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Nonclassical fields with coherent components generated in a large number of optical processes in-
cluding losses can be characterized by a Gaussian Wigner function centered around the mean value
of the field. The photon-number distributions for such fields are calculated and the numerical re-
sults are presented for a range of parameters. As a special case we give the number distributions for
photons produced in down-conversion problems. We also give the analytical expression for the

photoelectron distributions.

I. INTRODUCTION

In a recent paper! we have shown that the quantum
fluctuations of the radiation field produced by a very
large class of systems in nonlinear optics can be described
in terms of a density matrix that possesses a Gaussian-
Wigner function.? This is true even if losses and the
coherent pumping effects are included. Even the fluctua-

1 wlz =z +u*(z*—z3 P +7lz —z0|?

tions in a bistable system and in the context of more com-
plex cavity problems can be described in a similar
fashion. The parameters in the Gaussian Wigner func-
tion depend on the detailed microscopic properties of the
quantum-mechanical system at hand. We thus consider a
single-mode radiation field characterized by a Gaussian
Wigner function

(1.1

D(z,z*) exp | —

(P —4ul)!”

The parameters z, u, and 7 are related to the lower-order
moments of the annihilation and creation operators a and
a

<a>=zo, <02)=—2,u*+z(2) ,

((@"?)y=—2u+(z4), (a'a)=r—1L+]z]2.

(1.2)

Note that the coherent part z, of the field is essentially
determined from the semiclassical analysis of the non-
linear problem. The parameters pu and 7 satisfy a number
of conditions that follow from the positive definiteness of
p. We write

p=[%(e2“’-—l)]_l/2 exp{ —2e ~¥cosh™!(cothg)[ula —z, )2+,u*(a*—z(')‘ )2+7'(a*—z(’;‘ Na —z5)+7/21} ,

where

e2=4(r*—4|ul?) . (1.6)

The density matrix (1.5) in general represents a mixed
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(T2—4|ul?)

. —i i@
sinhxe "% r=%coshx, Q>1, zo=rge °.

_9Q o
K= 2

(1.3)

The distribution function (1.1) leads to the squeezing in
the component (e ~Pa +a'eP) of the field if

Q[coshx — sinhx cos(6—2B)]< 1 . (1.4)
We remind the reader that the usual two-photon
coherent state® is a special case of (1.1), i.e., (1.1)
represents the field in the two-photon coherent state if
Q =1. An operator representation of the density matrix
can be constructed from (1.1). It can be shown* that the
explicit form of the density matrix corresponding to (1.1)
is

(1.5)

[

state for Q1. This is expected since our quantum sys-
tem possesses losses, and a system with losses in general
cannot be characterized by a pure state. Depending on
the parameters Q, x, 6, and @, the field in the state (1.1)
or (1.5) may possess sub-Poissonian statistics. Using the
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Gaussian nature of the Wigner function the condition for
the existence of sub-Poissonian statistics is found to be?

((an?*))—(n)<o0,
ie.,
(n?)—=(n)?—(n)<o0
=7 4+2|zo[Pr— L —2(z8 Yur —2z3u+4[ul?

—lzol*—7+1<0. (1.7)

The distribution function (1.1) carries information both
on the amplitude and phase of the field. In this paper we
examine the photon-number distributions associated with
(1.1). In Sec. II we present the analytical formula for the
number distribution for the field characterized by (1.1).
In Sec. III we discuss several limiting cases of our general
formula, and show how the known results are recovered
as special cases. We also present the numerical results
for the number distributions for a range of parameter
values Q, x, and z,. In Sec. IV we discuss the number
distributions for the nonclassical fields produced in the
down conversion process in a cavity. Finally, in Sec. V
we show how the photoelectron counting distributions
can be obtained from the number distributions (calculat-
ed in Sec. II) by changing the parameters Q, x, and z,.

