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Stochastic optics may be considered as simply a local realistic interpretation of quantum optics
and, in this sense, it is a first step in the reinterpretation of the whole of quantum theory. However,
as it is not possible to interpret all the details of quantum theory in a local realistic manner, as
shown by Bell’s theorem, minor changes are introduced in the formalism with the consequence that
the new theory makes different predictions in some special cases. In stochastic optics, the
quantum-operator formalism is simply considered a formal way of dealing with stochastic fields. In
particular, the quantum zero point is taken as a real random electromagnetic radiation filling the
whole of space. This radiation noise has the same nature as light signals, the only difference being
the greater intensity of the latter. We assume that photon detectors have an intensity threshold just
above the level of the noise, thus detecting only signals. Transmission of radiation through polariz-
ers follows Malus’s law, but the interplay of signal and noise leads quite naturally to the prediction
that the detection probability of some signals is enhanced, which is known to be a necessary condi-
tion for the violation of the empirically tested Bell inequalities. In our view, correlated photon pairs
are pairs of light signals supercorrelated in polarization, in the sense that, as well as the signal, the
accompanying noise is also correlated. Thus stochastic optics allows predictions for the empirical
correlations very close, but not identical, to the quantum ones. The theory is applied to the analysis
of all experiments designed to test the Bell inequalities by measuring polarization correlations of
photon pairs. The predictions agree with quantum optics and experiments within statistical errors,
except for the Holt-Pipkin experiment. In this case, the experimental results agree with stochastic

optical predictions within two standard deviations while violating quantum optics by four.

I. INTRODUCTION

More than 80 years have elapsed since Einstein intro-
duced the concept of a “photon”, in order to explain the
discreteness of the absorption of light by material sys-
tems. Wave-particle dualism, an essential part of the
photon concept, has since been extended to the whole of
quantum theory, giving rise to conceptual difficulties that
nonbody has been able to clarify in a completely satisfac-
tory manner. In spite of these difficulties it is now widely
believed that no alternative exists to the present para-
digm; that is, nature cannot be interpreted along classical
lines. In the domain of optics, a number of experiments
have been performed in the last two decades to show non-
classical effects in the statistical properties of light. How-
ever, the claim that these experiments cannot be inter-
preted classically is incorrect. In fact, we have developed
a pure wave theory of light, able to interpret all these ex-
periments, at least qualitatively. The theory, which we
call stochastic optics, has been presented in a recent pa-
per,! where we have shown in particular how the theory
explains (i) the apparent corpuscular behavior of light (ii)
the results of optical tests of Bell’s inequalities, and (iii)
photon antibunching. In the present paper we analyze in
more detail the second class of experiments.

The optical tests of the Bell inequalities,>”® by measur-
ing “photon” polarization correlations, are the most re-

39

markable of all the experiments designed to show the
nonclassical behavior of nature. In fact, Bell’s theorem
shows that there are some specific predictions of quan-
tum mechanics which are incompatible with any local
realistic model. Then it is, in principle, possible to test
quantum mechanics against the whole class of realistic lo-
cal theories. In practice, however, it is rather difficult to
perform crucial tests and, until now, only atomic cascade
experiments (Sec. IV) are considered reliable. The per-
formed experiments have given results in agreement with
the quantum predictions, with one exception (see Sec.
IV). As a consequence, a large fraction of the scientific
community now believes that local realistic theories have
been refuted empirically. The main purpose of the
present paper is to show that this opinion is incorrect.
We shall show that stochastic optics, a realistic and local
theory, offers a natural explanation of the results ob-
tained in these experiments. Furthermore, it explains
also the results of the one experiment that did not agree
with the quantum prediction, thus offering for the first
time an explanation of that anomaly.

Stochastic optics is a purely classical theory of light de-
rived from Maxwell’s electromagnetic theory. Thus it is
a “wave” or “field” theory of light. The only difference
between it and conventional classical optics is the as-
sumption that there is a universal noise or random back-
ground radiation filling the whole of space. This noise is
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just the zero-point field of quantum electrodynamics, but
taken as real instead of ‘“‘virtual” (not a well-defined con-
cept in any case). The idea that the zero-point field may
explain the peculiarities of the quantum behavior goes
back to Planck and Nernst at the beginning of the centu-
ry, but the systematic study of classical systems of
charges moving under the action of the zero-point field
(known as stochastic electrodynamics, see for reviews
Refs. 9-11) is only 30 years old. Stochastic optics has a
more narrow scope than stochastic electrodynamics, as it
does not attempt a detailed study of the interaction of
light with matter but considers only the interaction with
macroscopic bodies, such as lenses, mirrors, polarizers,
etc. We assume for these interactions the same laws as in
classical optics, but including the zero-point radiation.
For the emission and absorption of light it is necessary to
make phenomenological assumptions, as explained below.
We emphasize that stochastic optics is still at a prelimi-
nary stage of development and does not yet allow accu-
rate predictions to be tested against quantum mechanics.
However, the theory gives a simple explanation of the
most dramatic quantum aspects of optics. With a suit-
able choice of just two adjustable parameters, it is possi-
ble to fit all performed experiments within statistical er-
rors. It must be noted that we shall consider only radia-
tion able to interact collectively with macroscopic de-
vices, thus excluding radiation with wavelengths shorter
than the near ultraviolet. As the zero-point radiation is
irrelevant for wavelengths larger than those in near in-
frared, the specific range of our interest corresponds
therefore to the traditional domain of optics.

In the following, we summarize the principles of sto-
chastic optics, referring for details to our previous pa-
per.! The essential hypothesis is that there is everywhere
in space a zero-point noise which cannot be directly
detected, because only radiation ‘“‘above the sea” of zero
point can activate light detectors. In most cases, optical
devices, such as lenses, mirrors, etc., transmit radiation in
such a way that the part below (above) the “sea level”
remains below (above), i.e., as noise (signal). In conse-
quence, the laws of classical optics apply. We have
defined these devices to belong to class I. There are
class-II devices, such as partially transparent mirrors or
polarizers, which divide the incoming radiation in two
parts going to different channels. In this case, there is
also some amount of noise which is similarly divided and
is able to mix with the two parts of the signal giving ei-
ther constructive or destructive interference. Our propo-
sal is that quantum behavior in the transmission of light
is due to this interference. For instance, a signal arriving
at a semitransparent mirror gives, by the interference
with the noise, two outgoing signals, but only one of them
with enough intensity (above the sea level) to be detected.
This explains the “particle” behavior of light (“the pho-
ton goes in only one channel”). However, in the other
channel there is radiation ‘“below the sea,” carrying infor-
mation of the incoming signal, so that a recombination of
the beams in the two channels may give rise to interfer-
ence fringes showing that light is a wave.

