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Quantum simulations of nonlinear optical damping: An exact solution
for the stochastic differential equations and an interpretation of "spiking"
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This paper considers the "positive-P" description of nonlinear optical damping where one-photon
and two-photon loss mechanisms are allowed. An exact solution of the corresponding stochastic
differential equations is presented that graphically shows the breakdown of the positive-P represen-
tation found in earlier numerical-simulation work. The problem of "spiking" in simulations of non-
linear optical processes is then addressed, using the nonlinear damping process as an example. It is
pointed out that although "spiking" can be exascerbated at high levels of quantum noise by numeri-
cal inaccuracy, the tendency to spike is in fact an analytic property of the stochastic variables.

I. INTRODUCTION

The success of the generalized P representation of
Drummond and Gardiner' in describing the steady-state
phase-space behavior of a number of nonlinear-optical
systems has led to its application in the study of the
dynamical behavior of such systems. This growing
body of work suggests that numerical simulations of
phase-space behavior must be interpreted rather careful-
ly, and that in some cases, the Fokker-Planck equation
for the positive-P representation itself may even be physi-
cally suspect.

In this paper we use the positive-P representation to
study the phase-space behavior of nonlinear optical
damping. Recent numerical simulation work on this pro-
cess has yielded physically implausible results which,
nonetheless, were backed up by exploratory analytic
work in the same study. In Secs. II and III we present
the positive-P Fokker-Planck equation (PPFP) for the
nonlinear damping problem and derive an exact analytic
solution for the equivalent system of stochastic
diFerential equations (SDE). This solution makes explicit
the conditions under which the PPFP may lead to a plau-
sible physical description of the optical-damping prob-
lem. In addition, it allows a check on the accuracy of the
Euler simulation of the SDE for this system.

Previous workers have also noted the presence of spik-
ing behavior in the numerical simulation of the nonlinear
damping process. This behavior, which is exascerbated
when the numerical time step is large, appears to be a
general feature of simulations which possess high
"quantum-noise" levels. In Sec. IV we use the explicit
analytic solution to show that spiking is governed analyti-
cally by stochastic phase factors that link the dependent
variables of the system.

II. NONLINEAR OPTICAL DAMPING

Nonlinear optical damping is a problem that has at-
tracted recurrent interest over the last two decades.
Here we shall consider damping of a single mode of the
light field through a two-photon loss mechanism, allow-

ing also the standard one-photon loss path. The effective
Hamiltonian for this process is

H =I 2a +I &a+H. c. , (2.1)

where a is the boson-annihilation operator for the light
field, and I, and I 2 are collective boson-annihilation
operators for thermal reservoirs representing one-photon
and two-photon losses, respectively.

To obtain a phase-space description of the dynamics of
this system we introduce the positive-P representation of
Drummond and Gardiner for the density operator p,

p= f fd'ad'p '„ la) &p*l .
(alp*)

(2.2)

Here the ~a) and ~p) are coherent states, with a and p
independent complex variables, and we use the notation
that d z:—d Re(z)d Im(z).

We proceed by substituting Eq. (2.2) into the Liouville
equation of motion for the density operator and then use
standard techniques to eliminate the thermal reservoir
variables. ' This gives the following Fokker-Planck equa-
tion governing the evolution of the generalized P function
P(a,P):

(
—

—,'r p —
—,'r2p'a)

1 0'
r~a —— r2P P(a,P),2Ba 2BP (2.3)

where y& and y2 are the one-photon and two-photon
damping rates, respectively. We have assumed here that
the thermal reservoirs are at zero temperature, and thus
contribute no noise to the system.

The Ito stochastic equations corresponding to this
Fokker-Planck equation when interpreted in its PPFP
sense are
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ha= —(ya+a p)At+iabw, ,

hp= —(yp+ p a )b t i p—bw, ,

(2.4)

where time has been scaled by —,'y2 and y=y, /y2. Each
bw;(t) is a Weiner process of mean zero and variance 1

that is scaled as ht '

III. SOLUTION OF THK STOCHASTIC EQUATIONS

Equations (2.4) possess the following exact solution:
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(3.1)

ha= —(y ,'q)a—b—t apb, t+iqahw- , ,

bp= —(y —,'q)pbt p—an't i—qpbw2 . — (3.2)

Noting that the linear terms in a and f3 admit exponential
time dependencies we assume trial solutions of the form

where w; = jodw; and the index q allows recovery of the
classical solution (q =0) from the full quantum solution
(q =1).

This solution is most conveniently derived by recasting
the Ito equations into Stratonovich form,

may be anticipated by the scaling argument given in Sec.
IV.