II. PHOTON-NUMBER DISTRIBUTION
FOR THE FIELD CHARACTERIZED BY (1.1)

The number distribution can be obtained as a phase-
space integral involving the Wigner function (1.1) and
Laguerre polynomials. It is known that p (n) is related to
the Wigner function via

p(m= [d% ®(z)2(—1VL, 4|z exp(—2[z|*),  @.1)

which can be formally written as
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Here I, is an integral over the quadratic forms

1A= [ d% ®(2) exp(—47,|z]?) . (2.3)

In a previous work! we calculated the number distribu-
tions>~® for the special case when the coherent part z, of
the field was zero. We now generalize this to the case
when z,70. This generalization is especially important if
the field contains a small number of coherent photons. It
is, for example, now known® that the interaction of atoms
with coherent fields with a small number of photons re-
sults in important quantum-mechanical features. It may
be noted that the field characterized by (1.1) includes as
special cases most of the previously studied fields, except
those for which the fluctuation behavior is dominated by
nonlinear Langevin equations. It may be added that the
field generally acquires a nonzero coherent part if the
nonlinear optical processes above threshold are con-
sidered.

To evaluate p(n), we first calculate the integral I,
which can be evaluated by using

Jdx;)exp [—zx,-A,-jxj-i— Shx, }
ij i

_ (,",)m/2

=—=—ex
Vdetd P

, 24

1 —

where m is the total number of variables x;. The integral
I, can be reduced to the form in (2.4) by writing
z =x,+ix,. The calculations show that

IA)=—1, (A,

20
1 4rl
I (A))=————exp |— — s
SRARYZvory v Il PV W
(2.5)
. eix
ry=rgcosa, r_=rysina, "J_r=}“1+§ )

1,20

= +2L g=g, -2
+ }\‘1 e;tx Po 2

p(n)=2(—1)"L, |— 587; I(A)) 1 (2.2) On using (2.2) and (2.5) and elementary algebra, we get
=
1 (= a |”
pln)=(—1)" > [ ’ { — | (I 1) , (2.6)
Q2 m] m! oA r=172
3 m m m 9 ! P m—1
-2 = -2 01 e Y A 2.7
{ n, Td- Eo ! [ ! oA |t l A, |
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The derivatives in (2.7) have been calculated and we
quote the result
i

d
- |I
a, | * A,=1/2
4"1 Cy4
=———>exp |—— |IL/V?|——=|, (.8)
A p ! vy
where L} is the associated Laguerre polynomial and
2
ej:xri
cy= 0 (2.9)

The relation (2.8) can be proved by (i) using the generat-
ing function for the associated Laguerre polynomials,'?
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(ii) writing A;=A+1, and (iii) by expanding in powers of
A:

1 —4ri(A+L)e**/20)

ex
Aitersag]” Pl a0
=s_L1 ;-1n ke I )
" VB 407, B
4riet>  4rle** eT*
X ex — — , Bi=1+ .
p 4Q23i 2Q + 2 2Q
(2.10)

The coefficient of A will give the /th derivative. On using
(2.6)—(2.8), our final result for p(n) is

1 m—1
nom n 1 1 _ C+ - c— 1, e**

—(_—1)\n —_1\ym e . | V2 ) - , =—4 , 2.11
P(n) ( 1) q)o(zo)mzzo Igo( 1) lm vy v_ L[ vy Lm 4 v_ * 2 2Q ( )
where @ is the distribution

B 1 pzd+p*(zd P+ (r+ 1)z,

Dy(zg)= T 3712 €XP | — T 5 (2.12)

ml(r+ 1) —4|u|?] (r+1)2—4u|

The result (2.11) is our key result. It gives the number
distribution for fields produced in a nonlinear optical pro-
cess when (a) the phase correlations can be nonzero
(x#0), (b) the coherent component of the field can be
finite (z,70), and (c) the losses could be important Q#1.
Note that in most cases the losses would consist of cavity
losses and spontaneous-emission losses, and thus could

A. Field without phase correlations: x =0

Consider first the case x =0, i.e., u=0. Such a field
consists of a mixture of a coherent and an incoherent
field. In this case various parameters simplify to