In the present paper, we shall follow a more formal ap-
proach than in the previous one,' in order to show the
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closeness of stochastic and quantum optics. Indeed, sto-
chastic optics could be considered as simply a local realis-
tic interpretation of quantum optics. In this sense, it is a
first step (confined to the domain of optics) in the reinter-
pretation of the whole of quantum theory. However, it is
not possible to interpret all the details of quantum theory
in a local realistic manner (as shown by Bell’s theorem??)
without some change in the formalism. In consequence,
stochastic optics cannot be simply a reinterpretation of
quantum optics but a new theory making different predic-
tions in some special cases. Therefore, the two theories
may be distinguished empirically, as we shall show later.
In contrast with our previous paper,' where we described
stochastic optics as a natural modification of standard
classical optics once the existence of a universal noise is
accepted, we shall start here from the quantum formal-
ism. We shall argue that stochastic optics is the
“minimal” modification of quantum optics needed to in-
terpret the theory classically (i.e., as realistic and local).

II. PRINCIPLES OF STOCHASTIC OPTICS

For our purposes it is convenient to consider light sig-
nals with a definite polarization and phase. One such sig-
nal is classically represented by the electric field (similarly
for the magnetic field) in the form

E(r,t)=Re[f(r,1)e’XV], V=(E cos¢,E (sing)e'V) ,
2.1)

where ¢ and W are polarization parameters and )y the
phase, with the domains

0=¢=7w/2, 0=V¥,y=27, (2.2)

and the function f(r,?) contains the space-time depen-
dence. Then the parameter E represents the amplitude of
the signal, and the intensity (total energy) is given, in suit-
able units, by E>.

The quantum description of radiation is given in terms
of vectors and operators in Hilbert space.!? The electric
and magnetic fields become operators and the state of the
field (containing, e.g., a light signal) is given by a vector
|a). The most relevant observable is the energy, and the
corresponding operator, the Hamiltonian, is written

H= 3 hvala, (2.3)
J
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where a ' (a) is the creation (annihilation) operator of one
“photon.” It is possible to consider many kinds of light
(thermal, coherent, etc.) but in the present paper we will
study only “one-photon” signals. This is because all non-
classical behavior has been shown with this kind of light.
The average and mean-square energies of that state are

e={1lH|1)=hv, e=(1|H?1)=hr%?, (2.4)

thus showing that the value A v of the energy is sharp (not
fluctuating).

Stochastic optics attempts to interpret quantum optics
with a realistic philosophy. Then, we must know wheth-
er the zero-point radiation really exists. The orthodox in-
terpretation does not answer this question and hides the
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problem with the statement that the zero-point radiation
is “virtual.” Until now, attempts to find a classical or
semiclassical alternative to quantum optics have not tak-
en into account the zero-point radiation and have failed.
A typical example was the semiclassical theory of
Jaynes.!> We assume that the zero point is a real radia-
tion. This implies the first modification of the quantum
formalism consisting in replacing the Hamiltonian (2.3)
by

- J J J (25)
J

H=73 lthvjala;+a;a))=3 hv;(ala;+1) .
j

This is a rather natural change because (2.5) is what we
obtain from a straightforward quantization of the classi-
cal energy, while the operator reordering (or, equivalent-
ly, the removal of the term 1hv) is a rather ad hoc pro-
cedure for the elimination of the undesirable infinite ener-
gy of the vacuum. With our modification, the average
energy of the radiation mode associated with the photon
is no longer v but 2hv. On the other hand, every vacu-
um mode has an average energy +hv.

For reasons to be explained at the end of this section,
we will not follow the standard treatment, where each ra-
diation mode is considered to have a definite wave vector
[or, more generally, space-time function f, see (2.1)] and
polarization. We shall instead superpose the two modes
having the same wave vector to get one component of the
electric field with a given elliptical polarization [described
by (2.1)]. Then, if the pair of modes contains a one-
photon signal, its energy will be 2Av; if it corresponds to
the vacuum, its energy will be Av. Each pair of modes
can be associated with one cell of volume 87> in six-
dimensional space (i.e., the space of three coordinates and
three wave-vector components). Therefore, we shall ana-
lyze the full radiation field in any region of space as a su-
perposition of field components, each corresponding to
one cell and having a well-defined elliptical polarization.

In any particular case, once we define the radiation
modes appropriate for the problem at hand, the full radi-
ation field can be described by giving four parameters, E,
¢, ¥, and Yy, for each cell [see (2.1)]. (In the normal treat-
ment there are two parameters, amplitude and phase, for
each mode, which gives again four per cell.) As appropri-
ate to a stochastic theory, the four parameters are ran-
dom variables. From symmetry considerations it is not
difficult to find the probability distribution for the three
angular parameters (see below), but it is not so easy to
find the probability distribution of the amplitude parame-
ter E. We know the average value of its square (namely,
hv for a vacuum cell and 2kv for a cell containing one
“photon”’) but we need all the moments in order to know
the full probability distribution. As we want to remain as
close as possible to the quantum formalism, these mo-
ments should be computed using the Hamiltonian (2.5)
and the standard quantum rules. What we obtain is that
the energy of each mode is dispersion free. Apparently,
this solves our problems and suggests putting the follow-
ing probability density for the parameters of a vacuum
cell:

P(Eo, b0, Vo, Xo)=(472) " sin(2¢)8(E,—1) , (2.6)
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where E} is given in units Av.

As said above, the distribution for the angular parame-
ters has been obtained by symmetry considerations.'*
Not only is it rotationally invariant, but it can be shown
to remain unchanged when a beam crosses a A/n plate,
for any n, so that (2.6) is quite satisfactory in this respect.
However, the sharp value of the amplitude E, cannot be
physical. In fact, there are strong arguments'> for a
Gaussian distribution of amplitudes, and certainly (2.6) is
not obtained in general for one cell by a superposition of
two radiation modes with arbitrary phases.!® Conse-
quently, further changes in the quantum formalism will
be required, besides substituting (2.5) for (2.3), but we
leave this problem for future work and, for the moment,
we shall use (2.6) unamended.

Now, we must specify the distribution of polarizations
of the signals coming from an atomic source. Obviously
this will depend on the characteristics of the source, but
in the present paper we will consider only sources with
rotational invariance. In this case, we propose for the en-
semble of signals the maximum possible symmetry that is
a distribution similar to (2.6)

p(E,¢,¥,x)=(47%)"'sin(2¢)8(E —B) . 2.7

As this corresponds to the field component of one cell
(containing two radiation modes) the energy should be
2hv, and therefore we should take 2=2 in (2.7). Howev-
er, as we are using a somewhat nonphysical distribution
(namely, with sharp energy), we propose to compensate
for this fact by treating 8 as an adjustable parameter (the
value 82=2.2 will be obtained in Sec. III as the optimum
choice). It is not necessary to specify the form of the
space-time function f(r,?) [see (2.1)] but it seems likely
that the region where it is not zero corresponds to what
Einstein called Nadelstrahlung (needle radiation), i.e., a
region of the order of meters in the direction of propaga-
tion and a few wavelengths in diameter. A wave packet
of this form and size (superimposed on the zero-point
field) is what plays for us the role of one “photon.”

