). We make the following approxima-
tions and assumptions with regard to characteristics of
the laser light, active atoms, perturber atoms, and col-
lisional processes.

(1) The laser light is taken to be of the form

Ei (2, t ) =XEo(t)cos(k2 A—t ) (2.1)

~ ~ ~

polarized in the X direction and propagating in the Z
direction with propagation vector k=(A/c)Z. The en-

velope function Eo(t) is slowly varying compared with

cosset.
(2) The applied field frequency A is chosen to be reso-

nant with the atomic transition frequency. In the pres-
ence of spontaneous emission, but neglecting collisions,
atomic-state density-matrix elements evolve as (in a field-
interaction representation)

II. APPROXIMATIONS AND FORMALISM

A. Basic theory and equations in the BSP

The physical system under consideration consists of an
ensemble of two-level atoms immersed in a vapor consist-
ing of perturber atoms. The active atoms interact with

FIG. 1. Atomic vapor consisting of two-level active atoms
and perturber atoms. The active atoms interact with laser light
having an oscillation frequency 0 and Rabi frequency y, and
collide with perturber atoms.
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In writing Eq. (2.4) several assumptions regarding the na-
ture of the collisional interaction have been incorporated.
The velocity-changing collisions are assumed to affect
level populations and coherence in the same manner.
These collisions are characterized by collision kernel
w(v' —v) and rate I . The parameter I » in Eq. (2.4)

I

I r, «1, I =collision rate); (ii) the time that the field
takes to induce atomic transitions, i.e. , yr, «1; (iii) the
inhomogeneous dephasing time experienced by atomic di-
poles, i.e., ku~, &&1, where u is the most probable speed
of the active atoms. These assumptions collectively are
known as the impact approximation (Markovian
approximation) —the atom-field and collisional interac-
tions contribute independently to p, .

(c) The density of active atoms is low enough to neglect
active-atom —active-atom collisions, so that the only col-
lisions that need be considered are active-
atom —perturber-atom collisions.

(d) The perturber reservoir is sufficiently large to be
unaffected by collisions. This assumption is implied in
(c).

Thus, the collisional contribution to the time rate of
change of density-matrix elements can be added to Eqs.
(2.2) to arrive at the QMTE

p„(v, t }=—(I +y, )p„(v, t)+y, p (v, t )

represents a phase-interrupting collision rate which
affects atomic coherence only. The detailed description
of the model and the validity conditions can be found in
our companion paper for the weak-field limit. '

The collision kernel to be used in this work is a
"difference" kernel, given by

w(v' —v) = e
r

o v'7r
(2.5)

that has been proven to be a good model for characteriz-
ing weak collision processes. ' The quantity a is roughly
the rms change in velocity per collision which is assumed
to be much less than the most probable speed u.

Notice that in Eq. (2.4) the Rabi frequency serves as a
coupling constant which complic ates the calculation.
For short-duration pulses or weak-field strengths such
that the pulse area (gT ) is less than unity, Eq. (2.4) can
be solved by a perturbative approach. If the pulse area is
increased by increasing either the field strength or the
pulse's duration, the perturbation treatment is not applic-
able and there is no analytical solution to these coupled
differentio-integral equations. In the strong-field limit
(i.e. , y » I,y, y » kcr, and yT » 1, where T is a pulse's
duration), however, it may be possible to simplify the
QMTE by using a dressed-state picture.

B. QMTE in dressed-state picture

pD(v, t) =(L&+Lti )pti(v, t )

+ w v' —v %pa v', t dv', (2.6)

where

Instead of using the bare-state picture above, it is pos-
sible to introduce a semiclassical dressed-state picture
(DSP) (Ref. 35) in which the dressed-state basis
represents an exact solution of the atom-field interaction
neglecting relaxation. The relationship between dressed-
state density-matrix elements, denoted by PD=(p„,
pi,b, p,b, pi„), and bare-state density-matrix elements,
denoted by ps =(p»,pz2, P, 2,P2, ) is given in Appendix A,
along with the corresponding relaxation parameters in
the DSP. The time development in the DSP is given by
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1
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1

v'2

(2.8a)

(2.8b)
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and

X=[y'+(k v)'/4]'" (2.9)

satisfy the uncoupled time-evolution equations

rI(v, t )=Lpga(v, t )+f dv'rl(v', t), (3.2a)

The matrix L&; . has components

Ln =
~ R ~i 44

where

II„=2k,=[4y +(kv) ]'i

(2.10)

(2.1 1)

y»p~b(v& }+f

pea (v& } pab»&

where

i f Q~ (v') —Q~ (v)]tXe

(3.2b)

(3.2c)

Matrix elements of the relaxation matrix L are given in
Appendix A.

