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Method for calculating Auger decay rates in molecules
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A new method for calculating Auger decay rates in molecules is proposed and tested. Essential
features are (1) construction of the continuum orbital via solution of the Lippmann-Schwinger equa-
tion with a projected potential, (2) matching in the asymptotic region of the Lippmann-Schwinger
wave function with the eigenfunctions of the long-range Hamiltonian, and (3) complete evaluation
of the Auger matrix elements between Hartree-Fock wave functions for the initial and final states.
The method is tested on the KLL Auger spectrum of atomic Ne and then used to predict Auger de-
cay rates for the LiF molecule ionized in its deepest shell.

I. INTRODUCTION discrete L functions and with the projected potential V':

T'= V'+ V'G o
T' (2)

The importance of the Auger effect—from both experi-
mental and theoretical points of view —and the lack of
quantitative predictions, from first principles, of the
Auger decay rates in molecules and solids, provide a
strong incentive for developing accurate methods for the
ab initio calculation of such decay rates.

While the general theory for treating resonant scatter-
ing problems of this type has been developed, ' the exist-
ing predictions of experimental linewidths refer mostly to
atomic systems, since the presence of a nonspherical po-
tential inside a molecule hinders the use of standard nu-
merical techniques. Approaches based on expansions in
terms of basis functions require the solving of problems
like the proper description of the continuum orbital both
in the molecular and in the asymptotic region, and the
evaluation of polycentric bound-free integrals for the
transition matrix elements. Ways which have been sug-
gested in the past to overcome these difficulties include
the use of monocentric expansions for the potential and
the continuum orbital [hence applicable only to atomlike
molecules, e.g. , hydrogen fiuoride (Refs. 2-4)], simple ap-
proximations for the continuum orbital, ' and semiquan-
titative estimates based on atomic decompositions.

In this paper we present a new method for evaluating
the Auger decay rates in molecules, which is character-
ized by the following main points.

(l) The approximate representation —in a finite discrete
basis set of L functions I &r~a) ]—of the scattering po-
tential V(r, IRI ), to which the outgoing electron is sub-
jected at a given molecular geometry IR]:

V(r, I R I )-V '(r, {R I )

&r~z&S;„' &~~ V~+&S„-,' &r~r&,

where G o is the free-particle Green function for the in-
going wave boundary condition.

(3) The construction of the LS wave function for the
outgoing electron in terms of T '

e ik.r+ Q
—T te ik r (3)

and its matching, in the asymptotic region, with the
eigenfunctions, relative to the Auger energy, of the long-
range Hamiltonian, where the scattering potential )I has
been replaced by its long-range component P

(4) The complete evaluation of the transition matrix
elements between the initial (almost bound) state and the
various final states of the doubly ionized molecule, where
the states are represented by specifically optimized
Hartree-Fock wave functions.

We note that as far as the first two points are con-
cerned our approach is analogous to the discrete basis
function method for nonspherical potentials introduced
by Rescigno, McCurdy, and McKoy" ' for treating
electron-molecule scattering, while the technique for the
evaluation of the Auger matrix element [point (4)] and
the bound-free integrals required in it have been
developed by the authors in Refs. 5, 14—16.

The outline of this paper is the following. In Sec. II we
describe the method. In Sec. III we give the technical
procedures for its implementation and consider a specific
atomic problem (the KLL Auger spectrum of neon) for
which accurate numerical results are available. In Sec.
IV we apply our method to the evaluation of Auger tran-
sition rates in the LiF molecule, improving previous re-
sults (see Ref. 5) obtained by the authors on this molecule
with a simplified description of the continuum orbital.

s,„=&a~„) . II. THE METHOD

(2) The solution of the Lippmann-Schwinger (LS) equa-
tion for the transition operator ( T) relative to the outgo-
ing electron —see, e.g. , Ref. 10—in the subspace of the

Following the approach described in Ref. 5, the com-
puted quantity we compare with the measured Auger
rate for each decay channel /3 is the following:
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Wp= I {(4fH E—q, f+pq) { dk,(2' )
(4) f'p(r, {RI) —P'p (r, {RJ)=——+0, (10)

p'~ Qo T T

+P, k
1

(N+1)!

1/2

A [ep(1,2, . . . , N)rIp k(N + 1)],

where e& is the HF wave function for the doubly ionized
molecule in the state P, gp k is the spin orbital for the out-
going electron given in the form

'gp k(1)=gp k(ri)0 p(& i ),
and the normalization of 4@& is chosen to be

The use of an independent-particle representation of the
states leads to the choice of the continuum orbital g@i, as
the eigenfunction, relative to the energy c&, of the HF
Hamiltonian F& for y& „in 4@„..

given in a.u. , where W is a quadratic-integrable normal-
ized wave function for the resonant (almost bound) initial
state, whose energy is Ec,= (@~H~4) and 4p z is a repre-
sentation of the decay channel P identified asymptotically
by the energy E& of the doubly ionized molecule and by
the energy c& of the outgoing electron: ok=E+ —E&=

—,'k . Note that in (4) we perform an integration over
the directions of the outgoing electron, since the Auger
spectra we want to interpret identify each decay channel
only in terms of the kinetic energy of the Auger electron.

