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Photon distributions for nonclassical fields with coherent components
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Nonclassical fields with coherent components generated in a large number of optical processes in-

cluding losses can be characterized by a Gaussian Wigner function centered around the mean value

of the field. The photon-number distributions for such fields are calculated and the numerical re-
sults are presented for a range of parameters. As a special case we give the number distributions for
photons produced in down-conversion problems. We also give the analytical expression for the
photoelectron distributions.

I. INTRODUCTION

In a recent paper' we have shown that the quantum
fluctuations of the radiation field produced by a very
large class of systems in nonlinear optics can be described
in terms of a density matrix that possesses a Gaussian-
Wigner function. This is true even if losses and the
coherent pumping effects are included. Even the fluctua-

I

tions in a bistable system and in the context of more com-
plex cavity problems can be described in a similar
fashion. The parameters in the Gaussian Wigner func-
tion depend on the detailed microscopic properties of the
quantum-mechanical system at hand. We thus consider a
single-mode radiation field characterized by a Gaussian
Wigner function

4&(z,z') = 1

m(r —
4~@~ )'

p(z —zo) +p*(z' —zo ) +riz —zoi
2 4[ /2)

The parameters zo, p, and ~ are related to the lower-order
moments of the annihilation and creation operators a and
a

p= —sinhxe ', r= —coshx, Q & 1, zo=roe leap

2

(1.3)
The distribution function (1.1) leads to the squeezing in
the component (e '~a+a e'~) of the field if

&(a ) &= —2@+(zo ), &a a &=r —,'+~zo— Q [coshx —sinhx cos( 8—2P )]( 1 . (1.4)

(1.2)

Note that the coherent part zo of the field is essentially
determined from the semiclassical analysis of the non-
linear problem. The parameters p and ~ satisfy a number
of conditions that follow from the positive definiteness of
p. We write

We remind the reader that the usual two-photon
coherent state is a special case of (1.1), i.e., (1.1)
represents the field in the two-photon coherent state if
Q = l. An operator representation of the density matrix
can be constructed from (1.1). It can be shown that the
explicit form of the density matrix corresponding to (1.1)
1s

p=[ —,'(e "—1)] ' expI —2e +cosh '(cothy)[p(a —zo) +p*(a —zo ) +~(a —zo )(a —zo)+r/2]), (1.5)

where

e ~=4(r —
4~@~ ) . (1.6)

The density matrix (1.5) in general represents a mixed

I

state for Q&1. This is expected since our quantum sys-
tem possesses losses, and a system with losses in general
cannot be characterized by a pure state. Depending on
the parameters Q, x, 0, and y, the field in the state (1.1)
or (1.5) may possess sub-Poissonian statistics. Using the
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Gaussian nature of the signer function the condition for
the existence of sub-Poissonian statistics is found to be

Here I& is an integral over the quadratic forms

I, (k, )=f d z @(z)exp( —41&lzl ) . (2.3)

r +21z I r —,
' —2(z" ) p* —2z p+4lpl

—lz, l' —r+ —,
' (0 . (1.7)

The distribution function (1.1) carries information both
on the amplitude and phase of the field. In this paper we
examine the photon-number distributions associated with
(1.1). In Sec. II we present the analytical formula for the
number distribution for the field characterized by (1.1).
In Sec. III we discuss several limiting cases of our general
formula, and show how the known results are recovered
as special cases. We also present the numerical results
for the number distributions for a range of parameter
values Q, x, and zo. In Sec. IV we discuss the number
distributions for the nonclassical fields produced in the
down conversion process in a cavity. Finally, in Sec. V
we show how the photoelectron counting distributions
can be obtained from the number distributions (calculat-
ed in Sec. II) by changing the parameters Q, x, and zo.

fd(x; ) exp —gx; A;~x + gh, -x;
&s J

)m/2

&detA
exp —gh;( A ');~hz

17J
(2.4)

In a previous work' we calculated the number distribu-
tions for the special case when the coherent part zo of
the field was zero. We now generalize this to the case
when zo&0. This generalization is especially important if
the field contains a small number of coherent photons. It
is, for example, now known that the interaction of atoms
with coherent fields with a small number of photons re-
sults in important quantum-mechanical features. It may
be noted that the field characterized by (1.1) includes as
special cases most of the previously studied fields, except
those for which the fluctuation behavior is dominated by
nonlinear Langevin equations. It may be added that the
field generally acquires a nonzero coherent part if the
nonlinear optical processes above threshold are con-
sidered.