III. SOLUTION OF THE QMTE IN DSP:
STRONG-FIELD REGIME and

p„(v, t )

(3.3}

The dressed-state basis is particularly useful when the
generalized Rabi frequency QR is much larger than the
relevant decay parameters. In the strong-field limit, an
approximate solution to Eq. (2.6) can be obtained for the
diff'erence kernel (2.5). Assuming that

y)& all I"s,
g)&kcr

(3.1a)

(3.1b)

(recall that o /V2 is the rms velocity jump per collision),
all coupling between the coherences and populations in
the DSP become negligibly small (secular approxima-
tion ). In an interaction representation defined by

iQRt
p, b =p,&e, the dressed-state density-matrix elements

I

y11 y12
L =

L~2, L ~22
(3.4)

L tg=e ~q

and substitute it into (3.2a) to get
I

q(v, t)= Jdv'(e ' ) 'e ' q(v', t) .

(3.5)

(3.6)

Using approximation (3.1) and Fourier transform tech-
niques, one can obtain the integral solution

These equations may now be solved independently.
Dressed state po-pulation First, .we solve Eq. (3.2a) by

writing

q„(v, t)
q(v, t)= (,t)

+ oo ik ( v —v') r+ I ( t —
to ) exp[ —( k a x/2 ) ]

q„(v', to)
dv d'T e

2& qbb(v & tQ )
(3.7)

To find the population densities p„and pbb from q„and
q» using Eq. (3.5) the matrix e ~ =S in Eq. (3.5) needs to
be calculated analytically. We perform this calculation,
assuming that the system is closed to population loss via
spontaneous emission, i.e., y, =O, y2, =y2. The popula-
tion density is given by

p„(v, t ) =S&&q„(v, t )+S&zqbb(v, t ),
pbb(v, t ) =Sq)q„(v, t )+Sqqqt&b(v, t },

(3.8a)

(3.8b}

where the S; are given by Eq. (B8) in Appendix B.
Dressed-state coherence. Before solving the time-

evolution equation quantitatively for the coherence densi-
ty, the physical properties of the phase shift induced by
collisions should be discussed. The signal decay resulting
from the collision-induced phase shift depends critically
on the phase accumulated in the time interval of interest.
This phase shift is measured by the quantity

~ [Qz ( v') —Qz ( v) ]T ~
appearing in Eq. (3.2b). If the

phase shift is larger than unity, the contribution to the

echo signal from the dipoles is reduced. Therefore, it is
important to analyze the phase shift ~[Q(v') —Q(v)]T~ in
order to keep the dominant terms and to neglect terms of
order of o /y or o /u. We expand

[Q(v') —Q(v)]T =
[4~&+(k v)2] i zz

2y (k5v) T
[4y +(kv) ]

(3.9)

with e=k5v/g and 5v—= ~v
—v'~. The first and second

terms are analyzed for three velocity ranges:
k v «y, kv=y, kv &)y. In the analysis, we set 5v-u.

Consider the first term in (3.9). (i) If kv «y, the mag-
nitude of the first term is approximately k v T e. By
choosing a large y, e can be very small so that this term
vanishes. (ii) If kv=y or kv))y, the magnitude of the
first term is of order ko. t. As the pulse duration T in-
creases such that ko. T & 1, no matter what the value of
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( X
(ka )

(3.10)

the second term in Eq. (3.9) can be neglected. We assume
that condition (3.10) is satisfied in the present problem
and neglect the contribution from the second term in Eq.
(3.9).

Equation (3.2b) is solved with the phase change
[Qz(v') —Az( v)]T replaced by the first term of the ex-
pansion Eq. (3.9). Using Fourier transform techniques
and the strong-field condition, one finds formal solutions
for the coherence densities

(L 33+iO& )(t —tO)@33 R 0+, ik( v —v') v.+ I (~, t —to )

(L 33 iA& )(t —to)
pb, (v, t)=e

(3.11a)

+ oo ik( v —v')~+I (~, t —to )
X d7dv'e ' '

pb, (v', to),

(3.11b)

where

I (7,7) —r f dt exp I
—[(gt+7)k~/2] ]

0

and

(3.12)

g=kv/A~ .