Stochastic optics has a limited scope because it is
confined to the transmission of radiation (including zero-
point radiation) through macroscopic devices. So, it does
not cover the emission or absorption of light signals or, in
general, the microscopic interaction of radiation with
matter. In this respect it is similar to semiclassical
theories. However, we want a fully classical theory able
to be interpreted in a local realistic way. Consequently,
we do not use the quantum theory of absorption and
emission, but replace it by simple phenomenological as-
sumptions. These assumptions, however, will stay as
close as possible to the quantum formalism.

In quantum optics, the detection probability of a signal
is usually given by the expectation value of the number
operator multiplied by the efficiency factor 7 (for simpli-
city we ignore the dependence of 1 on frequency), that is,

P =n{a|Nl|a), NZZa;aj . (2.8)
J
Now, the number operator N, like the Hamiltonian (2.3),

has the operators a and a' in the “normal ordering,” that
is, a to the right. This is equivalent to subtracting the
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noise, i.e., assuming that zero-point radiation does not ac-
tivate photodetectors. To bring our description close to
quantum theory, the same assumption is made in stochas-
tic optics and we shall write the detection probability as

P=y3U—1), (2.9)
J

where I; is now the total energy in one cell of six-
dimensional space (two radiation modes) in units Av. We
shall call “ideal detector’ any detector fulfilling our (2.9),
which is equivalent to the quantum rule (2.8). Ideal
detectors, however, are impossible by the very nature of
stochastic optics, as explained below. Therefore, some
difference with quantum optics can be predicted in exper-
iments where the nonideal behavior of detectors is impor-
tant.

The reason that ideal detectors are impossible within
stochastic optics is that the zero-point radiation is ran-
dom, so that the “‘sea level” cannot be sharply defined, as
was pointed out earlier. In other words, fluctuations of
the noise can always be confused with signals. In a more
formal way the difficulty can be seen in Eq. (2.9). In fact,
if fluctuations exist, the intensity I can be smaller than
the average of the noise, thus making the probability P
negative, which is absurd. The problem is that we must
find an alternative to (2.8) fulfilling the two conditions of
being non-negative and giving a detection probability
proportional to the energy above the zero-point sea. But
these two conditions are clearly incompatible if there are
fluctuations in the zero-point field. At least two predic-
tions seem unavoidable in stochastic optics: (i) there will
be always some dark rate in any detector (a well-known
fact in real experiments) and (ii) the efficiency of detectors
should remain low if we want to avoid a high dark rate.
For the moment, the simplest solution seems to be to re-
place (2.9) by a detection probability which is a function
of the signal intensity with a threshold. So we shall as-
sume for the probability, instead of (2.9)

P=£3AU;—y).), n=EB~y), (2.10)
j

where ¥ is some threshold energy (in units Av) and 7 is
the “photon” efficiency. The notation ( -:-), means
putting zero if the argument is negative and { ---)
means the ensemble average over the noise with the dis-
tribution (2.6). Equation (2.10) is more physical than
(2.9) because it does not allow negative probabilities, even
if the noise intensity fluctuates. It must be taken into ac-
count that I; contains the energy of the signal both above
and below the sea of zero-point noise, and that the part
below the sea has a unit (hv) of energy. Then y must be
greater than unity in order to detect no noise, but close to
it in order to detect most of the signals.

However, this clearly shows the two differences with
quantum optics already noted. Either weak signals are
not detected (if ¥ >>1) or there will be a lot of noise
detected in the form of dark background (if y is close to
1). The difficulty can be diminished in practice by using
low-efficiency detectors. We think that this is a real
problem for actual laboratory practice, which stochastic
optics explains better than quantum optics. Further-
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more, our parameter Yy corresponds to the adjustable
voltage bias in actual photomultipliers. Therefore, the
existence of this adjustable parameter is rather a merit
than a shortcoming of stochastic optics. Unlike quantum
optics, which gives predictions only for ‘““ideal’’ measure-
ments, stochastic optics is more physical and predicts,
quite naturally, nonideal behavior.

We stress the distinction between the general principles
of stochastic optics (propagation of light according to
classical laws and existence of zero-point noise) from the
simplified model for the noise, the emission, and the ab-
sorption, given by Egs. (2.6), (2.7), and (2.10). This model
is provisional and should be improved in the future, while
retaining its qualitative differences with quantum optics.
Consequently, the predictions of stochastic optics are, for
the moment, only semiquantitative.

I1I. ACTION OF A POLARIZER

Our aim in this section is to describe the transforma-
tion of a “single-photon” signal when it crosses a real po-
larizer. To do that, we first consider the action of an
ideal polarizer on a monochromatic light beam according
to classical optics. Then, we study the single-photon sig-
nal crossing an ideal polarizer in stochastic optics, i.e., in-
cluding the zero-point noise. Finally, we consider the
case of real polarizers, especially piles of plates and cal-
cites.

A monochromatic wave with general (elliptical) polar-
ization can be represented by the two Cartesian com-
ponents of the electric field (E,,E)), as in (2.1). A two-
channel perfect polarizer that transmits the x component
and reflects the y component gives the two beams

(E,,0) (transmitted), (0,E,) (reflected) , (3.1)

In order to study the behavior of the ideal two-channel
polarizer according to quantum optics, we must consider
the radiation modes involved. For a given wave vector
coming from the left there are two modes with perpendic-
ular linear polarizations. We shall label by a: and a; (a,
and a, ) the creation (annihilation) operators associated to
these modes. One of the modes is transmitted and the
other one reflected in the polarizer, as shown in Fig. 1,
left (solid line). However, in the outgoing transmitted
channel there must be another mode with the same wave
vector, but perpendicular polarization (represented by a
dashed line in the figure), whose associated creation (an-
nihilation) operator we label b;' (b,). This can only come
from the radiation mode entering from above, as shown
in the figure. In practice, light signals enter only on one
side of the polarizer, say, the left, so that the modes la-
beled with b are not excited and they can usually be ig-
nored.

In stochastic optics everything is similar, except that
the field operators E,, E,, E,,, and E, (see Fig. 1, right)
become random variables with probability distributions
that can be obtained from our assumptions in Sec. II and
the laws of propagation of the different radiation modes.
Now, although we may ignore the zero-point radiation in
all other vacuum modes, it is not possible to ignore the
field in the modes labeled b. Then, the relevant part of
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the electric field in the transmitted and reflected beams
will have electric field vectors of the forms (E,,E,,) and
(Eox,E,), respectively, where the “relevant part” of the
noise is

(EoxsEqy ) =(Egcospoexplixy), Egsingoexp(i Wo+ix,))
(3.2)

We now consider that the beam emerging from the first
channel of a polarizer crosses another perfect polarizer at
an angle 6’ with the first one. Then, the signals transmit-
ted through that polarizer have a component parallel to
the polarizer axis and another component (coming from a
new intervention of the noise) perpendicular. The outgo-
ing signal is represented by

[Bcosd cosO'expliy)+sindysind’exp(iWy+ix,),sing,exp(iV,+ix,)] .