To evaluate p(n), we first calculate the integral I,
which can be evaluated by using

II. PHOTON-NUMBER DISTRIBUTION
FOR THE FIELD CHARACTERIZED BY (1.1)

where m is the total number of variables x, . The integral
I, can be reduced to the form in (2.4) by writing
z =x, +ix2. The calculations show that

The number distribution can be obtained as a phase-
space integral involving the Wigner function (1.1) and
Laguerre polynomials. It is known that p (n) is related to
the Wigner function via

I, (A, , )= I+(A, , )I (A. , ),1
1 1 2 + 1

1
I+(iL, )= exp

Qv+(A, , )

4r+2

co+(A, ) )

p (n }= f d z 4(z)2( —1)"L„(4lzl ) exp( —2lz l ), (2.1) (2.5)

which can be formally written as

X+
r+ =ro cosa, r =ro sine, v+=A +

e —"

p (n) =2( —1)"L„— I, (A, , )
A,

i
= 1/2

(2.2) On using (2.2) and (2.5) and elementary algebra, we get

f=0

a
m —I

(2.7)
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A, )
=1/2

The derivatives in (2.7) have been calculated and we
quote the result

a~,
'* -1/2 exp

A, + —,'+e —"/2Q

4r—+ (A. + —,
' )(e*"/2Q)

A, + —,
' +e *"/2Q

(ii) writing A, ,
=A, +—„and (iii) by expanding in powers of

1

1+(1/2)vg

4r+2
I )L

—1/2 Cg

kx 2

where LI is the associated Laguerre polynomial and

(2.8)

(2.9)

~ v'n+

4 2 %2xr+e
4Q'P+

4r2 e22x 4r2 e+x

4Q 13~ 2Q

+X

p~ —,+
2

The relation (2.8) can be proved by (i) using the generat-
ing function for the associated Laguerre polynomials, '

(2.10)
The coefficient of A,

' will give the lth derivative. On using
{2.6)—(2.8), our final result for p (n) is

p(n)=( —I)"@o(zo) g g (
—1)

m =01=0

1
'

1

v+ v

m —I

L —1/2 C + L —1/2
m —I

V+

C ~ kX

2 2Q
(2.1 1)

where +0 is the distribution

1
4o(zo) = exp

n.[(r+—') —4lpl ]'
pzo+p'(zo ) +(r+ —,

'
) Izo I

(r+-,')' —4lpl'
(2.12)

The result (2.11) is our key result. It gives the number
distribution for fields produced in a nonlinear optical pro-
cess when (a) the phase correlations can be nonzero
{xXO), (b) the coherent component of the field can be
finite (zo&0), and (c) the losses could be important QA l.
Note that in most cases the losses would consist of cavity
losses and spontaneous-emission losses, and thus could
not be ignored.

A. Field without phase correlations: x =0

Consider first the case x =0, i.e., @=0. Such a field
consists of a mixture of a coherent and an incoherent
field. In this case various parameters simplify to

v~= =v, Q=2r, co =2(Q+1)=co,+1

III. LIMITING CASES AND NUMERICAL RESULTS

Before we discuss the consequences of our basic formu-
la (2.11), we demonstrate how the result (2.11) leads to
the known results in special cases.

4ro2 Izo I' &o
C+ +C

2

and p(n) reduces to

=C

(3.1)

( —1)"p(n)=, exp
w+ —,

'

c + L —1/2
m —I

V

z n n 1
m

( 1)m
1 g L in—

~+2 m=o . . V I=o

C
(3.2)

On using the identities" Eq. (3.2) simplifies to

g L (x)Lg (y )=L„~+'(x +y),
m=0

n

( —1) y L ( —x)=(1 y)"L„—
m=0

(3.3)

(3.4)

(r ——')"
2

pn
( +1)n+1

2

Izol'
n

Izo I'
1

(3.5)

This is the standard result for a field which is a superposi-
tion of coherent and incoherent fields. It reduces, respec-
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tively, to Poisson and Bose-Einstein distributions in the
limiting cases of a pure coherent field (r= —,') and in-
coherent field ( ~zo ~

=0).