Equations (3.8) and (3.11) represent solutions to QMTE
in the DSP. Several approximations were made in arriv-
ing at the results; in particular, it was assumed that (i)
velocity-changing collisions act in a state-independent
manner; (ii) collisions are weak and characterized by a
difFerence kernel; (iii) spontaneous emission occurs from
level 2 to level 1 only; and (iv) the Rabi frequency is
greater than all relaxation parameters and is smaller than
the inhomogeneous width (ku) of the atomic velocity dis-
tribution.

Solutions (3.8) and (3.11) can be transformed back to
bare state to get corresponding time-dependent density-
matrix elements that are needed for solving transient
problems involving excitation pulses of long duration.

the field intensity is, the phase shift is significant in this
time interval. Consequently, collision-induced decay of
atoms having kv)y is produced for time intervals T
satisfying k 0 T ) 1, even with large-field intensities
(I &y&ku).

The magnitude of the second term is of order kuTe
for kv «y, and of order k5vT[g(ko ) /(ku ) ] for
kv))y. Hence, for sufficiently small e and y/ku, the
second term in (3.9) is smaller than the first one. Howev-
er, this does not necessarily mean that the contribution
from the second phase change term can be neglected,
since the absolute value of the second term may become
larger than unity when the time interval is extended. For
pulse durations

IV. CALCULATION OF EXTENDED-PULSE PHOTON
ECHOES: STRONG-FIELD REGIME

The dressed-state solution obtained in Sec. III is used
to obtain expressions for the extended-pulse echo ampli-
tude for the following three cases: (Sec. IV A) Neglecting
relaxation; (Sec. IV B) including relaxation but neglecting
velocity-changing collisions; (Sec. IV C) including effects
of velocity-changing collisions.

A. Neglecting relaxation

In the absence of relaxation, the strong-field conditions
(3.1) are always satisfied. In this limit, the photon-echo
signal can be calculated by standard techniques. The
photon-echo amplitude depends on the oft-diagonal
density-matrix element pz&(t, ) evaluated at the echo time

r3 + r2 t, (see Fig. 2). For an initial excitation pulse
of short duration (kut, «1) and a second excitation
pulse of arbitrary duration T 2=t3 —t2 (see Fig. 2), one
finds

p~, (t, ) =
12 sin(2+i Ti )gp

v'7ru

sin I [y~+(kv/2) ]'~'T 2]X dv
4y2+ (k v)

(4.1)

t3

FIG. 2. Excitation pulse photon-echo excitation scheme.
The maximum echo signal occurs at t, = t3+ t, —t, , denoted by
the arrow.

The velocity integration is computed numerically. The
variation of the echo amplitude p2, (t, )

~

with duration of
the second pulse is plotted in Fig. 3 (the corresponding
result for the weak-field limit is shown in Fig. 10 of Ref.
31).

In contrast to the weak-field result in which the ampli-
tude increases linearly with T z, for a strong excitation
field, the echo amplitude oscillates with Tpz as

sin I[y2+(kv/2) ]' T 2) .

In the strong-field case, the velocity range of atoms con-
tributing to the echo is selected by the Rabi frequency gz,
that is, one excites atoms having kv~yz. During the
second pulse interval, the phase associated with atoms in
this velocity range varies approximately as gzT z. Since
pz Tp z )) 1 this phase is significant to echo formation. It
produces an oscillation in the echo amplitude that varies
approximately as sin yzT z. The signal saturates with in-
creasing T z as the population diA'erence of levels 1 and 2
approaches zero.
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In the weak-field case, since y2T~2&&1, the velocity
range is determined by the condition kv &(I/T z) rather
than kv(g2. In a first approximation, one can replace

the integrand in (4.1) by —,'(T 2), while restricting the ve-

locity range to —(kT 2) '. As a result the echo ampli-
tude increases linearly with T 2.

B. Relaxation of echoes neglecting velocity-changing collisions

The results of Sec. IV A are now generalized to include effects of spontaneous decay and phase-interrupting collisions.
The spontaneous emission rate y2, is taken equal to yz and y&2 is taken equal to yz/2 ("closed" system with level 1 the
ground state). From time t, to t2, the relevant density-matrix element p, z decays exponentially as

—[i h+r]z —ik )[fz —f] )
(4.2)

In the second field region, an analytic solution is no longer available owing to the decay terms. In the strong-field limit,
the DSP approach discussed in Sec. II is useful. The main procedure for calculating pz, (v, t3) for a given p&z(v, t2) in-
volves (a) defining initial conditions of density-matrix elements in the DSP [pD(v, t2)] in terms of p&2(v, t2); (b) solving
pD(v, t3) in terms of pD(v, t2}; and (c} transforming pD(v, t3) back to the BSP to get pz, (v, t3) using Eq. (Al) of Appen-
dix A. When this procedure is carried out, one may obtain