To represent the initial (almost bound) state and the
final states of the doubly ionized molecule we use
Hartree-Fock (HF) wave functions, each one obtained
with a separate self-consistent field (SCF) process, thus
disregarding electronic correlation effects, apart from
those due to the antisymmetrization of the wave func-
tions. Each final wave function 4@& is written as an
antisymmetrized product of the following type:

with a tail represented by a Coulomb potential plus
higher-order corrections that depend on the type of mole-
cule considered. (Note that from now on we will call
the "as mptotic" region that part of the space in
which p- P'p ). Because of the presence of a long-
range, Coulomb potential to obtain

gpss

in (8), via the
solution of the corresponding Lippmann-Schwinger equa-
tion, one should include in the zeroth-order Hamiltonian
at least the Coulomb and static dipole components of the
potential, ' but the technical implementation of this re-
quirement would present serious difficulties in a molecu-
lar context.

What we suggest, following Rescigno, McCurdy, and
McKoy, " ' is the approximate representation of f'p in
(9) by means of its expansion (P'p) in a finite discrete
basis set of L functions —see Eq. (1)—chosen in such a
way as to minimize the difference ( Vp

—Vp)~yp i, ) inside
the region of interest. The replacement (f'p~P'p) al-
lows one to solve the LS equation (2) for the transition
operator T' at sk, since Eq. (2) becomes a matrix equa-
tion with solution

Tt —Vt[Vt Vtg —
( )Vt] 1Vt (12)

The corresponding LS wave function satisfying the
ingoing-wave boundary condition is defined in (3) and
represents an eigenvector, relative to the energy ck, of
F p, i.e., of an effective Hamiltonian defined as in (9), but
with Vp replaced by P'p, i.e., by its basis set representa-
tion defined as in (1). Using Eqs. (1), (3), and (12) one can
write g& k in the form:

T'= [1—V pG o (sk )] ' V p .

Note that, if V' can be inverted, one can use equivalently
the following s mmetrized expression for the matrix rep-
resentation of

Fp(r)gp i,(r)=skip k(r), (8)
with

where F& is de6ned in terms of the nonlocal static-
exchange potential f'p as follows:

Z a
Fp(r) = —

—,
' V, —g

a r a

N
+ y [a'p'J'p'(r) b'p'k 'p'(r)]-

1 J J Jj=]
= —

—,'V, + Vp(r, {RI) . (9)

In (9) Z and R are, respectively, the charge and posi-
tion of the ath nucleus in the molecule, while J'~' and
K '~' are the usual Coulomb and exchange operators
weighted by coefficients that are related to the occupation
number of the jth orbital in e&.

We observe that in the Auger problem Pp(r, {RI ) i's a
long range potential:

(14)

The general expressions of the continuum functions {fi ],
obtained by applying the free-particle Green function to
Hermite Gaussian Functions (HGF) of any order and
center, together with the expressions of their derivatives
with respect to r, have been derived by the authors in
Ref. 16; both these quantities are necessary for matching
y@& with the eigenfunctions of the long-range Hamiltoni-
an Fp, where Vp has been replaced by 0'p —see Sec.
III.

In regards to the Auger matrix element, instead, only
the L components of y& & are important, since both the
initial (@) and the final (ep) states are given in terms of
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bound orbitals, and, in fact, the difference between the
values obtained using the LS wave function as given in
(13), or its projection onto an adequate basis set of the
HFG are smaller than a few parts in 10, as shown by our
test calculations.

The crucial point in this type of approach is the re-
placement ( V&~ V&), which seems particularly delicate,
involving as it does truncation of the long-range part of
the HF potential, although it is clear that the Auger ma-
trix element is really sensitive to the form of the continu-
um orbital only inside the molecular region.

The way we suggest to properly perform such a re-
placement is based on the idea that it should be sufhcient
to have a projected potential f'&, which, applied to y& z
correctly reproduces the eff'ect of the true potential f'& on

g& z continuing into at least a part of the asymptotic re-
gion. (Note that from now on we will call the "inter-
mediate asymptotic" re ion that part of the asymptotic
region for which [ &

—(f & )']lg& ) =0, where
(P'& )' is the basis set representation of 5& ). In that
case the LS wave function within this intermediate

asymptotic region will be a linear combination of the
eigenfunctions of F & corresponding to the Auger ener-

gy. These eigenfunctions, for the usual problems, are
known analytically or in any case can be easily obtained
by using standard numerical techniques and therefore it
should be possible to set up a procedure for matching
them to the LS wave function in order to obtain the
correct asymptotic behavior.

The implementation of such an idea requires establish-
ing a criterion for the choice of a basis set able to
represent the scattering potential and defining procedures
to connect the LS wave function with the analytical or

LRnumerical eigenfunction of F & relative to the Auger en-

ergy. These two problems will be extensively studied in
Sec. III.

III. TECHNICAI. PROCEDURES

In the first part of this section we propose a criterion
for the choice of the discrete basis set to be used for
representing the HF potential as shown in (1). Then, in
the second part, we apply this technique to a specific
atomic problem (the KLL Auger spectrum of the atomic
neon), discuss the technical procedures for matching the

LRLS wave function with the eigenfunctions of F
&

relative
to the Auger energy of interest, and finally suggest a
simplified approach useful for molecular problems.

A. Choice of the basis set

As in Ref. 18, we distinguish between two discrete
basis sets of Hermite Cyaussian functions: a smaller one,
that used for the standard SCF calculations for the bound
orbitals of the initial and final states, and a larger basis
set that includes the previous one plus other functions,
that constitute the so-called scattering basis set, which is
used for computing the matrix elements of the static-
exchange potential. The extension of the SCF basis set,
realized by adding diffuse functions, but also making
more dense the basis set in certain regions of the non-

linear parameters, is necessary to obtain for the potential
a correct reproduction extending as far as the intermedi-
ate asymptotic region.