vi=—————Q+1=v, 0=2r, 0.=2(Q+1)=0w,

not be ignored. 20
III. LIMITING CASES AND NUMERICAL RESULTS PP BBt 3.1)
0_ 70 = |0 =
Before we discuss the consequences of our basic formu- o 1l S+Te- 19) ’ ¢
la (2.11), we demonstrate how the result (2.11) leads to 2
the known results in special cases. and p (n) reduces to
J
)_(_1)” 'ZOIZ n n ( l)m 1 m L_1/2 C L_l/z Cc— (32)
p(m= +1 XP T+1 ,,,2:0 m v ,§0 ! v m =1 v | )
On using the identities'! Eq. (3.2) simplifies to
n
a B — 7 at+p+1
mz=OLm(x)L —m)=L] (x +y), (3.3) _ (r—1)n | FAE L FAE )
pn (T+%)n+1 p T+% n 1’2—% . .
n |n
3 | (U™ L, (—x)=(1=p)L, —}—’%’—l ,
m=0 This is the standard result for a field which is a superposi-
(3.4)  tion of coherent and incoherent fields. It reduces, respec-
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tively, to Poisson and Bose-Einstein distributions in the
limiting cases of a pure coherent field (7=1) and in-
coherent field (|z,|=0).

B. Field without coherent component: z, =0

The result of our previous publication can be obtained
by letting z,—0, whence

—1) noom n
(3)(3) =y 1
INm =Dl Wl ym =17
(3.6)
where
(a);=ala+1) - (a+l—1). (3.7)

On using the definitions of the hypergeometric function
F(a,B,B',7,x,y) of two variables!?

a)m +n(B)m(Bl)n
(Y)m +nm!n!

) o0 (
F,(a,B,B’,y,x,y): 2 2

m=0n=0

and the relation'3

Fl(a,B,BI7B+BI)x’y)=( 1 -y )_aF

’

a,B,B+8, ’;:yy

(3.9

the result (3.6) can be expressed in two different forms:

n

1 1 1 Vo —Vy
(n)Y=————|———1| F|—n,—,1,
P OViviv_ | V- 27 Twvi(v_—1)
(3.10)
PNV RIS S U P U
oViviv_ 2°2 Ve Vo
n
2 *—1
o2 172 Qe G.1D)
(Q°+2Q coshx +1) Qe*+1
—1 m
n 7 n i
xS [ " . 4Qs1T1hx
mao LT n—mj 1 Q*+2Q sinhx —1
(3.12)
For a squeezed vacuum Q =1, (3.12) reduces to
— 1
(n)=—'—tanh" X 3 : 2m 3.13
p(n . an ) 21 m m . (3.13)
cosh; m =0

Algebraic manipulations enable one to reduce (3.13) to
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the known result!*

— 1
— 1\ 2
p(2n)—( L) " tanhz"%,
cosh>
2
(3.14)
p(2n+1)=0.

We next examine the photon-number distribution for
the general radiation field, i.e., when the phase correla-
tions (x70), losses (Q+1), and coherent component
(zy70) are important. We have carried out numerical
calculations for a range of the parameter values
0,x,a,|z,], and some representative results are shown in
Figs. 1-5. In Fig. 1 we reproduce the known result®%*
for the two-photon coherent state Q =1. With an in-
crease in x, the field first acquires increasingly sub-
Poissonian character, and then the sub-Poissonian char-
acter decreases and the field distribution becomes re-
markably oscillatory. This oscillatory character has been
associated>® with the nonclassical nature of the light. In
fact, when the field distribution becomes oscillatory, then
the first two moments of the distribution are not enough
to characterize the nature of the distribution. Figures 2
and 3 give the effects of losses in the nonlinear medium
on the photon-number distribution. The distributions
broaden with an increase in Q. The distribution becomes
oscillatory for larger values of x. Note that the condition
(1.4) for 6=B=0 shows that larger value of Q require
larger values of x for squeezing to exist. Thus in the pres-

8
Sff
£

8
o_DE

/\:\
|8}
T T T T
10.0 20.0 30.0 40.0
n

FIG. 1. Photon-number distribution p(n) [=P —(dis-
placement)] as a function of n for a radiation field with a
coherent component z,=4 (average number of coherent pho-
tons 16). The field is characterized by a Gaussian Wigner func-
tion centered around z,=4. The phase factor
A =(1/7)(@y—6/2) is chosen as zero and Q is set as 1. The
curves A, B, C, D, E, and F are for the squeezing parameter
x =0, 1, 2, 3, 4, and 5, respectively. For clarity, different curves
are displaced, i.e., P =p(n)+0.06x.
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FIG. 2. Same as in Fig. 1 with Q =2.