2+2e2 ~]z 2

p2, (v, t3)=
4y +(kv)

(kv)
exp (I h

—y2/2)T 2 4y2+(kv)

2 2
—cosI [4y, +(k v) ]' T 2] exp (I h

—y2/2) T 2 4y2+(kv)
pu(v t2) (4.3)

—(I h+y]z+ikv)(f —&3)
p~t( vt)= e '" " p2i(v, t3). (4.4)

By combining all relevant density-matrix elements to-

where p, z(v, t2) is given by Eq. (4.2). In the interval from
t3 to t, the coherence density rephases and decays at the
same rate as that in the second interval. Explicitly, one
finds

gether and integrating over velocity numerically at
t3+t2 tJ one is able to depict the variation of

echo amplitude with the second pulse's duration in the
presence of relaxation (see Fig. 4). It is seen that the echo
signal oscillates and increases with T 2. In this case,
there are two factors responsible for the increase of echo
amplitude. The first factor has been already discussed
above for the case without relaxation; namely, the in-

i I i I 1 1 i I i I I I i I

0

0. 1 0.2 0.3 0.4

T It
p2 c

0.5 0.6 0.7 0.8
0. 1 0.2 0.3 0.0

T /c
P2 C

0.5 0.6 0.7 0.8

FIG. 3. Variation of the photon-echo amplitude with the
second pulse's duration in the absence of relaxation in the
strong-field limit. In this as in Figs. 4 and 5, g/ku =0.2 and
kut, = 1000.

FICr. 4. Variation of the photon-echo amplitude with the
second pulse's duration in the absence of velocity-changing col-
lisions in the strong-field limit ( I ~h/g 0. 1 and pz/g 0.01).



6304 RU-WANG SUNG AND PAUL R. BERMAN 39

crease of the pulse area excites more dipoles to emit be-
fore saturation is reached. The second factor is related to
the fact that, in each time interval, the density-matrix ele-
ment contributing to echo formation decays at a rate that
depends on whether the density-matrix element is associ-
ated with level population or coherence. In the two
field-free regions, the coherence p, z or p2, decays at rate

Pph +y & 2 ~ In the second field region, the second pulse of
strong intensity continually switches atoms between pop-
ulation and coherence, and the decay rate in this region
can be associated with coherence (at rate I h+y&2) or
population (at rate y2). As the pulse duration is in-

creased, the population decay is increased relative to
coherence decay. Consequently, if I »+y») y, , the in-
creased population time implies a decrease in the echo
decay rate with increasing duration of the second pulse
(recall that a decrease of decay rate implies an increase in

echo amplitude) when increasing the second pulse's dura-
tion. If I „+y,2&y2 (only possible at low perturber
pressures), the situation is reversed. This feature has
been also noted in the weak-field result.

It is interesting to compare schematically the echo de-
cay rate (to be defined more precisely below) predicted by
Eqs. (4.3) and (4.4) in Fig. 5 with the experimental one of
Yodh et al. " in Fig. 6, even though the result does not
yet include effects of velocity-changing collisions. In
comparing Figs. 5 and 6, one sees that the phenomenon
common to both is that the decay rate decreases with in-
creasing the second pulse interval. The results differ in
that, in Fig. 5, the decay rate decreases at the same rate

for all values of T 2, whereas, in the experiment, the de-
cay rate decreases very slowly for small T 2 but more rap-
idly for T z comparable to the observation time of the
echo. This indicates that spontaneous emission and
phase-interrupting collisions alone do not provide an ap-
propriate physical picture for interpreting the experimen-
tal result.

C. Effects of velocity-changing collisions on photon echoes

In order to present a theory of extended-pulse photon
echoes including effects of velocity-changing collisions
which is relevant to the experiment of Yodh et ai. , we
first review some of the parameters of that experiment.
The active atom is ' Yb, the transition is
[(6s )'So —(6s6p) P&] having wavelength A, =555.6 nm,
and the perturber atoms are argon. The echo time
t, =1200 nsec is fixed throughout the experiment. The
second pulse's duration T 2 varies from 40-960 nsec.
For each value of T~2, the echo intensity is measured as a
function of argon pressure, varying from 10-40 mtorr.
The decay rate is calculated from each measurement and
is plotted as a function of T 2, with the experimental re-
sults indicated by crosses in Fig. 6. When T 2 is less than
480 nsec, the curve decreases slowly. When T 2 is close
to t„ the curve decreases more rapidly.