If one can assume negligible the difference
(0&—'f'&)lg&z) as far as this region, the matching of
y& z with the eigenfunctions of P &, relative to the Auger
energy, will be smooth and practically independent on
the position of the matching point, provided that this be
internal to the intermediate asymptotic region. From the
requirement of continuity of y& & and of its first derivative
at the matching point one can obtain the matching pa-
rameters, whose stability with respect to changes in the
position of the matching point will be a stringent test of
the quality of the chosen basis set. Satisfaction of this re-
quirernent of stability is the first criterion we propose for
the choice of the basis functions.

The second one involves the variational stability of the
Auger decay rate 8'& with respect to changes in the basis
set: this requirement is introduced in order to reduce the
Auctuations of the computed quantities due to changes in
the quality of the representation of V&. In practice, what
we are looking for is a criterion for setting up a scattering
basis set in such a way as to obtain simultaneously an ex-
tremal point of 8'& with respect to the parameters that
characterize this basis set, together with a stable match-
ing between g& & and the eigenfunctions of F & relative
to the Auger energy.

To this end we employ a procedure suggested by the
analysis of the variational stability of the scattering am-
plitude proposed by McKoy et al. in Refs. 18 and 19.
Following the Kohn's prescription they show that one
can variationally correct the K-matrix elements, obtained
via the LS equation, by adding to them the following
term: (gp k'lFp Ek lpga'). Furthermore, they argue
that this matrix element vanishes through first order in

V&
—

V& at the eigenenergies of the projected F&, at least
for low-scattering energy, i.e., when the LS wave function
is dominated by the lowest contributing partial wave and
therefore can be assumed proportional to the correspond-
ing eigenfunction of the projected P&.

In our problem the quantity to be considered is the
Auger matrix element in W&, to which only those (lm)
components of the LS wave function contribute that are
selected by the symmetry of the initial (4) and final (e&)
states, and therefore the assumption of the proportionali-
ty of these components to the corresponding eigenfunc-
tions of the projected Hamiltonian does not depend on
approximation of the boundary conditions for nonspheri-
cal potential. ' Therefore it seems reasonable to look for
a representation of V& in terms of a discrete basis set that
includes eigenvectors of the projected F& relative to the
Auger energy of interest, such eigenvectors being the
most important in an L representation of the continuum
orbital.

The technical procedure for implementing this idea
will be described in Sec. III B for the specific case of the
ELL Auger spectrum of the atomic neon, but here we
want to point out the main conclusions that can be drawn
from our experience. They can be summarized as fol-
lows.
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(1) Identifying each scattering basis set of symmetry
functions by means of a single parameter, viz. , a scale fac-
tor (q), that multiplies all the orbital exponents of the
basis functions, it has been found that each Auger decay
rate W&, considered as a function of q, reaches a
minimum for a value (q ) very close to that for which the
discrete basis set includes an eigenvector of the projected
F& relative to the Auger energy of interest.

(2) By increasing progressively the number of basis
functions it is possible to find a q for which also the
matching between the I.S wave function and the eigen-
functions of F&, relative to the Auger energy of interest,
is smooth and stable.

(3) For this scattering basis set, changing progressively
the value of q away from q causes W& to increase up to a
maximum and then decrease again. Taking the geometri-
cal average between the values of two neighboring
minimum and maximum one gets a quite good estimate
(relative errors less than 7%%uo in our test calculations) of
the "exact" value of W&, i.e., of the value obtained by us-

ing the LS wave function smoothly joined with the eigen-
LRfunctions of F
&

relative to the Auger energy of interest.

B. An atomic example: the KLL Auger spectrum of the neon

=Nl(E„)4m Y(* (k)CI(Ek, ro), (16)

( Y, (r)leap, k(r) ~
dr r=r 0

dCI(el„r)
=Nt(e„)4' Y(* (k)

Qr r=r 0

In (16)j&(kro) is a sPherical Bessel function, C&( Erk)ao
shifted Coulomb function, whose asymptotic behavior
gives the phase shift 61 with respect to a regular Coulomb
function, and N, (c„)a matching parameter that goes to 1

when V~ goes to 0. The fact that NI(Ek ) will be in gen-
eral different fram 1 is essentially due to the different
asymptotic behavior of P'& as compared to that of the
true potential V&, a difference that remains also if
( V~

—V&)lg&z) is negligible as far as the intermediate
asymptotic region.

It is clear that in the atomic case only one (Im) com-
ponent of the LS wave function (13) contributes to a
given W&, precisely that determined by the symmetry of
the initial (almost bound) state N and of the final state 6&
of the doubly ionized atom —see Eqs. (4) and (5). Furth-
ermore since we use HF potentials which are spherically
symmetrized, the only long-range component to be con-
sidered is the Coulomb one, and the matching conditions
at a given ro, internal to the intermediate asymptotic re-
gion, can be chosen as follows for any given (lm) com-
ponent of g& k.

[ ( Y( (r) lypk(r) ) 1,=,,
=4~i j'((kro) YI* (k)

+ gcz(El„k)[( YI (r)lfg(Ek, r))],=,,

The technical procedures for computing Xl, 5I, and
8'& can be summarized as follows.