This unphysical quantum behavior can also be antici-
pated by examining the stability of the deterministic part
of the Stratonovich equations (3.2). The eigenvalues of
the linearized system are

k, = —() —,'q) —ap—, k2= —(y —,'q) ——a*p*,
(3.4)

A3= —(y —
—,'q) —3aP, A4= —(y —

—,'q) —3a*P* .

This immediately shows that in the quantum case (q =1)
the phase-space point a=p=0 corresponds to an unsta-
ble equilibrium for y & —,'. In the case y =

—,
' this point is

marginally stable but any approach towards the equilibri-
um which does not maintain the phase relationship
a=P* is unstable, with the most unstable trajectory be-
ing the "out of phase" trajectory a= —p*. Quantum
noise thus effectively prevents the equilibrium being at-
tained.

We note that in Ref. 6 it is argued, on the basis of nu-
merical simulations and a partial analytic treatment, that
the steady-state solution is not attainable for y ~

—,'. Our
complete analytic solution demonstrates this fact explicit-
ly. The essential conclusion emerging from both studies
is that the PPFP for the present system is fatally flawed,
at least in the regime y —,'. For y) —,', the present solu-
tion does indeed give the correct steady state, but the
question of whether or not it gives the correct time evolu-
tion remains for future work.

IV. NUMERICAL SIMULATIONS —SPIKING
BEHAVIOR

Substituting these expressions into (3.2) implies
A (t)=constB(t), where the constant of proportionality
is A (0)/B(0). The equations for 3 (t) and B(t) thus
decouple, and therefore can be integrated separately to
yield solution (3.1). The solution is thus reduced to (sto-
chastic) quadratures, and by construction must be the
unique solution to the initial value problem.

" All statist-
ical properties of solutions of the Fokker-Planck equation
(2.3) may then be obtained from Eq. (3.1) by performing
an ensemble average and averaging over the initial distri-
bution of ao and po.

We observe immediately that there is no time-
independent solution for y ~

—,'. For these values the os-
cillatory factors in the numerators of Eq. (3.1) remain un-

damped, effectively preventing the solution from ap-
proaching the equilibrium a=p=0 attained for y) —,'.
This behavior contrasts with that of the purely classical
calculation (q =0) which converges to this solution for
all positive semidefinite y. More critically, the solution
for y & —,

' appears to disagree with the vacuum steady
state predicted —without ambiguity —by the Fock repre-
sentation (see Ref. 6 for example). There are, however,
acceptable positive P representations for the vacuum
state which demand only that the ensemble averages of
all normally ordered physical quantities are zero, as op-
posed to the stochastic variables themselves. In fact solu-
tion (3.1) is not consistent with zero ensemble averages.
This can be checked by direct numerical averaging but

Previous investigators have observed that spiking in
the phase-space variables can occur during numerical
simulation of the positive-P stochastic equations. It is
generally assumed —not unreasonably —that such behav-
ior is of numerical origin rather than an inherent proper-
ty of the stochastic equations. Our purpose here is to in-
vestigate this matter in the light of the analysis presented
in Sec. III.

We first observe that solution (3.1) is generally well
behaved. The only exception arises in the pathological
case in which the denominator

—2( —— ) +
0 (4. 1)

vanishes. An upper bound for D can be derived by
neglecting the stochastic phase factors

(4.2)

For the recalcitrant systems of interest () ~
—,
'

) the ex-
ponential factor is dominant for all t sufficiently large;
moreover, this factor exactly cancels the modulus of the
numerator in the expression for the stochastic variables
(3.1). This suggests that a and P should scale as
( —,

' —y)' for large t Thus, when st.ochastic phase fac-
tors are neglected, there appears no grounds for expect-
ing rapid spiking behavior in the moduli of the stochastic
variables.
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Against this argument is the numerical evidence for
spiking in a and P. Analytically, spiking can only be as-
sociated with rapid growth away from the unstable point
a=P=O (y ~

—,
' ). Fast growth clearly requires that a and

P are both large and sufficiently out of phase (3.4). How-
ever, since the phase relationships determining the solu-
tion are entirely stochastic in nature, local growth in the
stochastic variables is invariably followed by decay. In
this way excursions from the mean asymptotic trajectory
are modulated nonlinearly by phase factors that depend
on the details of the simulation. Thus, although each
noise process possesses an "envelope" to ~ (nb, t)'~z=t '~2

after n iterations, we must evaluate the quadratures in
(3.1) directly to realize a particular stochastic trajectory.
The key question is whether these "excursions" about the

equilibrium can explain the phenomena of spiking.
To investigate further we evaluate solution (3.1) by em-

ploying a simple quadrature formula to compute the in-
tegrals. Figure 1(a) shows the time development of ~a~

and Re(a ) for a typical stochastic trajectory in the
"stable" regime y) —,'. In this figure @=0.6 and the in-
tegrals were evaluated assuming the quadrature interval
0.003 (any value which ensures ~A, bt~ ((I locally will
provide adequate resolution). Despite the stochastically
changing phase of a and P the equilibrium point a=P=O
is eventually attained. Figure 1(b) shows a time plot of
the real part of the dominant eigenvalues (A,3, A,4) along
with