B. Field without coherent component: zo =0

the known result'

(
—1)"

p(2n)=
cosh—

2

1

2

tanh "—
n

(3.14)

The result of our previous publication can be obtained
by letting zo —+0, whence

1)n n m n
p(n)= g g ( —1)

QV v+v — m =0 (=0

(-,' )i( —,
'

)
X

( i(ni —/)i I m —I

(3.6)

where

(a)(=a(a+1) . (a+l —1) . (3.7)

and the relation'

(3.8)

On using the definitions of the hypergeometric function
F, (a,P,P', y, x,y) of two variables'

(a) +„(p) (p')„F(aPP'yxy)= g g x y"
=o =o (y) +m!n!

p(2n +1)=0 .

We next examine the photon-number distribution for
the general radiation field, i.e., when the phase correla-
tions (x&0), losses (Q&1), and coherent component
(zoAO) are important. We have carried out numerical
calculations for a range of the parameter values

Q, x, a, ~zo~, and some representative results are shown in

Figs. 1 —5. In Fig. 1 we reproduce the known result ' '
for the two-photon coherent state Q = 1. With an in-
crease in x, the field first acquires increasingly sub-
Poissonian character, and then the sub-Poissonian char-
acter decreases and the field distribution becomes re-
markably oscillatory. This oscillatory character has been
associated ' with the nonclassical nature of the light. In
fact, when the field distribution becomes oscillatory, then
the first two moments of the distribution are not enough
to characterize the nature of the distribution. Figures 2
and 3 give the effects of losses in the nonlinear medium
on the photon-number distribution. The distributions
broaden with an increase in Q. The distribution becomes
oscillatory for larger values of x. Note that the condition
(1.4) for O=P=O shows that larger value of Q require
larger values of x for squeezing to exist. Thus in the pres-

F, (a,P,P', P+P', x,y)=(1 —y ) F a, P,P+P',

(3.9)

C)

C3

the result (3.6) can be expressed in two different forms:

p(n)= ] V V+F —n, —,1,' 2' ' v+(v —1)

C)
cn

~ fO I

1=( —1)"
Q+v+v

1 1 1F, —n, —,—,1,
2 2 v+

n

(3.10) C)
(U

C3

2 Qe —1

(Q +2Q coshx + I)'/ Qe"+1 (3.1 1)
C)

1

2

mm=0 n —m
4Q sinhx

Q +2Q sinhx —1

m
C3
C)

~ 8 1I,

O f1
0.00 10.0 20. 0 40. 0 50. 0

(3.12)

For a squeezed vacuum Q = 1, (3.12) reduces to

p(n)=-
cosh—

2

Xtanh"—
2 0

l

2
2m

P7l
(3.13)

Algebraic manipulations enable one to reduce (3.13) to

FIG. 1. Photon-number distribution p(nl [=P —(dis-—
placementl] as a function of n for a radiation field with a
coherent component zo =4 (average number of coherent pho-
tons 16). The field is characterized by a Gaussian signer func-
tion centered around zo =4. The phase factor
3 =(I/vr)(&po 9/2) is chosen as zero and —Q is set as 1. The
curves A, B, C, D, E, and F are for the squeezing parameter
x =0, 1, 2, 3, 4, and 5, respectively. For clarity, dift'erent curves
are displaced, i.e., P =p (n)+0.06x.
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tions for the generated fields. We recall the basic results
on the generation of the nonclassical fields in the down-
conversion process.