ence of losses one needs a larger value of x to see the os-
cillatory character of p(n). We next explore the changes
in the nature of the distributions as the relative phase be-
tween z, and p is changed. Figure 4 is to be compared
with Fig. 2. Notice the considerable change in the nature
of the distribution. Note also considerable broadening of
the distribution when x is increased from zero to values
of the order of 1. The peak of the distribution shifts pro-
gressively to lower photon number with the increase in x,
though the average number of photons in the field in-

creases with the increase in x as
(a+a>=120|2+%(Qcoshx—l) . (3.15)

This is demonstrated more clearly in Fig. 5, where p (n) is
plotted for a number of different phase settings. Thus the

0.40

L e
f'g/\/\ﬁm&

p
01' 20

0.10

o
o
o T T T T

0.00 10.0 20.0 30.0 40.0 50.0
n

FIG. 3. Same as in Fig. 1 with Q =5.
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FIG. 4. Same as in Fig. 2, but with a different phase 4 =0.5.

number distribution is quite sensitive to the phase of z,.
This is also evident from the condition (1.7) for sub-
Poissonian statistics, which depends on the phase factor
(2¢y—0), i.e,, on A. This is in contrast to the condition
for squeezing (1.4) which is independent of the phase of
zy.

IV. PHOTON-NUMBER DISTRIBUTIONS FOR

FIELDS PRODUCED IN DOWN CONVERSION

The generation of nonclassical fields in down conver-
sion has been studied by several authors'>!'® using
master-equation techniques. While the previous work
concerns the squeezing properties of the generated fields,
the present work deals with the photon-number distribu-

=
™

o

0.20

O/\/\/\/\/\,\/\ﬁwvw___
S)
o

0.00 10.0 20.0 30.0 40.0 50.0
n

FIG. 5. Number distributions for different phase settings
A =0, 0.125, 0.25, 0.375, and 0.5 and for Q =5, x =5, and
zp=2. Curves are displaced so that the quantity plotted is
P=p(n)+0.44.
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tions for the generated fields. We recall the basic results
on the generation of the nonclassical fields in the down-
conversion process.

Let c and ¢ (a and a) be the annihilation and creation
operators associated with the pump mode of frequency
2w, (generated mode of frequency w,). The Hamiltonian
describing the down conversion is

H=%w,a'a +2ﬁwacTc+%[G(aT)2c —H.c.]

—2iw,t

+ifi(e,cle —H.c.). 4.1

On including the losses Y, and y, associated with two
modes, the density matrix for the system can be written
as

9

=5 Hpl=v,a'ap—2apa’+pa'a)

—y.(cfep—2cpcT+pcte) . 4.2)
On assuming ¥, >>¥,, the pump mode can be adiabati-
cally eliminated. We moreover linearize the fluctuations
around steady state, i.e., we set a =(a ) + 4 and assume
that the fluctuations in 4 are much smaller. Then the
calculations show that the reduced density matrix for the
mode A satisfies

)
g;‘ =—w(A'4p,—24p,aT+p,AT4)
i lﬁ~ 12
% 76<c>(A ¥+H.c. [,p |, 4.3)
where
Y %
yc(c'):ec——gz—(a)z, yola)=G(a)*(c) ,
(4.4)

712 2
ey, 1OPI
Ye
It can be shown that the steady-state solution of (4.3) is

characterized by a Gaussian Wigner function. It can be
further shown that

~ 27-1
(aTa)+i=(a'a)—[(a)P+i=1]1- M} ’
2 p
4.5)
_ L
(4?)=(a?)—(a)1=0L) 1_‘0(0‘ J
2k K
(4.6)

On comparison with (1.2) we get the values of the param-
eters u, 7, and z:

_ 271-1
T=~l- 1— hG(C>
2 K ’
_ . _ 21-1
_ (Gl '1_ G(c) ’I , )
4k K
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*
eC—GT(a)Z .