Now, we shall consider perfect polarizers combined
with real detectors [fulfilling (2.10)]. We must begin by
calculating the average intensity of the signals in the
transmitted beam when the incoming signals all have the
same elliptical polarization. For generality we consider
now a polarizer at angle 0, so that the transmitted part of
the signal parallel to the polarizer axis is

E, =PB(cosd cosO+sing sinfe¥)e ' | (3.4)

while the noise gives a contribution perpendicular to the
axis
E, =[cos¢sinf+sind,cos6 exp(i¥y)Jexplix,) - (3.5

The intensity is obtained adding the square moduli of
(3.4) and (3.5):

I =B%o0s*® +sin’d , (3.6)
where we have defined
cos(2®)=cos(2¢)cos(26)+sin(2¢)sin(26)cos¥ , (3.7)

and a similar expression for ®,. Now, the detection
probability of a signal will be, according to (2.10)

P(®)=£((Brcos’®@+sin*®y—y) Do (3.8)
an expression that we will frequently use in the future.
The average in (3.8) should be made for ¢y, and ¥, with

“the distribution (2.6) or, equivalently,'® for ®, with the
weighting factor sin2d).

The function P(®), represented in Fig. 2, is not very
complex but, for later convenience, we shall derive a sim-
ple approximation of it by retaining the first two terms in
an appropriate series expansion. As the distribution of ®
contains the weighting factor sin(2®), the most suitable
expansion is in terms of Legendre polynomials of the
variable cos(2®). Introducing the ratio Q(®) between
the probability with and without polarizer we have

Q(®)=P(®)/[&B*—7y)]= 3 a,P,(cos2®) , (3.9
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FIG. 1. The action of an ideal two-channel linear polarizer in
quantum and stochastic optics. The incoming signal E is mixed
with the zero-point component E; and split to produce two sig-
nals whose total intensity is E2+ E3. The axis of the polarizer is
taken to be in the x direction.

(3.3)

where P,(x) is the nth Legendre polynomial with the
usual normalization [i.e., P,(1)=1].

After that, we are in a position to determine the values
of the adjustable parameters 8 and y. As we will discuss
at the end of Sec. IV, exact agreement with quantum op-
tics in the ideal experiments would be obtained with the
choice

[Q(®)],=1+(V3/2)cos(2d) ,

(3.10)

FIG. 2. The function Q(x), representing the ratio of detec-
tion probabilities with and without a polarizer set at 6=0, of a
“one-photon” light signal having elliptical polarization parame-
ters (¢, ¥, x), where x =cos(2®). The function itself is the solid
curve, the two dashed curves giving the approximation by two
and three Legendre polynomials, respectively. The first of
these—the straight line—represents what we consider to be the
quantum approximation to stochastic optics.
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where the subscript denotes quantum. However, this ex-
pression can be negative, which is absurd for a ratio of
probabilities, in sharp contrast with the more physical ex-
pression (3.8). This is another example where quantum
optics seems to be just a mathematical approximation of
a more physical theory, which we are searching for. Ac-
cordingly, we choose 8 and y in accordance with our
general practice of remaining as close as possible to quan-

i

Q(®)=1+(v3/2)x +0.3716(3x2—1)/2—0.0568(5x > —3x)/2—0.0534(35x *—30x > +3)/8+ - - - .

Figure 2 shows that the approximation with two terms
(the “quantum limit”’) is not too bad, and it is very good
with three. The choice aq=1 corresponds to demanding
that, when an ensemble of signals from a rotationally in-
variant source [see (2.7)] crosses a perfect polarizer, the
counting rate is just half the rate without the polarizer.
This gives the relation between 8 and ¥ shown in (3.11).

An interesting question is whether Malus’s law is
fulfilled with ideal polarizers but real detectors [behaving
as in (2.10)]. The calculation is straightforward. It is
enough to consider the change of a signal emerging from
the first polarizer when it crosses another (perfect) polar-
izer at an angle 6’ with respect to the first one. The com-
ponents, parallel and perpendicular respectively, to the
second polarizer’s axis are

E|=E,cos0'+E;sind’, |E |=sin®,, (3.13)

where E, and E,, are given by (3.4) and (3.5), and @,
corresponds to the polarization parameters of the
relevant noise intervening at the second polarizer. The
ratio between the counting rates with two polarizers and
with only one is given by

R(6)=ECUE P+IE P—y) ) /(P(®)), (3.14)
where E, and E, given by (3.13), P(®) by (3.8), and the
averages are taken over all polarization parameters of sig-
nal and noise. A numerical calculation has been made
and the results are given in Table I, where they are com-
pared with those predicted by Malus’s law. Note that we
may exploit the isotropy of the distributions (2.6) and
(2.7) and do the calculation for the special case =0,
since only the relative orientation of the two polarizers is
important. In that case (3.13) reduces to (3.3). We see
that the agreement is good although not perfect.

By comparison, we include in Table I the results ob-
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tum theory. Then, we fix the first two Legendre polyno-
mials in (3.9) to be ag =1, a, =V'3/2, which leads to

B2=2.204, y=Li[f+1—(p*—2B*—1)"]=1.431.
3.11)
After that, (3.9) becomes [writing x for cos(2®)]

(3.12)

f

tained with Eq. (3.14) using other values of 3 and y. It
will be noted that the agreement with Malus’s law may be
greatly improved, but that the alternative values will not
fit the correlation experiments discussed in Sec. IV. We
do not know the accuracy with which Malus’s law has
been tested with single-photon signals and it is already
well understood that results of experiments with macro-
scopic light cannot be extrapolated to single-photon sig-
nals. (An empirical test of Malus’s law with such signals
will be discussed in Sec. V.) It may be also that our
simplified model [defined by Egs. (2.6), (2.7), and (2.10)]
does not allow a single choice of values of 3 and y valid
for all experiments. This is a problem to be considered in
the future.

We must now consider real polarizers. Among the
large number of those existing, we shall study only the
two kinds which are of interest in our analysis of exper-
ments: piles of plates and the calcite Glan-Thompson
prism. Real polarizers are characterized by two
efficiency parameters €,, and €,, corresponding to the
maximum and minimum transmission of a polarized
beam when the polarizer is rotated.