The temperature of Yb vapor is constant at 500'C.
The first pulse area (as defined by 2y, T, ) is of order uni-

ty. The Rabi frequency of the second excitation field is

I l I l I l I l I l l l I l I

XI
DC

CL

CC

U
fA4

I & I c

0 O. i 0.2 0.3 0.% 0.5 0.6 0.7

T gt
0.B

T /E
p2

FIG. 5. Considering spontaneous emission and phase-
interrupting collisions only, one finds that the echo decay rate
envelope decreases at a constant rate for all T 2, which differs
from the behavior of the echo decay rate in the presence of
velocity-changing collisions. (An oscillation of P with T z is

seen in this result, which has not been averaged over a distribu-
tion of field strengths. ) In this figure, I »/y =0.01 and

y, /y=0. 01.

FIG. 6. Variation of the decay rate (P) of the photon echo
with the second pulse's duration T~2. The curve represents the
theoretical result for the strong-field limit and the crosses
represent the experimental data. They are normalized at
T»/t, -0.23. A Gaussian distribution for y with

g,„/ku =0.28 has been incorporated into the theory. The oth-
er parameters are chosen to correspond to the experimental
ones given this value of y,„, namely, I /g, „=5 X 10

y /g, „=1. 1 X 10,and k ( o./g, „)=6.4 X 10
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y —10 /s (in the following discussion, y indicates the
Rabi frequency of the second field). The natural lifetime
of the upper level is 875 nsec and the corresponding
spontaneous emission rate is y2=1. 14X 10 /s. The total
cross sections for phase-interrupting collisions cr and
velocity-changing collisions cr „are 306 and 396 A, re-
spectively. The velocity-changing collision kernel width
is 5v-0. 57 m/s [(k5v=(2n/A, )u -6.4X10 /s]. The
relative average speed is v, —1000 m/s. The average
speed of Yb is v-306 m/s. The most probable speed of
Yb is u -270 m/s [ku =(2~/A, ) —3X10 /s]. The re-
duced mass is p-27. 24X 10 kg; the velocity-changing
collision and phase-interrupting collision rates are
I =¹„tr„-0.5X10 /s (for 10 mtorr) and I=¹„o»-0.39 X 10 /s (for 10 mtorr), respectively. It is
necessary to examine some ratios of these parameters,
since they are relevant to the approximations in the cal-
culation. The strong-field limit requires that the Rabi
frequency be greater than all relaxation rates, which is
satisfied here, i.e., I /y-5X10, y h/y-3. 7X10
y/g-1. 1X10,ko/y-6. 4X10 . We keep terms to
first order in these ratios in the following calculations.
Collisional relaxation rates I and I & and spontaneous
emission rate y2 are all of the same order of magnitude;
hence all should be considered in the calculation. Quan-

I

tities I T 2 and kcr T 2 are of the order of unity for large
Tp2 so that effects of velocity-changing collisions cannot
be neglected in the second pulse interval, since T 2 varies
over a large range. The pulse area gT 2 is larger than
unity for all values of Tp2 in the experiment so that a per-
turbation approach fails. The ratio of Rabi frequency to
inhomogeneous width ku is on the order of 0.1. Terms of
second or higher order in y/ku will be neglected. The in-
equality kuT 2))1 holds for all values of T 2 in the ex-
periment, a condition that simplifies the integration in-
volved in the Fourier transformation in the second pulse
interval.

For the above experimental parameters, we evaluate
the extended-pulse photon-echo amplitude in the pres-
ence of spontaneous emission, phase-interrupting col-
lisions and velocity-changing collisions. The density-
matrix elements contributing to echo formation are cal-
culated in each time interval.

In the first time interval (D~ t ( ), the pulse area is
larger than unity and a perturbation solution is not valid.
Since I T, (or y T, ) «1, and ko T~) && 1, the relaxation
in this region can still be neglected. In the second inter-
val (t2 —t, ), there is no excitation field and the coherence
density is the same as that derived in the weak-field limit,

38

4~3/7ru

—(1 +1 h
—ikv2)(t2 —t()+ikvt(i sin 2', T~, e

P(2( V2~ t2 ) f f '"drdve'"'"

t2 —tl
2 —(v/u )X exp I f dt'expI —[ktT(t'+r)/2]2I e

0

(4.5)

The present task is to solve for p2, (v, t3) in terms of p)2(v, t2) in the third time interval (t3 t2), since it—is this term
which gives rise to the echo signal having a maximum amplitude at t =t, .