ZO=<a>’ ’Va‘}/c<a>:G<a>*

Note that z, is zero below threshold (e <1), whereas
above threshold (e > 1) (4.7) shows that

2P=2| 75 1), G<KC> :(261—1)’ i yG;
(4.8)

The phase of z is determined by
arg[Ge (z} )*]1=0 . (4.9)

The results of Sec. II can now be applied to obtain the
number distribution associated with the field a. We show
the numerical results in Figs. 6—8. The nature of the dis-
tribution depends on whether the system is below thresh-
old (Fig. 6) or above threshold (Figs. 7 and 8). For small
|G{(c)/k|=PB the average excitation of the mode a is
close to zero. The excitation increases as 3 approaches
threshold value. Near threshold average excitation is
large. However, the distribution is such that the proba-
bility of finding a moderate number of photons in the
field is rather small. In such situations the mean and
variance do not adequately characterize the distribution.
For example, for curve F in Fig. 6, the mean number of
photons is about 8 but the number distribution is very
broad. As one moves further away (Fig. 7) above thresh-
old, the distribution starts acquiring a smooth form with
a well-defined maximum and dispersion. Far away from
threshold, the fluctuations become less and less impor-
tant, and the field becomes more like a coherent state

Q
@©
—

0.00 2.00 4.00 6.00 8.00 10.0

FIG. 6. Number distribution for the field produced in the
down-conversion process. The parameters correspond to the
system below threshold, and different curves 4 to F are for
|G(c)/k|=p=0.1, 0.5, 0.9, 0.93, 0.95 and 0.97, respectively.
For clarity each curve has been displaced by 0.1 units on the y
axis.
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0.40

0.20

0.00

FIG. 7. Same as in Fig. 6 but now the system is above thresh-
old with the parameter e=|Ge./v,7.| equal to 1.02, 1.03, 1.05,
1.1, 1.5, and 2. The phase parameter A is zero. The other pa-
rameter |y,v. /G ?| has been set as 4.

with the mean number of photons equal to |z,|2. This is
evident, for example, from the curve marked F in Fig. 7.
The width of the distribution depends on the parameter
A, as is seen, for example, by comparing curves F in Figs.
7 and 8. A comparison of Figs. 7 and 8 also shows how
the number distributions are sensitive to the phase noise
in the system. It may be noticed that, unlike our general
results in Sec. II, the distribution in the down-conversion
problem is determined by a single parameter |G {c) /x|
and does not exhibit any oscillatory character. This can
be understood from the values of Q and the interpretation
of (Q—1) as a loss parameter. Note that Q2=1/(1

[=]
@
o

0.60

0.40

0.20

0.00

0.00 5.00 10.0 15.0 20.0 25.0

FIG. 8. Same as in Fig. 7, but now 4 is equal to 0.5.
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—|G{c)/k|?), and thus near threshold Q is rather large.
Large values of Q destroy the oscillatory character of
p(n).

V. PHOTOELECTRON COUNTING DISTRIBUTIONS

We conclude this paper by discussing the connection
between the photon-number distributions and photon-
counting distributions. It is well known that the photon-
counting distribution p,(n,T) is related to the photon
statistics by the Mandel formula
W"e_W>

l (5.1

pemT)=(Ty
Here p(n,T) is the probability of counting » photoelec-
trons in time interval T'; T, stands for time-ordered
normal-ordered products, and W is the integrated intensi-
ty given by

w=a'a'(na(radr. (5.2)

The parameter a is related to the quantum efficiency of
the detector. If the counting time T is much smaller than
the coherence time of the field, then it is a good approxi-

mation to use
W=aTa'a . (5.3)

On combining (5.1) and (5.3) we get the counting distribu-
tion as

T Y —aTa*a
pe(n,T)=<: (@T)a "z" e :> , (5.4)
where :: stands for the normal ordering. Equation (5.4)

can be simplified by using the Glauber-Sudarshan P func-
tion, which can be used, even though it does not exist for
squeezed light. A simple calculation leads to

o

p.(n,T)= 3 p(m)

m=n

(aT)(1—aT)" " . (5.5

n

Note that if the quantum efficiency parameter is 1, then
p.(n,T)=p(n). The photoelectron distributions can be
obtained from the results of the preceding sections by do-
ing the binomial averaging; an example of this averaging
is given in Ref. 7. We next show that p,(n,T) for a fixed
aT =y can be obtained from p (n) by changing the pa-
rameters x, Q, and z; to x,, Q,, and z, defined by Eq.
(5.9).