1. Determination of the radius (ro)
of the short ran-ge component of 0'&

This can be easily performed, for example, by plotting
the local part of P'& as function of r in comparison with
its long-range component: f'& = 2/—r In. Fig. 1 we
make this comparison in the case of the 'D(2p '2p ')
state for which the symmetrized HF potential is given by

(r)= — + g [2J (r) —K (r)]10

+—', g [2J,(r) —E,(r)]

(P, = ls, 2s) (P, =2p„,2p, 2p, ) . (18)

From this figure one can see that the short-range com-
ponent ( P'p —f & ) of the HF potential is practically ex-
hausted at r —1.9 a.u. , a value that has been obtained also
for the other states.

0.0 0.5
I

1.0
I

1.5 2.0 2.5 3.0 3.5
I

V (r)

-3-

I
I
I

I

I

I

I
I

I
I

I

I

J

I
I
I

I
I
0

I

I

I

tI

~ t

I t
I

I
~ g

s
I
o

~ g

~ t

FIG. 1. Dependence on r of the Hartree-jock potential Ps'
defined in (18) ( ) and of its long-range ( ———) and
short-range (----) components. All the quantities are given in

atomic units.
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2. Construction of the LS wave function

To this end we have used Eq. (3) with f'& represented
in a basis set, which contains an eigenvector of the pro-
jected P& at the Auger energy of interest to guarantee the
variational stability of 8'& with respect to changes in the
basis set. In Fig. 2 for the state 'D we show the behavior
with r of the real part of the radial function g2 2(r), ob-
tained by extracting the (2, —2) component of y& z as fol-
lows:

l'2, -2«)g2, -2(r) — l'2, -2(k)lg2, -2(r)+g'2', -"2(r) i

In Fig. 2 we also compare separately the behavior of its
plane-wave part g2 2 and LS correction gz" '2 showing
that the LS correction stabilizes as a periodic function
at about r —3 a.u. (a distance at which P'tt is practically
exhausted) and largely reduces the amplitude of the total
wave, being shifted with respect to the plane-wave com-
ponent. In regards to the imaginary part of gz 2 we ob-
serve that only the LS correction contributes to it, giving
a function that is obviously proportional to the real part
of gz 2 since both are solutions of the same equation for
the same energy and boundary conditions. Furthermore,
to give an idea of the degree of accuracy that can be ob-
tained by using expansions in terms of HGF, we compare
in Fig. 3, for the state 'D, the dependence on r of f'tt with
those of f'tt and of its basis set representation (f'tt )'
when applied to the real part of the radial function

0.000 062
0.000 363
0.000 742
0.001 201
0.001 829
0.002 691
0.003 885
0.005 440
0.007 410
0.009 611
0.011 961
0.013 749
0.637 097
0.016 688
0.016062
0.015 609
0.013 924
0.012 738
0.010430
0.009 390

—0.225 681
—0.097 512

0.082 740
0.371 222
0.807 400
1.454 452
2.409 052
3.814 942
5.883 554
8.924 148

13.392 591
19.957 937
29.621 152'
43.855 811
64.945 648
96.263 044

143.584 677
215.439 157
331.652 243
522.966 634

'This value corresponds most closely to the Auger energy.

TABLE I. Modulus of the expansion coefficients (a, ) of the
(2, —2) component of the LS wave function, relative to the
'D(2p '2p ') state and to the (81, =~/2, yI, =m. /4) direction,
on the basis of the eigenvectors of the projected P&. The E, are
the corresponding eigenvalues and the Auger energy (c.k) is
equal to 29.621181 a.u. All the quantities are given in atomic
units.
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atomic units.
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FIG. 3. Dependence on r of the real part of f'Igz z(r) (----), (f e")'gz ~(r) (
———), and f &"g2 z(r) (

The direction chosen for k is (9k =n/2, P&
=. m. /4). All the quantities are given in atomic units.

) for the state 'D.

g2 z(r). From this figure one can see that in the region
between r —1 a.u. and r -2.3 a.u. , one has

Vig~ 2(r)=(V)i )'g2 2(r)=Vt3 g, ~(r)

and this fact confirms the high degree of accuracy ob-
tained by our basis set representation as far as these dis-
tances. Note that in the inner region (r(1 a.u. ) the
short-range components of V& are dominant and there-

~ LR.fore V& is very different from V&, that, however, is very
well represented by (V& )', while for r) 2.3 a.u. the

LRreproduction of V &
in terms of HGF becomes unavoid-

ably very poor. Finally in Table I we give the expansion
coefticients of the LS wave function for the state 'D on
the basis of the eigenvectors of the projected F&, in order
to show that the eigenvector at the Auger energy contrib-
utes to this expansion at least 40 times more than any
other eigenfunction. This fact, on the one hand confirms
the validity of the assumption of proportionality between
the LS component of interest and the eigenvector relative
to the Auger energy, and on the other hand, together
with the variational stability of 8'& discussed at the end
of this section, gives a further justification to our cri-
terion for the choice of the basis set.