The behavior of a calcite prism can be analyzed with
reference to Fig. 3. There, we fix the y axis perpendicular
to the plane of the figure and the x axis in the plane but
perpendicular to the direction of propagation of the ray.
For an incoming signal with electric field components
(E,,E,), the E, component is totally reflected in the bal-
sam layer of the prism (represented by a diagonal straight
line in Fig. 3), while_the E, component is transmitted
with an amplitude V€, E, (the transmitted part of E, is
extremely small and may be neglected). Then, according
to classical optics, the transmitted signal should have
components (1 €, E,,0). In stochastic optics, however,
there is some noise which goes into the outgoing channel.
In the first place, the E,, component of the noise ray E,

TABLE 1. Predicted detection rate with two perfect polarizers in series. The first row shows the
value of R (0') with 8 and y as used in the rest of the paper. The last row shows the quantum-optical

prediction.
B Y 6'=0 /8 T/4 37/8 w/2
2.204 1.430 1.000 0.864 0.585 0.253 0.079
2.282 1.642 1.000 0.854 0.556 0.190 0.025
2.36 1.375 1.000 0.856 0.560 0.242 0.081
2.56 1.275 1.000 0.857 0.557 0.252 0.099
Malus’s law 1.000 0.854 0.500 0.146 0.000
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FIG. 3. The action of a Glan-Thompson calcite prism ac-
cording to stochastic optics. The amplitude interference be-
tween the signal (solid line) and the zero-point noise (dashed
lines) is important.

is totally reflected and goes into the transmitted channel,
but also a small amount of the E,, component of the
noise ray E; goes there. Then, the transmitted signal has
components

(VenE,+V (1—€yE | Ey,) . (3.15)

The coefficient 1/ (1 —e€y) of E |, is derived from the fol-
lowing argument. If the amplitude 1/ €y E, of the x
component of the incident signal is transmitted, then an
amplitude 1/ (1—¢,,)E, should be reflected by energy
conservation (assuming no absorption). However, the in-
cidence of the signal E on the balsam layer of the prism is
the same as that of the noise ray E, and so the fractions
transmitted and reflected should be the same. Hence the
intensity of the outgoing signal is just the sum of the
square moduli of the components (3.15), i.e.,

I =BV €pcos®+1/(1—¢,)cos® exp(iW¥,)|>+sin’®, .
(3.16)

This agrees with (3.6) for a perfect polarizer with €,, =1.
From (3.16) we obtain the function P(®) [compare with
(3.8)]

P(D)=E{(|BV €3 cos®+1/ (1—€p )cosd exp(i¥,)|?

+sin2<1>2—y)+)cbl,q,z,\p (3.17)

1
In order to study the pile of plates polarizer, we must
first consider a single plate. If an incident signal has
components (E,,E,) and it arrives at the plate at the
Brewster angle, or very close to it (see Fig. 4), then ac-

P(®)=E([|BV €pcos®+1/(1— €, )cosDyexpliW,)|?
+ 1BV €psin® +1/(1—e,, )sin®explixy)|?

The differences with (3.17) are, first, that €,, is not zero,
and second, that the x and the y components of the zero-
point intervention are now correlated because they come
from the same noise ray. [The correlation is manifest in

v >q>0,w0,xo :
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FIG. 4. The action of a single plate polarizer according to
stochastic optics.

cording to classical optics, one of the components is fully
transmitted, say, E,, while the other one is partially
reflected and partially transmitted, so that the transmit-
ted signal will have components (LE,,vE,) with

wr~1, v*=2n%/(1+n*~0.7, (3.18)

n being the refraction index of the glass plate. In prac-
tice, p is not exactly unity and so we shall continue using
this parameter. If there is no absorption, by conservation
of energy the reflected beam will have components
((1—p'2E,,(1 ~v2)1/2Ey ). In stochastic optics the
“relevant part of the noise” which mixes with the signal,
as shown in Fig. 4, has components (E,,E,,) in the in-
coming channel. As a result, the transmitted signal plus
noise has components

(ELEN=(uE, +(1—p®)'?E | ,vE,+(1—v})'?E ) .
(3.19)

If there are N plates in the polarizer, we must perform
the transformation N times, with the result

[V enE,+V (1—€y)Eo, V€ E,+V (1—€,,)Eq, ] .
(3.20)

This expression looks like (3.15), but now E,, and E,,
are different random variables from before whose proba-
bility distribution should be found. It is obvious that E,,
and Eoy are complex variables with zero mean, and it is
reasonable to assume that the mean intensity is . How-
ever, the exact probability distribution depends on
specific assumptions; for instance, whether noise inputs at
different plates are correlated or not. We shall not study
this problem in detail in the present paper, and we shall
assume that E,, and E, are similar to a single noise in-
tervention. This gives

(3.21

the use of cos®, and sin®, instead of cos®,, and sin®P, as
in (3.17)]. In Sec. IV, we shall use (3.21) for piles of plates
and similar polarizers for instance, the prism used in the
second experiment of Aspect, Grangier, and Roger.’
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IV. OPTICAL TESTS OF THE BELL INEQUALITIES

The most obviously nonclassical predictions of quan-
tum mechanics are related to pairs of correlated particles
(or, more generally, signals). For instance, the two “pho-
tons” emitted in an atomic cascade (see Fig. 5) have a
correlation in polarization which seems impossible to un-
derstand classically. Bell proposed that the probability of
a coincidence count should be calculated by an expres-
sion which, with some modification, can be written

Pula,b)= [ piy(A, AP (A, @)Py(Ay,b)dAidh, . (A1)

Here A, (A,) represents the set of auxiliary variables
specifying the state of the left (right) “photon,” these
variables having a probability density p;(A,A;).
P,(A,,a) is the probability that a photon with auxiliary
variables A; crosses a polarizer at angle a and similarly
for P,(A,,b). (In most papers on the subject a single label
A is used for all the variables that, for later convenience,
we represent here by A;,A,.) These functions must fulfill
the obvious requirements

p>0, 0<P,P,<I. 4.2)

The condition of locality is contained in formula (4.1) be-
cause neither P, depends on b nor P, on a, nor p;, on ei-
ther a or b. Then quantum optics predicts, for the case of
perfect polarizers and detectors,

piala,b)=1cos’(a —b) . (4.3)

Bell showed that such a value of p, is not compatible
with (4.1) and (4.2). The problem is that neither perfect
polarizers nor perfect detectors exist.