Let c and c (a and a ) be the annihilation and creation
operators associated with the pump mode of frequency
2', (generated mode of frequency cu, ). The Hamiltonian
describing the down conversion is

H =%co, a a +2fico, c c + [G (a ) c —H. c. ]
iA

z, =(a ), y. y, (a ) =G(a )* e, — (a )'

r.1', , G&c &

7 EGz ' ~ (2e —1)'
Ge,

Va/c

(4.8)

Note that zo is zero below threshold (e(1), whereas
above threshold (e) 1) (4.7) shows that

2l cc)+ iA'(e, c e ' —H. c. ) . (4. 1) The phase of zo is determined by

—y, (e cp —2cpc +pc c) . (4.2)

On assuming y, &&y„ the pump mode can be adiabati-
cally eliminated. We moreover linearize the fluctuations
around steady state, i.e. , we set a = (a ) + A and assume
that the fluctuations in A are much smaller. Then the
calculations show that the reduced density matrix for the
mode 3 satisfies

~PA = —tt(A Ap„—2Ap„A +p„A A )

G(c)(A ) +H. c. ,p„, (4.3)

where

On including the losses y, and y, associated with two
modes, the density matrix for the system can be written
as

Bp l

at [H,p] ——y, (a ap —2apa +pa a )

arg[GE, (zo ) ]=0 . (4.9)

The results of Sec. II can now be applied to obtain the
number distribution associated with the field a. We show
the numerical results in Figs. 6—8. The nature of the dis-
tribution depends on whether the system is below thresh-
old (Fig. 6) or above threshold (Figs. 7 and 8). For small
~G(c )/x. ~—:l33 the average excitation of the mode a is
close to zero. The excitation increases as /3 approaches
threshold value. Near threshold average excitation is
large. However, the distribution is such that the proba-
bility of finding a moderate number of photons in the
field is rather small. In such situations the mean and
variance do not adequately characterize the distribution.
For example, for curve F in Fig. 6, the mean number of
photons is about 8 but the number distribution is very
broad. As one moves further away (Fig. 7) above thresh-
old, the distribution starts acquiring a smooth form with
a well-defined maximum and dispersion. Far away from
threshold, the fluctuations become less and less impor-
tant, and the field becomes more like a coherent state

y, (c)=e, — (tt )', y. &~) =G&~ &*&c &,
(4.4)

It can be shown that the steady-state solution of (4.3) is
characterized by a Gaussian Wigner function. It can be
further shown that

(A A)+ —,'=&a a& —&a)~ + —,
'= —1—G&c&

CD

Q

(A'&=&")-&.&'= G '
2K

G&c)

(4.5)
CD

)
CD

(4.6)

On comparison with (1.2) we get the values of the param-
eters p, ~, and zo:

CD
CD

CD

0.00 2. 00 W. 00 6.00 8. OO 10.0

17-= —1—
2

(4.7)

FIG. 6. Number distribution for the field produced in the
down-conversion process. The parameters correspond to the
system below threshold, and different curves 3 to F are for
~G(c)/x~ =P=0. 1, 0.5, 0.9, 0.93, 0.95 and 0.97, respectivel
For clarity each curve has been displaced by 0. 1 units on the y
axis.
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0
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'
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r. This cannot exhibit any oscillatory character.

of (Q —1) as a loss parameter. Note t a

C3(0
O

I

C)

C)

C3
0

p, n, T)= g p(m) (aT)"(1 aT—
m =n

(5.5)
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P— ) b h i h
to x, and z, de ne yrameters x, Q, and zo to x„

e
' ' ' '

(5.4) can be written in termsThe counting distribution . ca
of the P function as

On combining (5. an1) d (5.3) we get the counting dtstrtbu-
tion as

n
—aTa a(aT)"(a a)"e ' ' '

)
(5.4)p, (n, T) =

::stands for the normal ordering. qE uation (5.4)
h Gl uber-Sudarshan P func-can be simp ylified b using t e au e-

h it does not exist forh h can be used, even t oug ition, w ic
ds tosqueeze igd 1 ht A simple calculation lead

C3

C)

2 n — ~a~2(y la I')"e
p, (n, T)= J d aP(a)

d Q Pe cx (5.6)

C3
C3

0. 00 5 ~ 00 10.0 15.0 20. 0 25. 0

where

1 o.P (a)= P—
e (5.7)

t now A is equal to 0.5.FICx. 8. Same as in Fig, 7, but no
'

q ction in (5.6) is scaled by theThus the argument of P function in
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r & . It is clear now that, if the 'g'ori inal P function
he

' W'gner function (1.1), thenthe Gaussian igner
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z, z, =zo&y,

(5.8)
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Q Q,
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amental relation (2.11) can be used to give
. All h to h todo

o di o (5.9).
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