3. Matching between the LS wave function and C&(e„,r)

This is performed as shown in Eqs. (16) and (17) by
constructing Cl(e&, r) via the solution of the radial equa-

LRtion for V
& from ro to "infinity" —through, for exam-

ple, the Runge-Kutta method '—and using as input data
the value of the radial function ( Y& (r)ly& k) and of its
first derivative at ro (for the details of the matching pro-
cedure see Ref. 16). In Table II we give, for all the states
of interest, the values of the matching parameters NI and
6I, calculated at various ro in the intermediate asymptot-

4. Evaluation of the Auger decay rate IV&

Applying our method to an atomic case, where only
one (lm) component of the continuum orbital contributes
to the Auger matrix element, the radial part of this com-
ponent is given by

4~
Y,

* (k)g, (r) =
r 4irYtm(k)Ci(ek, r), r ~ ro

(20a)

(20b)

where gt (r) is defined by analogy with g2 2(r) in (19).
This means that the continuum orbital to be used coin-
cides with the (lm) component of the LS wave function,
scaled according to Eqs. (16) and (17), as far as to the in-
termediate asymptotic region and then with its analytic
continuation in terms of a shifted Coulomb function.
However, since the Auger matrix element in (4) is practi-
cally insensitive to the asymptotic behavior of the contin-
uum orbital, in the calculation of 8'& we have used only
its LS part properly scaled as shown in (20a), thus avoid-
ing the problem of the integration over finite volumes.
Note that in the calculation of 8'& one has to take into
account also the fact that the bound orbitals of the initial
and final states are mutually nonorthogonal since they

ic region, together with a few data defining the scattering
basis sets. The stability of these parameters with respect
to the position of the matching point represents a proof
of the proper quality of the basis sets used. We observe
that the value of the scale factor NI is practically the
same for all the states, while the phase shift 5I is mainly a
function of 1 going approximately at 5&-5(l,s)/(1+1)
where 8(l, s) is a smooth function of 1 and of the spin
number s.
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TABLE II. Values of the matching parameters: NI and 5I, calculated at various matching points ro,
for all the Auger states of interest. In column 2 we report the number and type of functions and the
maximum (a,„) and minimum (e;„)values of the orbital exponents of the scattering basis functions
used to calculate the Auger decay rates. All the quantities are given in atomic units.

State

Scattering basis set
Number and a values of

type of function orbital exponents Ni

1S(2
—12 —1)

'P (2s '2p '
)

'P (2s '2p '
)

'S (2p '2p '
)

'D (2p '2p '
)

15 p

15 p

15 s

20 d

0,„=82.1943
(I;„=0.0071

a,„=44.7795
(x;„=0.0086

a „=139.3347
(I,„=0.0063

a .„=58.6488
a;„=0.0037

a,. „=56.9479
a;„=0.0494

1.90
1.92
1.94
1.96
1.98
2.00
1.90
1.92
1.94
1.96
1.98
2.00
1.90
1.92
1.94
1.96
1.98
2.00
1.90
1.92
1.94
1.96
1.98
2.00
1.90
1.92
1.94
1.96
1.98
2.00

0.965
0.965
0.966
0.966
0.965
0.965
0.960
0.959
0.959
0.959
0.959
0.959
0.963
0.963
0.962
0.962
0.963
0.964
0.963
0.963
0.962
0.962
0.962
0.962
0.967
0.967
0.967
0.967
0.968
0.968

1.821
1.820
1.819
1.817
1 ~ 816
1.815
1.009
1.009
1.008
1.008
1.008
1.008
0.954
0.953
0.952
0.952
0.953
0.953
1.783
1.781
1.780
1.779
1.778
1.778
0.569
0.569
0.569
0.568
0.568
0.567

derive from different SCF processes, and that, because of
the antisymmetrization of 0')3), in (5), it is not necessary
to introduce explicitly the orthogonalization of g& & to
the bound orbitals of 8&.

Finally in Tables III and IV we summarize our results,
respectively, for the Auger energies and the partial and
total Auger rates of various decay channels from
Ne[ S ( 1s '

) ] and compare them with the results ob-
tained by Kelly in Ref. 22 using a numerical technique

and also with the experimental values reported in Refs.
23 and 24. Note that for the bound-state calculations we
have used an SCF basis set taken from Ref. 25.

With regards to the HF energies we observe that our
results, which are practically coincident with those of
Kelly, allow a very accurate estimate of the experimental
transition energies (the largest difference is less than
0.3%%uo). This fact is essentially due to the cancellation of
the correlation errors between the initial and final states.

TABLE III. Hartree-Fock energies (EHF ) and energy differences with respect to the initial state of
Ne[ S(ls ')], calculated by us (bE„F),by Kelly (hEH„) (Ref. 22) and compared with the experimen-
tal values (Ref. 22). The energies are given in atomic units, while the energy differences are in eV.

State

S(1s ')
'S (2s '2s '

)

'P(2s -'2p -')
P(2s '2p ')
'S(2p '2p ')
'D (2p '2p ')

EHF

—96.625 752
—124.076 682
—124.954 194
—125.400 826
—126.060 552
—126.246 933

746.97
770.85
783.00
800.95
806.02

~EHF

746.99
770.86
783.01
800.97
806.04

~Eexpt

748.0+0.1

771.4+0.1

782.0+0.1

800.4+0.1

804.2+0.4
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TABLE IV. Partial and total Auger rates for the decay process from Ne[ S( ls ')], calculated using

our method ( W), using our simplified approach ( W) described in Sec. III and calculated by Kelly
(W~). In the last column we report the experimental values measured by Koerber and Mehlhorn

( W~M ) (Ref. 23) and also the total Auger rates measured, respectively, by Gelius et al. ( WG") (Ref. 24)

and Koerber and Mehlhorn ( WK& ). All the quantities are given in 10 a.u.