~
a

~
for the same parameters as Fig. 1(a). As predict-

ed by Eq. (3.4) the eigenvalue attains the stable limit
value —,

' —y = —0. 1. Although temporary excursions into
the deterministically unstable (spiking) regime A, )0 are
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FICx. l. (a) Time evolution of ~a~ and Re(a) for y =0.6. The
initial conditions are ao=go= 1 and the quadrature interval is
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FIG. 2. (a) Time evolution of ~a~ and Re(a) for ) =0. 1. The
initial conditions are ao=go= 1 and the quadrature interval is
0.003. (b) Time evolution of ~a~ and Re(A, 3) for the parameters
of (a).



6270 I. J. D. CRAIG AND K. J. McNEIL 39

clearly apparent, this tendency clearly diminishes as
t~ oo.

In contrast Figs. 2(a) and 2(b) display the same vari-
ables for an "unstable" case @=0.1. Although ~a~ gen-
erally sits close to the "baseline" estimate ( —,

' —y)', it is

clear that phase Auctuations induced by quantum noise
can drive large excursions away from this value. These
excursions manifest themselves as spiking phenomena
similar to those encountered in the numerical simulation
experiments reported in the literature. The essential con-
clusion is that while poor time resolution and lack of sto-
chastic accuracy can magnify the tendency to spike, the
spiking itself is real and arises (analytically) via the non-
linear coupling of unstable deterministic behavior with
the quantum-noise process. In the present problem the
tendency to spike is present for all y, but for y & —,

' it is
efFectively suppressed by the exponential decay factors.

It appears that the same broad conclusion will hold for
any nonlinear quantum system since the phase indepen-
dence of ct and p generally admits the existence of locally,
deterministically unstable trajectories (especially in the
region a= —p*). The exact nature of the instability de-
pends on the eigenstructure of the particular problem and
in some cases can lead to the severe problem of dynami-
cal "stiffness. " In other special cases there are analyti-
cally forbidden regions of phase space which should nev-
er be accessed numerically. ' These considerations do
not, however, play an important role in the present prob-
lem.

Finally we mention that the Euler integration of the
Ito SDE system gives results which are entirely consistent
with our analytic solution provided the Euler time step is
sufficiently small (typically the time step has to be of the
order 10 or smaller).

V. CONCLUSIONS

We have constructed an analytic solution for the sto-
chastic system which represents the positive-P Fokker-
Planck (PPFP) equation for the problem of nonlinear op-

tical damping with one- and two-photon losses. Al-
though the overcompleteness of the coherent states
means that any solution of the Fokker-Planck equation is
not necessarily unique, the solution to the SDE system
presented here is unique, and contains the totality of the
statistical properties of the process described by the
Fokker-Planck equation. This solution ig expressed in
the form of a stochastic quadrature and immediately
makes explicit the fact that in the range 0&y ( —,

' the
steady-state solution a=0, p=0 [corresponding to the
positive-P solution 5(a)5(p)] cannot be attained except in
the trivial case of zero initial conditions. This solution is
also inconsistent with the more general requirements of
zero near ensemble averages for all normally ordered
physical quantities. We conclude therefore, in agreement
with Ref. 6, that the PPFP description cannot be valid in
the range 0 y —,'. The PPFP description may or may
not be valid outside this range but at least it appears to
give the correct steady-state behavior.

In Sec. IV we considered the problem of spiking in
quantum-optics simulations. It was pointed out that the
nonlinear interplay between the deterministically unsta-
ble (y ( —,

'
) and stochastic aspects invariably leads to spik-

ing behavior in the dependent variables. In other words
spiking is a natural aspect of PPFP simulations.
Specifically, quantum noise, in modulating the phase rela-
tionships of the dependent variables, allows access into
classically forbidden, potentially unstable regions of
phase space [e.g. , trajectories a= —P* in Eq. (3.4)]. Al-
though this property can lead to severe numerical
difficulties in certain quantum-optical systems, the form
of the eigenspectrum (3.4) implies that the symptoms are
relatively mild in the present application.
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