One can use the strong-field solution of the dressed state QMTE obtained in Sec. III, and transform it back to the
bare-state representation to obtain p21(v, t3). The process for doing this has already been carried out in part B of this
section. By modifying the calculation to include the effects of velocity-changing collisions, one arrives at

p, (v, t )= (S„—S,—S, +S ) dv drsin28
sin20

22 2n-

L &&T 2 2 iAT 2 1 2 ik(v& —v2)a+I (v'T
2

IAT 2 1 . 2 ik(v~ —v2)7+I (~ T 2)+ cos 03e " d v2d v. sin 02e2. dd P12( V2~ t2 ) (4.6)

where the S's are given in Appendix B and I is defined in Eq. (—3.12). Note that 8; is a function of v, .
In the last interval (t, —t3), the calculation is similar to that for p)2(v, t2 ), one finds

e
P2((v4, t ) =

—(I-+I „+ k )(t —t )

f f+ drdv3e ' exp I f dt'expI —[kcr(t' —r)/2] I p2)(v3 t3)2' OO 0
(4.7)

By carrying out the velocity integrations at t = t3+ t2 —t „we find
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32X t) —(I +I h+y(2)t, +(2I & e/k rr)erf(kat&/2) + ~ d v
Pz, (t, )='

DP DC)n.ku 4y +(kv)

CDp= exP I T zexP[ —(kotz/2) ]+(I „h
—yz/2)T z

(kv)
4y +(kv)

2X'
CDc cosI [4+ +(kv) ] T~zj exP (I p„—yz/2)Tpz

4y +(kv)

(4.8)

+ exp(l &vr/gko ) I erf[(/T 2+ tz )ko /2] —erf(ko. tz/2) I

+ exp(I &vr/gko ) I erf[((T z tz )kyar—/2] —erf(ko. tz /2) I,

where g is defined in Eq. (3.12). The symbols CDP and

CDC denote contributions from dressed-state population
and coherence, respectively.

This is an approximate analytic solution for an
extended-pulse photon echo assuming strong excitation
fields. In order to compare this result with the experi-
ment, we define the decay rate of the echo. The echo in-
tensity is

can be estimated the reported signal is approximately
represented by the echo contribution [4.8) and (4.9)).

To further pursue some of the implications of the re-
sults, it is useful to compare the strong- and weak-field
solutions, and to determine which components of the
solution contribute to the dependence of the echo decay
rate on T z.

—P( T ~)P
tp (4.9)

V. ANALYSIS OF THE RESULTS

where P is the perturber pressure and p is referred to as a
decay rate which is a function of T z, defined by

logI, /Io
P( T~z) =—

(even though the p does not have dimensions of a rate, it
is defined as a decay rate to be consistent with the nomen-
clature of Ref. 11). The decay rate /3 versus T z for the
strong-field limit is plotted in Fig. 6. A Gaussian distri-
bution of the Rabi frequencies (to reflect the spatial prop-
erties of the light beam) has been included in the numeri-
cal result, with a maximum value of y,„/ku taken equal
to 0.28. Our theoretical result (represented by the curve)
fits the experimental data (represented by the crosses)
very well.

It should be noted that, although Eqs. (4.8) and (4.9)
have been compared with experiment, they do not corre-
spond exactly to the quantity measured in the experi-
ment. ' The signal at t=t, actually consists of three
parts. First, there is the "true" echo contribution
which peaks at t = t, and arises from the dependence of
pz, (t3) on p)z(tz). This is the term calculated in this pa-
per. Second, there is a free-induction decay (FID) signal
emitted after the second pulse which arises from the
dePendence of Pz, (t3) on P»(tz) and Pzz(tz). Third, there
is an FID-like signal emitted after the second pulse which
arises from the dependence of pz, (t3) on pz, (tz). In the
experiment, a random phase was introduced between the
two-excitation fields and the signal was measured as the
difference in signals produced with and without the first
field present. This procedure was intended to eliminate
the FID background. It can be shown that such a pro-
cedure does not completely eliminate the contributions to
the signal from the second and third terms discussed
above. Under those experimental conditions, however, it

From the strong-field result, we find that the decay rate
of the echo amplitude decreases with increasing the
second pulse's duration, which is in good agreement with
the experimental results of Yodh et al. " Although we
have considered a strong-field limit, the qualitative ex-
planation of the dependence of p on T z remains the same
as in the weak-field, perturbative domain. In discussing
the result, it is always assumed that k a.t, ) 1 and
kuTp~) 1.