State

'S (2s '2s '
)

'P (2s '2p '
)

P (2s '2p ')
1S(2p

—12 —1)

'D (2p '2p ')

Total

1.0017
2.1765
0.7845
0.4427
5.6408

10.0462

1.0131
2.2038
0.8289
0.4749
5.6909

10.2116

0.9508
2.0335
0.7888
0.4560
5.6849

9.9140

W~M

0.35+0.07
0.96+0.19
0.35+0.07
0.55+0.11
3.28+0.066

8"" =5.49+0.51
WG" =8.452+0.73

With regards to the Auger decay rates instead, we want
to point out that our method, based on expansions of the
potential and the orbitals in terms of finite basis sets, is
able to reproduce, within an accuracy of about 7%, the
Auger rates calculated by Kelly using a numerical pro-
cedure, the residual discrepancies being attributable to
the fact that Kelly approximates the transition matrix
elements by means of the Wentzel formula instead of us-
ing the complete expression given in (4) with different or-
bitals for the different final states.

Finally, we observe that our Auger decay rates, calcu-
lated in the limit of an independent-particle approxima-
tion for the various states, differ appreciably from the ex-
perimental values, even if a comparison made between
the total Auger rate calculated by us and that measured
by Gelius et al. —see Ref. 24—reduces this difference to
about 19%. It is clear that to have a better agreement
with the experimental data the inclusion of the correla-
tion effects is essential.

However, since by remaining inside an independent-
particle description of the states one cannot hope to
reproduce the experimental data beyond a certain limit
and, on the other hand, going to molecular problems,
other effects—like those related to the coupling between
electronic and nuclear motion —become relevant, it can
be interesting to look for a simplification of the technique
that allows an easier but still su%ciently accurate
(b (10%) estimate of the Auger decay rates obtainable
from the full exploitation of our method. Therefore in
this paper instead of giving the details of the technical
procedures necessary to apply our method to molecular
problems, where more than one partial wave in the ex-
pansion of g&k contributes to 8'&, we show how results,
comparable with those previously obtained, can be de-
rived simply by looking at the behavior of 8 p as a func-
tion of the scale parameter q. From this analysis we will
derive a simple way for estimating 8 &, that will be used
in Sec. IV for predicting the Auger spectrum of the LiF
molecule.

Let us consider now the behavior of the Auger decay
rate 8'& when the scattering basis set is changed by scal-
ing the orbital exponents of the scattering basis functions
of a given symmetry. The effect of this change is to shift
the eigenvalues of the projected I"'I in such a way that

one can finally obtain one eigenvector at the Auger ener-

gy of interest (obviously the more reasonable way of do-
ing this is to change q until the closest eigenvalue reaches
the Auger energy).

In Fig. 4 we show, for all the states of interest, the be-
havior of 8'& as a function of the distance from the

W

9.

24.

W 22.

20,

10 ah

W 8

6. I

5.0

45

4.0
JK

60.
I

W

h,E

52.
I

b,E

FICx. 4. Behavior of W& as a function of the dift'erence (AE)
between the corresponding Auger energy and the eigenvalue of
the projected Hamiltonian closest in energy for all the states of
interest. The sequence of states is the same one used in Tables
II—IV, 8'p is given in 10 atomic units, and bE in atomic
units.
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Auger energy of the closest eigenvalue of the projected
Hamiltonian, it being clear that such a distance is a sim-
ple function of the scale factor q.

The main conclusions that one can draw from these
plots are the following.

(a) W& is variationally stable when the Auger energy is
very close to an eigenenergy of the projected P&. We ob-
serve that the minimum of these curves does not coincide
exactly with the Auger energy, but is shifted a little bit
toward higher energies. However, such curves are so flat
near the minimum that the difFerence between the value
of 8'& at the minimum and that at the Auger energy is of
a few parts in 10 .

(b) A sufficiently accurate estimate of W& can be sim-

ply obtained by taking the geometrical average between
two adjacent minima and maxima of 8 &, whose distance
from this average values is at most of the order of 15%.

Note that in Fig. 4 we have shown the presence of a
maximum at energies smaller than the Auger one, where
usually the density of eigenstates of the projected Hamil-
tonian is higher, but another maximum, practically of the
same magnitude as the previous one, is present also at en-
ergies greater than the Auger one. The fact that these
two maxima of W& are very similar in magnitude elimi-
nates every ambiguity in the averaging process.

The results obtained using our simplified approach are
summarized in the third column of Table IV and corn-
pare very well with our previous ones, the largest
difference being of the order of 7%%uo.

Because of the very satisfactory performance of this
simplified approach, we have applied it also to the predic-
tion of the Auger spectrum of the LiF molecule, estab-
lishing also in this case a confirmation of the variational
stability of 8'& when there are eigenvectors of the pro-
jected F& whose eigenvalues are close to the Auger ener-

gy and obtaining in this way a very satisfactory reproduc-
tion of the experimental spectrum.

State

'X+
4o.4o. 'X+
3o.4o. X+
3o 4' 'X+
3o3o 'X+

4o m+ H

4~ 'rr
3o.v;+ 'H
3o m+ 'rI

SBS No. 1

6dF+4dLj
6dF+4d
6$F +4$L;
6$F +4$L;
6sF+4sL,

6PF +4PLj
6dF+4dr j

6PF+4PL;
6PF +4PLi

6dF+4dL;

SBS No. 2

(6d F+4d L; )+(3pF+2pL; )

(6dF+4dL;)+(3pF+2pLj )

(6$F+4$Lj )+(3pF +2pLj )

( 6$F +4$ Lj ) + ( 3p F + 2p L j )

(6$F+4$L; )+(3pF+ 2pL] )

(6pF+4pLj )+ (3d F+2d Lj )

91F+6dL;
(6pF+4pLi)+(3dF 2dL;)
(6pF+4pL; )+(3dF+2dLi )

9dF+6d

account —and only partially —the presence of the other
electrons. Therefore it is quite interesting to see how
eft'ective the LS approach is for constructing a continuum
orbital, leading to better predictions of the experimental
Auger rates.