Now we study the predictions of stochastic optics for
correlated-“‘photon”-pair experiments. First we consider
perfect polarizers. Stochastic optical predictions are con-
sistent with the general local realist expression (4.1), with
A, (A,) being the polarization parameters ¢, ¥, and X,
(¢,,¥,,X,) of an atomic signal, a (b) the setting of the
left (right) polarizer, and P; (P,) the function given in
(3.8) with 6=a, (6=>b). It remains only to specify a suit-
able value for the density factor p,(A,,A,) appearing in
(4.1). We have not yet attempted to formulate a detailed
model of the emission process in stochastic optics.
Within the theory, as so far developed, there is only one
obvious requirement, namely, that our description of
photon pairs should be consistent with our description of
single photons, that is,

|

T 1/2 .
op/p= 2/ [ lp0)=p0)Fd0 | [ [2/m [T

ﬂ, P
— 1 I\ N2
(. a "\ b

B,

]

FIG. 5. Diagram of a typical atomic-cascade experiment to
test the homogeneous Bell inequalities.
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dA; [ praAy, Ay)d A, =p(A)d A,
=(47%) " 'sin(2¢,)d,dV dx, .
(4.4)

The procedure we have adopted is to put, for the 0-1-0
cascade,

P12l A M) =(21) T 1p(A))8(d, —,)8(W,—W,) , (4.5)

and to use the same expression for the 1-1-0 cascade, ex-
cept that 8(¢; —¢,) is replaced by 8(7/2—¢, —¢,). Tak-
en literally, this implies a perfect correlation between ¢,
(¥,) and ¢, (V¥,), with statistical independence for y, and
X,. However, we stress that we have chosen this particu-
lar joint distribution solely for computational simplicity.
We do not believe that such perfect correlation is a neces-
sary feature either in stochastic optics or in hidden-
variable theories, in general.
In the ideal case Eq. (4.1) becomes

plz(a,b)—':(P(CDH )P((Db)>}‘1}‘2

=(47%)"" [ sin(2¢)d¢ dW dy P(®,)P(D,) ,

(4.6)
where we have removed the lower indices of ¢,, ¥,, and
X1, and we define

cos(2®,)=cos(2¢)cos(2a)+sin(2¢)sin(2a)cos¥ ,  (4.7)

with a similar expression for ®,. The integral (4.6) is
straightforward, but it is illustrative to solve it using the
expansion (3.9), which leads to

Plz(a,b)
=£XB*—y)ai+Lajcos[2(a —b)]
+4a3{1+3cos[4la—b)]}+ -~ ).
(4.8)

A comparison with the quantum optical prediction (4.3),
taking the relation (2.10) between & and % into account,
shows that quantum optics corresponds to approximating
the function P(®) as in (3.10). However, stochastic op-
tics predicts a definite deviation from quantum optics due
to the presence of higher Legendre polynomials in the ex-
pansion of P(®). The size of this deviation depends on
the specific model that we use [Egs. (2.6), (2.7), and
(2.10)], but an order of magnitude estimate can be ob-
tained from (4.8) and (3.12). Putting a —b =0, we get

4.9)

where p, (p,) is the quantum (stochastic) optical predic-
tion. In those experiments, where the coincidence rate
has been measured for many values of 6, the errors are of
the order of (4.9) or greater. It is interesting that the
most accurate measurements have involved the angles
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6=m/8 and 6=3m/8, where the predictions of stochastic
and quantum optics are quite close to each other. A
more detailed comparison follows.

The quantum-optical prediction for the coincidence
rate in an experiment with the arrangement of Fig. 5, us-
ing a 0-1-0 or 1-1-0 cascade or the decay of the metasta-
ble state of atomic hydrogen, is, for real experiments,?

R y(a,b);=1nm.f 1,Ro[€! €} £Fe' € cos2(a —b)]
(4.10)

(plus sign for 0-1-0 and hydrogen decay; minus sign for
1-1-0), where a and b are the two polarizer settings. Here
n; (i=1,2) represents the quantum efficiency of detector i
and
€. =ey+e,, €. =€,—¢€ @.11)

where €, and €/, represent the maximum and minimum
probabilities for a linearly polarized photon to pass
through polarizer i (see Sec. III). f,, is the joint proba-
bility that the two photons of a cascade enter into the ap-
propriate lens collecting systems, while F is a factor,
slightly smaller than unity, which corrects for the depo-
larizing effect of the lens systems. Rj is the rate at which
cascades occur.

The corresponding prediction for the rate with the po-
larizers removed is

R 3(0,0)=nm,f R, -

Most of the experiments designed to test the Bell inequal-
ities using single-channel polarizers have measured the
quantity

(4.12)

R ,(0,0)
r12(6)=m ) (4.13)
for which the quantum-optical prediction is
r12(0);=1[€e} s £Fel € cos(20)] . (4.14)

The Bell inequality tested in these experiments states
that the Freedman parameter

8=|r,(7/8)—r,(3m/8)| (4.15)
satisfies

6=1. (4.16)
The expression (4.14) gives

8,=(2'2/4)Fe' €* , (4.17)

and it follows that, with experimental conditions in
which € and F are reasonably close to 1, quantum optics
predicts a violation of (4.16).

A total of eight optical experiments* 17720 have been
performed to test (4.14) and (4.16) (or similar inequali-
ties). Broadly speaking, seven experiments have
confirmed, within experimental error, the prediction
(4.14) for a range of angles, and in particular they have
demonstrated that a Bell inequality is violated. The
eighth found, within experimental error, that (4.17) was
refuted and (4.16) satisfied. The received wisdom is that

6279

there is a systematic error of some kind in this experi-
ment. One of our main aims in this section is to demon-
strate that this view may well be mistaken; we shall show
that the model of stochastic optics predicts values of 8
which come reasonably close (within two standard devia-
tions) to the experimental values in all the experiments.
Naturally, this means that, for the seven experiments
which confirm quantum optics, stochastic optics gives
values of r,,(0) reasonably close to its quantum value
(4.14). But stochastic optics predicts that there is an im-
portant difference between the calcite polarizers used by
Holt and Pipkin® and those used in the other seven ex-
periments. This implies that (4.14) is approximately valid
for pile-of-plates polarizers but not at all valid for calcite
polarizers. We note that the second experiment of As-
pect, Grangier, and Roger® used polarizing cubes rather
than piles of plates. Nevertheless, we consider it more
appropriate to consider these cubes as a close relative of
the pile-of-plates family, and therefore have used (3.21)
rather than (3.17) to model their action on the incident
signals. The 17 different layers of dielectric coating in the
middle of the cube may plausibly be considered to give a
net effect resembling a pile of plates.
Our expression for R ,(«, ) is then

Ry (0, 0)=§6,8,Ro(B—y)*,

where g, is the joint probability that the two cascade
signals enter their respective lens systems. It will be re-
called that, in stochastic optics, the signals are considered
to be narrow needles of radiation, so this is a valid ex-
pression in the approximation where we neglect the very
small number of needles which hit the edge of the collect-
ing lens. Note that g,, could be the same as f,, in (4.12),
but that since it actually cancels in subsequent calcula-
tions it is not necessary that this be so. The correspond-
ing expression for R |;(a,b) is

Rlz(a,b)=g12R0<P1(®a )Pz(q>b)>)‘l’}"2 s

(4.18)

(4.19)

where P;(®) is given by (2.10), that is, for example,

P1(¢)=§1([11(¢)_Y]+><|>1,<1>2 ’ (4.20)

where the “intensity” I1(®) must be computed using the
expression (3.17) or (3.21) as appropriate, and this is why
our model gives a substantial difference between the two
types of polarizer.