We first consider the limit that kcrTpp(1 &Tpp) 1.
For ko T z & 1, the time interval between pulses 1 and 2
and between pulse 2 and the echo is such that
kcr(t, —T z) ) 1. This collision-induced phase shift is
suSciently large to destroy the contribution to the echo
signal from any atom that has undergone a collision.
Consequently the echo intensity decays homogeneously as

exp[ —(y)z+I h+I )t, +2I &vr/kyar erf(ko t, /4)],

independent of T z. There is, however, a weak depen-
dence of the log of the echo intensity on T z. As was
shown in the weak-field limit, ' an increase in T~z results
in an increase in the number of atomic dipoles contribut-
ing to the echo signal, provided that k o.T z ( 1. If
kuT z) 1, the echo intensity varies as (yzT z), implying
that log(I/Io) varies as 21og(yzT~z). Thus, P(T~z) as
defined in Eq. (4.9) decreases slowly with increasing T z

when k~T z(1. For intense fields such that gzT z) 1,
this dependence is modified somewhat. On averaging
over a distribution of field strength, one still finds a slow
decrease in P( T 2) with increasing T 2 when ko T 2 ( 1

and yT z(1.
As T z increases, the time interval (t, —Tzz) decreases.

For suKciently large T z, one arrives at the limit that
kyar(t, —Tzz) «1, such that velocity-changing collisions
result in negligible phase shifts between the pulses. The
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role of collisions during the second pulse now becomes
important since kaT 2) 1. As has been discussed in the
weak-field case, ' collisions tend to limit the contribution
from the second pulse; only the beginning and end of the
pulse interval contribute significantly to echo formation.
In effec, the EPPE becomes equivalent to a series of
stimulated photon echoes which are selected in a manner
that renders the role of velocity-changing collisions negli-
gible. Thus, during part of the second pulse (of approxi-
mate duration T z), there is no collisional decay of the
signal. Consequently the signal decays as

c, I T2
exp[ —I (t, —T~2)]=e 'e a' and log(I/I0) varies as
I T 2 Thu. s, P varies as —I T z/P for large T 2. [There
is an additional amplitude factor (I T z) in the intensity
which slightly modifies this result. ] In going from weak
to strong fields, one finds that the amplitude of the echo
intensity is modified somewhat, but that the overall quali-
tative dependence of logI/ID on Tp2 is fairly insensitive
to the field strength. Thus, as Tzz is increased p(I z2)
goes from a —log(I T~z) to a —I T z dependence. (An
additional dependence of P on T 2 arises from the fact
that population and coherence decay at different rates.
This results in a factor exp[2(I z

—yz)T 2] in the echo
intensity which also contributes to P. )

Our explanation of the dependence of P on T 2 differs
from that of Yodh et al. ,

" who based their explanation
on a strong field quen-ching of collisional effects. The ar-
guments given by Yodh et al. imply that strong-field
quenching becomes important when

of photon-echo formation and relaxation effects arising
from spontaneous emission, phase-interrupting collisions,
and velocity-changing collisions. The dressed-state-
picture approach has been used for obtaining an analyti-
cal expression for the echo amplitude as a function of the
second pulse's duration in the strong-field limit. The
techniques employed in this paper may be used to study
the collisional modification of intense radiation-matter in-
teractions in coherent transient spectroscopy. %e have
also developed numerical methods for solving the QMTE
for arbitrary field intensity. The numerical results are
in good agreement with the analytical ones in both the
weak- and strong-field limits. Moreover, such methods
can be further applied to problems involving more realis-
tic collision kernels.
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APPENDIX A

The transformation of density-matrix elements ex-
pressed in bare-state and dressed-state pictures is given
below,

p« =-,'[p»+p»+(p» —p») «s28+(p»+p»)»n28],

(Ala)

(ko )

x
T 2(1, (4.10) pbb

=
—,
' [p»+p» —(p» —p») «s28 —(p»+ p» )»n28],

(A lb)
a condition reached in their experiment. In examining
expansion (3.9), however, we find that the appropriate
condition for strong-field quenching is

p.b =-,'[(p» —p»)»n28+C»~ —p»+(p»+p») cos28]

(Alc)
ko.kvT 2 &1.

[4+2+ ( k )2]1/2
(4.11) pba 2 [(p22 p» )»n28 —p» —p» + (p»+p» ) «s28]

For ko T~z) 1 and y((ku, inequality (4.11) is never
achieved for atoms having velocities kv)g for which
collision-induced decay cannot be quenched. In effect,
Yodh et al. implicitly used a simplified theoretical model
in which the first excitation pulse was sufficiently weak
and long to excite a narrow range of atomic velocities
kv=(T~, ) '«y, . For such an excitation scheme, Eq.
(4.10) would be the correct condition for strong-field
quenching; however, in the actual experiment, the first
excitation pulse was of sufficient intensity (g&-y2/2) to
require the more detailed analysis given in this work.