To this end we have applied the present method in the
simplified form described at the end of Sec. III B, using
for the bound orbitals the SCF basis set given in Ref. 5
and calculating the transition rates by means of the
geometrical average between two adjacent minima and

20.0

1$.0 „

16.0

TABLE V. Number, type, and center of the basis functions
of the two scattering basis sets (SBS's) used for each decay state
of the LiF molecule, classified according to the hole
configuration.

IV. CALCULATION OF AUGER DECAY RATES
FOR THE LiF MOLECULE

We have applied our method to the calculation of the
Auger transition rates of the LiF molecule ionized in its
deepest shell, with a view to comparing the results ob-
tained through this new approach with the recent calcu-
lations performed by the authors on the same molecule,
using a simplified description of the continuum orbital as
an orthogonalized plane wave. Moreover, for such a
molecule sufficiently accurate measurements of the Auger
spectrum of gaseous LiF are available in the range of en-
ergy from 600 to 680 eV.

In particular, while for six of the 11 transitions taken
into account by the authors in Ref. 5 a satisfactory agree-
ment between calculated and experimental values of the
decay rates has been obtained (maximum relative error
—37%), for the remaining five transitions the predicted
values difFer from the experimental ones by a factor rang-
ing between 3 and 7. These discrepancies have been attri-
buted by the authors mainly to an insufficient description
of the continuum orbital inside the molecular region,
where only the orthogonalization procedure takes into

iI
13.0

12.0
W

11.0 .
10.0

-16 -12

W
10

FIG. 5. Behavior of W& as a function of the difference (hE)
between the corresponding Auger energy and the eigenvalue of
the projected Hamiltonian closest in energy for the following
states of the Lip molecule: 'X(3o. '3o '), 'H(3o 'm. + '),
'A(m. +'m '). W& is given in 10 atomic units and hE in atom-
ic units.
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maxima of W& considered as a function of the distance
between the Auger energy of interest and the closest
eigenvalue of the projected Hamiltonian.

We observe that because of the reduced symmetry of
the molecule an infinite number of (lm) components of
g+k contribute to the Auger matrix element in W&, and
therefore one should include various different types of
basis functions in the expansion of the scattering poten-
tial. In order to check the stability of our results with
respect to the inclusion of different types of scattering
functions centered on different positions, we have per-
formed our calculations with two basis sets for each state,
chosen in a way appropriate to the nature of the continu-
um orbital, as summarized in Table V. Furthermore, to
simplify our procedure we have used only one scale factor
(q) for each scattering basis set, with no distinction as to
type of basis function, and this fact produces a shift of
the position of the minimum of 8'& from the correspond-
ing Auger energy which is larger than in the atomic case
because of the presence of different contributions from
the different basis set components.

To check this point we present in Fig. 5 the behavior of

8'& as a function of the difference between the Auger en-

ergy and the closest eigenvalue of the projected Ham-
iltonian for the three states 'X(3o '30 '),
'II(3o ' lrr '), and '6( lvr 'm '). Furthermore we give
in Table VI the expansion coefticients of the correspond-
ing LS orbitals with respect to the basis sets of the eigen-
vectors of the projected F13 in order to evaluate the rela-
tive importance of these orbitals in the description of
+P, k'

Figure 5 shows that as in the atomic case the W&'s

have an oscillatory behavior and the largest difference be-
tween a maximum (minimum) of W& and the average
value is of the order of 15%; the main difference with
respect to the atomic case is that in this case the minima
suffer a larger shift from the Auger energy. To under-
stand the reasons look at the results of Table VI, where
we give the expansion coeScients of y& k with respect to
the eigenvectors of the projected F& classified according
to their dominant character and eigenvalue. These re-
sults show that among the eigenvectors of a given type
the most important one for the expansion of g& k is that

TABLE VI. Modulus of the expansion coefficients (a, ) of three LS orbitals, with respect to the basis set of the eigenvectors of the
projected P&, classified according to their eigenvalue (e, ). Note that j=s,p, d indicates the dominant character of the eigenvector
and c, gives the position of its major component, while c.k gives the energy of the Auger electron in the three states. Directions of k
have been chosen in which all the components of the basis sets contribute. All the quantities are given in atomic units.