Now the quantity 7,,(0) is given by

ri(@)=&7"'6 (B —y) T HP{(@OP (D)) 4
where, as in (4.7)

&, =D(a,A),

(4.21)

A=($,V,x), a—b=0.

It is now a straightforward matter to compute r;,(8) by
substituting (3.17) or (3.21), as appropriate, together with
(4.6) into (4.21).

The quantum-mechanical prediction (4.17) for the
Freedman parameter contains a factor F, which takes
into account the depolarizing effect on the emitted pho-
tons by the lens systems. This factor would not appear
(i.e., F=1) if the two photons, whose correlations in po-



6280

larization are measured, were emitted in exactly opposite
directions and arrived at the polarizers without any
change in direction. Actually, the atomic cascade being a
“three-body” decay, the two photons can be emitted in
any two arbitrary directions, collected within some solid
angle, and change direction in the lenses before arriving
at the polarizers. All this produces a decrease in the po-
larization correlation whose calculation according to
quantum optics is straightforward, although cumber-
some. The calculation has no specifically quantal feature
and could be incorporated straightforwardly also in sto-
chastic optics, producing a less strong correlation than
(4.21). As the effect is not very large (less than 2% in five

J

_R,i(a,b)+R__(a,b)—R, _(a,b)—R_,(a,b)
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of the experiments), but implies additional assumptions
and a lengthy calculation, we prefer simply to multiply
the stochastic optics prediction for (4.15) by the factor F;
that is, to follow the same procedure as used in the
quantum-optics calculation.

The parameter S measured in the second experiment of
Aspect, Grangier, and Roger5 was

S=E(,7/8)+E(mr/4,7/8)+E (w/4,37/8)

—E(0,37/8), (4.22)

where

E(a,b)

In this experiment two-channel polarizers were used so,
instead of the single quantity R ,, the four quantities
R,,,R,_,R_,,R__ were measured for various po-
larizer orientations. The polarizers used were symmetri-
cal between the two channels, so that, within experimen-
tal error,

R, ,(a,b)=R__(a,b), R, _(a,b)=R_ (a,b).

(4.24)

Although Aspect et al. reported some unexplained lack
of rotational symmetry, the theoretical model they used
(that is, quantum optics) was rotationally symmetric, as is
stochastic optics. In such models, one finds that S
reduces to

R, (7m/8)—R, (37/8)

S=4 , 4.25
R, (7/8)+R, (37/8) @25

so the prediction for this quantity is obtained from the
predicted coincidence rate in a single-channel experiment
using either of the two symmetric channels (+ or —). It

"R, (a,b)+R__(a,b)+R, _(a,b)+R_, (a,b)

(4.23)

is then a straightforward matter to use the computational
procedure outlined above to calculate S. Again we have
taken account of the depolarizing effect by simply multi-
plying the perfect-correlation result by F (in this case
F=0.984).

We should point out that, although Aspect et al.’ con-
sidered ‘‘highly reasonable” their auxiliary hypothesis
that “the ensemble of actually detected pairs is a faithful
sample of all emitted pairs,” such a hypothesis is rather
meaningless in any model, like ours, in which detection
probability is a function of signal intensity. They prove
that local realistic theories satisfying this hypothesis must
give | S| less than 2, but reference to their detailed argu-
ment shows that their hypothesis implies the property

P, (6,A)+P_(6,A)=const . (4.26)

Our model does not have this property and therefore no
contradiction arises from the fact that it gives S greater
than 2.

The parameter tested in the Aspect, Dalibard, and
Roger experiment® was

S'=

In rotationally symmetric models this simplifies to

R ,(0,7/8)+R ,(m/4,7/8)+R ,(m/4,37/8)—R ,(0,37/8)— R ,( 0,37 /8)— R (7 /4, )

RIZ(OO,OO)

(4.27)

3R 12(77/8)_R12(37T/8)_R12( 00,377'/8)"R12(7T/4, w)

s'=
RIZ(OO,OO)

and one can show that local realistic theories satisfying
certain supplementary assumptions must give S’ less than
zero. Again our theory, since it does not satisfy these as-
sumptions, can give S’ greater than zero, and indeed it
agrees very well with the experimental value of
0.101+0.020.

, (4.28)

We have computed the values of the tested parameters
in the eight experiments. The results are given in Table
II. It will be seen that our model explains not only the
violation of a homogeneous Bell inequality in seven ex-
periments, but also the violation of (4.17) in the Holt-
Pipkin experiment? (see Fig. 6). Given the crudity of our
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TABLE II. Predictions for the tested parameters in Bell inequality experiments. Values of the tested parameters, as predicted by
( A) stochastic optics and (B) quantum optics. Experimental values are given in column (C). The Freedman parameter, Eq. (4.15),
was tested in the first six experiments quoted; the parameter S, given by Eq. (4.22) in Aspect et al. II; and the parameter S’, given by
Eq. (4.27), in Aspect et al. III. In the Clauser experiment no information was given enabling an estimate of the errors in columns

(A) and (B) to be made.

(4) (B) (C)
Stochastic Optics Quantum Optics Experiment (A)—(C)
Freedman-Clauser? 0.309 +0.007 0.301+0.007 0.300+0.008 0.009+0.010
Holt-Pipkin® 0.242 +0.001 0.266+0.001 0.216+0.013 0.026+0.013
Clauser® 0.280 0.284 0.288+0.009 —0.008+0.009
Fry-Thompson* 0.296 +0.007 0.294+0.007 0.296+0.014 0.000+0.016
Aspect et al. I¢ 0.313 +0.004 0.308+0.002 0.307+0.004 0.006+0.006
Perrie et al.f 0.260 £0.008 0.272£0.008 0.268+0.010 —0.008+0.013
Aspect et al. 1I® 2.715+0.040 2.70 +0.05 2.694+0.015 0.018+0.043
Aspect et al. III" 0.101 +0.010 0.112+0.010 0.101+0.020 0.000+0.022

2Reference 17.
"Reference 20.
‘Reference 18.
dReference 19.

model, we think that the agreement between its predic-
tions and the results of all eight experiments is satisfacto-
ry. At the very least, we would hope that statements in
the literature that “local realism” has been experimental-
ly refuted will now cease.

V. EXPERIMENTS WITH ADDITIONAL POLARIZERS

The basic cascade experiments of Fig. 5 have been em-
bellished by adding various extra polarizing devices: (i)

(§ 45° 9 90°

FIG. 6. The predicted coincidence curve r,(8) for calcite
polarizers according to a quantum optics, and b stochastic op-
tics. The values taken for the efficiencies are those measured by
Holt and Pipkin in their experiment with calcite polarizers.
The two experimental points obtained by Holt and Pipkin are
also displayed.

‘Reference 4.
fReference 8.
eReference 5.
"Reference 6.