The counting distribution (5.4) can be written in terms
of the P function as

2\, —ylal?
poin,T)= [ d%a pla)alel e

n!
—|a|? 2n
~ [d%ap ()1 (5.6)
n!
where
Pe(a)=%P T/(% . (5.7)

Thus the argument of P function in (5.6) is scaled by the
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factor \/;. It is clear now that, if the original P function
corresponded to the Gaussian Wigner function (1.1), then
the new P function would also correspond to (1.1) with

zo—>ze=zo\/? >
B—>fe =HY (5.8)
ToT,=yT+4(1—7) .

On using (1.3) and (5.8) we get relations between Q,x and

Q> X,
Q,sinhx, =y Q sinhx ,
Q, coshx, =yQ coshx +(1—y) .

(5.9)

Therefore, the photoelectron distribution p,(n,T)
=p,(n,y) can be obtained from photon-number distribu-
tion p (n) by the relation

P.(n,y) 2000% =p(n) Zg—2, * (5.10)

0—0,

X——»xe

Thus our fundamental relation (2.11) can be used to give
directly the counting distributions. All that one has to do
is to change the parameters Q and x according to (5.9).
As mentioned in the Introduction, the case Q =1 corre-
sponds to the squeezed state,® and the effect of the binom-
inal averaging on number distributions for squeezed
states has been discussed previously."®’ In Fig. 9 we
consider a typical case corresponding to Q =2 and x =4,
and show the effect of finite efficiency of detection. The
effect of the parameter y =aT is to reduce the oscillatory
character of the photon-number distribution.
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w
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e — |
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d /\/VWV\M
o
o
C; T T T T
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FIG. 9. Effect of finite quantum efficiency of the detector on
counting distributions. Here p,(n,T) is plotted for z,=4,
A =0, Q =2, x =4, and for different values of a7 =1 ( 4), 0.95
(B), 0.9 (C), and 0.8 (D). Each curve is displaced by 0.05 units
on the y axis. Note that curve A is identical to curve E of
Fig. 2.

ACKNOWLEDGMENTS

G.S.A. is grateful to the Department of Science and
Technology, Government of India for supporting this
work. G. A. acknowledges the support by the Fonds zur
Forderung der Wissenschaftlichen Forschung in
Osterreich under Contract No. P6690.

1G. S. Agarwal and G. Adam, Phys. Rev. A 38, 750 (1988).

2G. S. Agarwal, J. Mod. Opt. 34, 909 (1987).

3H. P. Yuen, Phys. Rev. A 13, 2226 (1976).

4Cf. G. S. Agarwal, Phys. Rev. A 3, 828 (1971).

SW. Schleich and J. A. Wheeler, Nature 326, 574 (1987).

6A. Vourdas and R. M. Weiner, Phys. Rev. A 36, 5866 (1987).

7G. J. Milburn and D. F. Walls, Phys. Rev. A 38, 1087 (1988);
these authors calculate the effects of losses by averaging p (n)
over a binomial distribution.

8W. Schleich, D. F. Walls, and J. A. Wheeler, Phys. Rev. A 38,
1177 (1988).

9See, for example, H. I. Yoo and J. H. Eberly, Phys. Rep. 118,
239 (1985).

191. S. Gradshteyn and 1. M. Ryzhik, Tables of Integrals, Series
and Products (Academic, New York, 1965), p. 1038, formula

8.975-1.

U], S. Gradshteyn and I. M. Ryzhik, Ref. 10, p. 1038, formula
8.974-4.

12]. S. Gradshteyn and I. M. Ryzhik, Ref. 10, p. 1053, formula
9.180-1.

13]. S. Gradshteyn and I. M. Ryzhik, Ref. 10, p. 1054, formula
9.182-1.

14w, Schleich and J. A. Wheeler, J. Opt. Soc. Am. B 4, 1715
(1987).

15G. Milburn and D. F. Walls, Phys. Rev. A 27, 392 (1983); M.
J. Collett and C. W. Gardiner, ibid. 30, 1386 (1984); M. J.
Collett and D. F. Walls, ibid. 32, 2887 (1985).

16A Wigner-function treatment of this problem has been given
recently by G. S. Agarwal and S. Dutta Gupta, Phys. Rev. A
39, 2961 (1989).