Auger electron
energy

c.p
=22.069 4.485

18.792
23.462
45.068

1.298
9.325

34.008
107.990

0.039
0.683
0.409
0.053

0.007
0.074
0.164
0.040

F
F
F
F

Li
Li
Li
Li

'X+(3o '30. '
)

5.074
7.519

38.993
74.304

0.778
12.714
31.103

0.078
0.085
0.180
0.072

0.009
0.258
0.572

Cp

F
F
F
F

Li
Li
Li

ad Cd

c.k
=22.807

'H(30. '1~ ')
8.800

24.817
57.749

118.645

4.234
14.113
44.402

125.593

0.007
0.437
0.055
0.035

0.066
0.301
0.240
0.084

F
F
F
F

Li
Li
Li
Li

34.490
124.475
330.157

46.602
156.989

0.492
0.110
0.064

0.449
0.147

F
F
F

Li
Li

ck =23.888
'6(1n '1m ')

11.184
23.896
48.430
94.320

12.488
27.788
60.796

136.572

0.030
0.788
0.038
0.032

0.111
0.753
0.153
0.087

F
F
F

Li
Li
Li
Li
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TABLE VII. Values of the absolute ( W„' ') and relative ( W„"') Auger transition rates for the LiF
molecule calculated using our method with two scattering basis sets defined in Table V, and compared
with the corresponding values ( W' ') and ( W"') given in Refs. 5 and 27 and with the experimental
quantities ( W,"„'~) (Ref. 26) for various decay states. Note that the experimental value of the total
Auger rate has not been clearly determined. The absolute rates are given in 10 a.u.

State

1 m+m 'X+
2 4o4o 'X+
3 3o4o X+
4 3o.4o. 'X+
5 3a3c 'r+

6 4~~
7 4o~+ 'rI
8 3om+ 'H
9 3o~ 'H

10 a+a+

W„,

Wabs
1

0.6206
0.7356
0.2358
0.6467
0.8866

0.0030
1.8178
0.4934
1.1801

1.8393

Wrel
1

0.3374
0.4000
0.1282
0.3516
0.4820

0.0017
0.9883
0.2683
0.6416

1.0000

8.4590

Wabs
2

0.6232
0.7315
0.2363
0.5598
0.8902

0.0030
1.8184
0.4934
1.1819

1 ~ 8401

8.3779

Wrel
2

0.3387
0.3975
0.1284
0.3042
0.4838

0.0017
0.9882
0.2681
0.6423

1.0000

abs

0.3845
0.7439
0.7643
0.0675
0.3435

0.0066
2.2505
1.4714
0.1436

2.2842

8.4600

rel

0.17
0.33
0.34
0.03
0.15

0.003
0.98
0.64
0.06

1.00

Wexp

0.27
0.32
0.07
0.17
0.21

0.02
0.91
0.20
0.42

1.00

having its eigenvalue closest to the Auger energy, while
the coefficients of the other eigenvectors distribute quite
symmetrically around the dominant one. Therefore we
can generalize our conclusions, drawn from the atomic
case, by saying that the variational stability of 8'& corre-
sponds to the presence in each type of basis functions of
eigenvectors of the projected F& having eigen values
sufficiently close to the Auger energy. Note as a charac-
teristic feature of our method that when the scattering
basis set is not adequate to the problem, the plot of 8'& as
a function of the distance from the Auger energy does not
exhibit a minimum, and this fact signals the need to im-
prove the quality of the representation.

Finally in Table VII we compare the Auger rates, cal-
culated using our method with those obtained by the au-
thors in Ref. 5 with the experimental values. In these
results we can stress the following points.

(1) Using a LS wave function for the outgoing electron
we have significantly improved our previous results with
respect to the experimental values. In particular, for
transitions 3 and 4 the error has been reduced from a fac-
tor of -5 to a factor of -2 obtaining also the correct ra-
tio between the two values, for transition 8 from a factor
of —3 to about 30%, and for transition 9 from a factor 7
to about 50'Fo. With regards to transition 6, the relative
value, which is very small, remains practically unchanged
with respect to that in Ref. 5, but in this case the experi-
rnental value is about of the same order of magnitude as
that for the forbidden transition to the state
X (m. +'m. '): W,"'„' =0.01. This means that to repro-

duce this result the inclusion of the effects due to the cou-
pling between electronic and nuclear motion is essential.
The only transition for which the new relative decay rate
differs from the experimental value more than in Ref. 5 is
that relative to the state 'X(3cr '3a. '). However, we
observe that such a state is the analog of the
'S(2s '2s' ) for the neon atom, and, in fact, the abso-
lute decay rate we have obtained is of the same order of
magnitude as that for the atomic transition; therefore, we

conclude that our value is a correct estimate of the Auger
decay rate obtainable using an independent-particle ap-
proach, the discrepancy with respect to the experimental
result being due mainly to correlation effects.

(2) Comparing the values obtained using two diff'erent
basis sets, we observe that our results are not too sensitive
to the quality of the basis set used, provided that it
guarantees the variational stability of 8'&. Finally, we
point out that as far as the total Auger decay rate is con-
cerned, our result differs by less than 1% from that ob-
tained using an orthogonal plane wave for the outgoing
electron.

V. CONCLUSIONS

In this paper we have proposed a method that for the
limit of an independent-particle description of the states
and making use of expansions in terms of discrete basis
functions both of the orbitals and of the potential can be
easily applied to the study of the Auger effect in mole-
cules.

The results obtained in our test calculations on the
neon atom show that using our method one can repro-
duce very well results obtained by means of numerical
techniques, the application of which to molecular prob-
lems would present enormous difficulties.

An accurate prediction of the experimental Auger
rates requires the inclusion of the correlation effects and
also, in several cases, of the coupling between electronic
and nuclear motion. However, as a preliminary step in

many molecular problems it is useful to have an accurate
estimate of the best values of the transition rates obtain-
able using an independent-particle approach. To this
end, we have proposed a simplified version of our method
that satisfies this need and furthermore has allowed us to
obtain a very satisfactory reproduction of the experimen-
tal Auger spectrum of the LiF molecule.
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