Clauser?! and the Duncan and et al.?? placed A/4 wave
plates between the source and both of the polarizers; (ii)
Duncan et al.?? placed a A/2 wave plate between one of
the polarizers and its detector; and (iii) Duncan et al.?
placed an additional polarizer between one of the polariz-
ers and its detector.

The statistical error bars in all of these experiments are
much higher than in the ones discussed in Sec. IV. We
have therefore considered it appropriate to simplify our
analysis of them by considering all the polarizing devices,
that is, linear polarizers and A /n wave plates, to be ideal.
We shall find that the discrepancies between stochastic
and quantum optics, for all these new types of experi-
ment, in the ideal case, are less than the experimental er-
rors. Although further analysis, along the lines of Sec.
IV, with account taken of the actual efficiencies, is desir-
able, we think this evidence already strengthens our
claim that the explanatory power of stochastic optics is
greater than that of quantum optics for the whole family
of experiments, in this section and Sec. IV.

We consider first the quantum analysis. It is con-
venient to reverse the historical order, so we take experi-
ment (iii) first. Let the state of the emitted photon pair be
denoted

(WY=2"V2|H),|H),+|V)IV),), (5.1)

where H and ¥V denote horizontal and vertical polariza-
tions. Let the setting of the first polarizer on the right-
hand side be taken as H, with the other two polarizers set
at angles 0,, and 6, to it. Then the passage of the pair of
photons through the polarizers is represented by the se-
quence of collapses
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|\I,>—>271/2|H)||H)2*?271/2C0S01'01 >1|H2 )‘—‘)2‘1/200561(30592'91)1|62)2 .
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(5.2)

Of course, the order in which the first two collapses occur makes no difference to the end result. Then, from the norm
of the last state vector, we obtain the prediction for the coincidence rate

R ,,(H,0,,6,)

= lcos?6,cos’0, .
R,;(0,00,00)

(5.3)

Now we consider experiment (ii) in which the third polarizer is replaced by a A/2 wave plate with retardation &,
(£,~180°), whose fast axis is set at 8,. The sequence of collapses in this case is

‘\P)‘Pzil/le)"H)2—)2‘1/200391|01)1|H )2-—)2_1/2C0591(C0592|9])1|F)2+ei§25in92,q)1>]|S>2) ,

where F and S denote polarizations along the fast and
slow axes. In this case, the predicted coincidence rate is

Rl2(H’61?92)§2)

) =1cos’0, . (5.5)

R ;(00,00, 00

In experiment (i) we suppose that the A/4 wave plates

have their fast axes in the H direction, and that the two

polarizers make angles 8, and 6, with these axes. We fur-

ther suppose the retardations in the two A/4 wave plates

to be &, and &, (both ~90°). The action on |¥) of these
two wave plates is

WY 2 V2 H ) H Y, +e S T2 ) ), 1=y,

(5.6)
and the action of the two polarizers is
W) —271"%(cosh,cosb,
+e'*1%in0 5ind,)(6,),16,), . (5.7)

Then the quantum prediction for the coincidence rate is

R 12(61’92’§l’§2)

R ;(00,00,00,00)

[1+cos(26,)cos(26,)

1
3

+sin(26,)sin(26,)cos(&,—&,)] . (5.8

We note that this differs from the expression given by
Clauser, agreeing only if §,=§,.

The stochastic optical analysis of these experiments
now follows. When a A/n plate is inserted between a po-
larizer and the detector, as in (ii), the counting rate does
not change at all. This is because the plate is a type-I de-
vice (see Sec. I) which, therefore, does not modify the in-
tensity of any signal if the plate behaves ideally. In
consequence, stochastic optics, as well as quantum optics,
predicts no change in the correlation. So, the results of
the experiment (ii) are easily explained.

The predictions for the other two types of experiment
need some calculation. As the statistical errors (of the or-
der of 5-10 %) are higher than in the experiments dis-
cussed in Sec. IV, we shall substantially simplify the cal-
culation by making an approximation that also helps in
the understanding of the underlying physics. We approx-
imate the detection probability (3.8), for a signal with po-

(5.4)

larization parameters (¢,V) crossing a polarizer at angle
0, by a first-degree polynomial, that is, we use (3.10)

P(x)=([1B*(1+x)+sin*®y—y]; do,

~(B—=y)L+V3/2%), (5.9)

where x is given by (3.7), that is,
x =cos(2®P)=cos(2¢)cos(28)+sin(2¢)sin(26)cosV¥ .

At first sight it may seem that this approximation of (3.8)
is too drastic, but as explained in Sec. IV it introduces er-
rors of only about 6% in the coincidence rate with two
polarizers.

Now, it is easy to calculate the effect of two plates in-
serted between the source and the two polarizers. A sig-
nal emitted by the source with parameters (¢, ¥) has elec-
tric field components given by (2.1). When it crosses a
A /n plate these change according to

i(W+E)

(cos¢,singe’V)— (cosg,singe ), (5.10)

where &, ~27/n, and we have chosen the axes x and y as
the fast and slow axes of the A/n plate. A similar expres-
sion is obtained for the A /n plate on the other side. (We
assume that both plates are inserted with their axes paral-
lel to each other). Therefore, the coincidence rate [see
(4.6) and (4.21)] will now be

1 2 m/2 . 1 \/3
r12—217 . d‘l’fo sin(2¢)d ¢ 2+ 2 X
1, V3
X 2+ 5 X2 | (5.11)
with
x; =cos(2¢)cos(20;) +sin(2¢)sin(26; )cos(V +&;)
(i=1,2). (5.12)

The integrals are straightforward and give the quantum
optical expression (5.8).

The analysis of the three polarizer experiment is a little
more involved. We choose the parameters ¢ and V¥ of the
source signals, so that the changes with the first and
second polarizer are
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(B cosd,Bsinge’Y)
—(B cos¢,sin¢1ew‘)

—(Bcos¢ cos62+sin¢lsin92eiw',sinq&zewz) ,  (5.13)

where (¢,¥,) and (¢,,¥,) correspond to the two noise
interventions. The normalized detection probability of
this signal will be, therefore,

Q(x,)=(B*—v) Y [|Bcos¢ cosh,+sing sinh,e ¥ |?

+sin2¢2—'y]+)¢l,¢2ywl . (5.14)
The approximation (5.9) is still valid, provided that we
now define

iV '2__ 1.

x,=2|cos¢ cosf,+sind;sinb,e’ (5.15)

6283

Then, Eq. (5.11) applies and we obtain, after averaging
over ¢, and ¥,

7(6,,0,)=(L)cos?0,cos’0,+ L[1—V3(1—B?)]sin6,
~(1)cos?6,cos?6,+0.013 sin%6, ,

2

(5.16)

which agrees with the quantum-optical prediction (5.3),
except for a small term. This expression also agrees with
the result of the Stirling experiment by Duncan et al.??
within errors.
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