VI. CONCLUSION

This paper aims to present a systematic theoretical
analysis of the phenomenon of photon echoes. The
theoretical results are shown to be in good agreement
with the photon-echo experiment carried out by Yodh
et al. " A physical interpretation of the experimental re-
sult, that the photon-echo decay rate decreases
significantly with the second pulse's duration, was
developed, based on the study of the fundamental theory

(A ld)

p, 2= —,'[(p„pbb ) sin28+—p, b
—

pb, +(p,b+pb, ) cos28],

(A lg)

p21 2 [(paa pbb ) slB28+pba pab +(pab+pba ) cos28]

(A 1h)

where sin8 and cos8 are defined in Eqs. (2.8a) and (2.8b).
The matrix elements of the relaxation term appearing

in Eq. (2.6) of the paper are given below,

sin 20 4 4Lrll =r21
4

—rll cos 0—r22sln 0

sin 28
(A2a)

p» =
—,
' [p«+ pbb+(p« —p» ) c»28 —(p.b+ pba ) sin28]

(Ale)

p22 2, [paa +pbb paa pbb ) cos 8+ pab +pba ) sin 8]

(A lf)
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4 sin 20L,z=yz, cos 0—(I „+I )

20+(r„+r„)""
(A2b)

r„=r+r, ,

r22= r+ y2

r,=r„=r+r „+@12.

(A3a)

(A3b)

(A3c)

2 sIn28L,» ——[(y, , +r„—r„)cos e+(r„—r„)sin 0]

(A2c)

2 sin20L,„=[(yz i+I „—1 z, }cos 0+(I,z
—I zz) sin 9]

APPENDIX B

The evaluation of the exponential matrix e '—:S is
given in this appendix. The matrix G

F22

SIn 20 . 4 4Ly22=y21
2

—I 11sin 0—r»cos 0

(A2e)

(A2d)

4 sin 20 2L z, =yz, sin 0—(I »+I zz) +(I,z+I z, ) sin 20,

g 11 g22

has elements

sin20 . 4g11= — I +y2sin 0
2

sin 20 4g„=r, +q, os0,
2

(B1)

(B2a)

(B2b)

}
sin 20

(A2f)
for y, =0 and y2, =@2. To diagonalize the matrix G, we
find the eigenvalues of G as A, 1=0 and X2=g» +g22, and
define a matrix

2 sin28L =[(y,+I „—I, ) sin 0+(I, —1 ) cos 0]

(A2g)

2 2 sin20L z
= [(yz, + I » —I,z) sin 0+ (1 z,

—I zz) cos 0]

(A2h)

2 sin20L 3,
= [(I „—I,z) cos 0—(yz, + I zz

—I"z, ) sin 0]

(A2i}

2 sin20L =[(I „—1,) sin 0—(y, +I —I, ) cos 0]

u11 u21

12 22

with elements
g22u11-

( z+ z)irz

u12—
(

2 + 2 )1/2

1 =
v2

The inverse matrix U ' is

(B3)

(B4a)

(B4b)

(B4c)

(A2j) U '=D
u12 u11

(B5)

sin 20I.„,=(r„+r„—r „—r„—y, , ) (A21)

2 sin20L,=[(r„—r„)cos 0—(y, , + rzz rzi ) sin 0]

sin 20 4 4L,33= —(r +rzz+yz, i) 4
—rizcos 0—r i sin 0

(A2k)

where
&2(g' +g' )' '

g» +g22
Using the transformation

e ' 0
S=U U

0 e '

(B6)

(B7)

(A2m) the four elements of S can be found as

2 sin20I 4z=[(I „—1 iz}sin 0—(y i+I —I g22 g11 ~2t

g11 +g22 ~11 +22
(B8a)

sin 20L„,=(r„+r„—r„—r„—y, , )

(A2n)

(A2o)

—rt &» ~ztSiz=e ' — (1 —e ')
g11 +g22

(B8b)

sin 20 4 4L = —(I „+I +y, ) —I z, cos 0—I,zsin 0, S,=e21 (1 —e ')
g11 +g22

(B8c)

where

(A2p) =e rt
22

11 g22 ~2
e 2

g11 822 g11+g22
(B8d)
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