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M. J. O'Callaghan and J. Cooper
Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute ofStandards and Technology

and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440
(Received 9 December 1988)

Line-shape expressions for two-step resonant excitation in the presence of low-pressure per-

turbers are derived. These expressions allow for velocity-dependent broadening rates and are well

suited for studying the line-shape contributions due to coherent excitation, incoherent excitation
(due to dephasing collisions), interference between coherent and incoherent excitation, and

velocity-changing collisions. Using the sodium 3S-3P-4D system perturbed by noble-gas atoms as

an example and assuming C6 interaction potentials, line shapes at a variety of laser detunings

(Doppler selected atomic velocities) are numerically calculated to study variation in the line shape

due to competing excitation paths and speed-dependent collision rates. In order to deal with both
the line core and the line wing a composite collision kernel consisting of a I.orentzian kernel for
small Av, collisions and a Keilson-Storer kernel for large AU, collisions is used. It is also demon-

strated how the inelastic (3P3r2-3Plr&) velocity-changing collision kernel may be obtained from ex-

perimental data at low pressures. Theoretical line shapes and broadening rates are compared with

experiment.

I. INTRODUCTION

Developments in the theory of two-photon —two-step
pressure-broadened line shapes have made it possible, in
principle, to extract information about both collisional
velocity changes (VC) and collisional phase shifts (of the
electronic wave functions) from experimentally observed
line shapes. Due to the velocity-selective nature of the
excitation process, it should also be possible to observe
the speed dependence of both of these line-broadening
mechanisms. However, the theoretical and experimental
work to date has generally taken the approach of fitting
specific collision models to observed line shapes rather
than attempting an unprejudiced extraction of this funda-
mental information from the observations. Also, the
speed dependence of the line broadening and the effect of
small VC have largely been neglected. It is the purpose
of this work, together with the accompanying experi-
ment, ' to study how these line-broadening mechanisms
manifest themselves in the complete line shape and to
demonstrate how these phase-shift and VC contributions
may be isolated and measured.

The type of experiment of interest here is illustrated in
Fig. 1. The atomic system consists of a ground state
(state 0), two fine-structure states (states 1 and 2), and a
final state (state 3). In the experiment of Ref. 1 these cor-
respond to the Na 3S,/2, 3P, /2, 3P3/p and 4D5/~ (or
4D3/p) states, respectively. Hyperfine structure as well as
m degeneracy wi11 be neglected. One single-mode cw
laser (co, ) excites atoms from state 0 to state 2 and a
second laser (co&) is tuned to either the 1~3 or 2~3
transition with the state-3 population being monitored
through either direct or cascade fluorescence. '

m
&

is
tuned within the Doppler resonance line of the 0-2 transi-
tion, and only ground-state atoms whose velocity brings
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FIG. 1. Illustration of the atomic energy levels and transi-
tions considered in this work.

them into resonance with co, will be excited; the "initial"
state-2 velocity distribution will be quite narrow in the
direction of the laser (z). In the absence of collisions the
width Av, of the v, distribution will be equivalent to the
natural linewidth hv, of the transition (b, v, /A. =b. v„).

This is 10 MHz in the case of sodium, compared to the
1.7-GHz Doppler linewidth. In directions perpendicular
to this axis the velocity distribution is still thermal
(Maxwellian). The co& laser beam is counter or copro-
pagating with the co& beam, so it excites this narrow
state-2 U, distribution to state 3 when the Doppler-shifted
resonance condition is satisfied. However, this 2-3 transi-
tion has a natural width which also contributes to the co2

line width.
When perturbers are present collisions will redistribute

and broaden this initial narrow U, distribution and

broaden the linewidths. The state-3 fluorescence line
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shape, obtained by fixing co& while scanning ~2, maps out
this state-2 U, distribution, but with additional complexi-
ties due to line-broadening and coherence effects. Inelas-
tic collisions will cause transitions between states 1 and 2
as well as VC, which will be detected in the cu2 scan of the
1-3 transition. These VC collisions are characterized by a
collision kernel W, (v~v') which is the rate at which
atoms in state i with velocity v are redistributed to state j
with velocity U'.

Laser frequencies within many Doppler widths of line
center are well within the impact limit, and the effects of
collisions on the electronic wave functions are well
characterized as dephasing rates. When thermally aver-
aged, these velocity-dependent broadening rates are the
same as absorption or fluorescence line-broadening rates
measured in the Lorentzian wings of pressure-broadened
Voigt line shapes.

This resonant, two-frequency excitation process has al-
ready been studied both theoretically and experimental-
ly. ' ' ' ' With the exception of recent experimental
work by Veza, Lawrenz, and Niemax" who used two-
frequency excitation to study Ca line shapes broadened
by Ne, the velocity dependence of collisional effects on
such line shapes has not received much attention. As cu&

is moved from the center of the Doppler line, where
v, =0, into the Doppler wing the collision velocities in-
crease. Since both the dephasing rates and collision ker-
nels are U, dependent ' different linewidths and line
shapes should be observed. In this work numerical line-
shape calculations are performed to demonstrate speed-
dependent effects. Another aspect that has not received
much attention is the problem of determining collision
kernels from observed line shapes. Previous work has in-
stead concentrated on comparing observed line shapes
with those calculated using simple collision models. '
In addition, co2 line shapes have not been analyzed in the
regions where both phase-shift broadening and velocity
changes contribute. Here we develop low-pressure line-
shape expressions in a form that facilitates determination
of elastic and inelastic collision kernels as well as phase-
shift broadening from experimental line shapes.

II. LINE-SHAPE EXPRESSIONS

Following Berman, ' ' we use the density-matrix for-
malism to describe the four-level system (Fig. 1). The
equation of motion for the density-matrix elements is

p, (R,v, t)= vVp J(R,v,—t) i Ajp~(R, v,—t)
—

—,'(y;+y) )p, .(R, v, t)

nates and velocity while r are electronic coordinates.
As discussed in Sec. I, a typical experiment involves

observing (through fluorescence) the total state-3 popula-
tion. Accordingly, the goal here is to compute
Jp33( v )d u. Here co, is tuned near the Q2O resonance
while co2 may be tuned near either Q3$ or 03].

The collisional component of Eq. (1) [p,.j ]„i, is written
in terms of collision kernels W;J(v~v') which specify
the probability of an atom in state i and moving with ve-
locity v being scattered to state j with velocity v' plus
terms which characterize the effect of dephasing col-
lisions on the electronic wave functions. All of these
terms are functions of quantum-mechanical differential
scattering cross sections. The effect of collisions on diag-
onal density-matrix elements is

[p;;(R,v, t)]„„=g —I, (v)p, , (R,v, t)
J

+ 8'., v'~v

Xp, (R,v', t)d u' (3)

Here y', (u) and 5,~(u) represent, respectively, a speed-
dependent broadening and shift of the line due to col-
lisions and u = ~v~. These terms are due to collisional de-
phasing and (when thermally averaged) are the same
quantities obtained in studies of pressure broadening in
the wings of Doppler lines.

Since we are interested only in the weak-field limit, we
first solve Eq. (1) for states 0, 1,2 under the influence of
co, . These solutions are then used to solve for p33 in the
presence of co&. The rotating wave approximation is
used. ' Since only steady-state solutions are of interest
here, we make the following substitutions:

where d U' indicates a volume integral over the space of
v'. The sum is over all states j which are connected to
state i by collisions, due either to velocity changes (elastic
collisions, j =i) or state-changing collisions (inelastic col-
lisions, jXi). The loss rate I; (v) from state i and veloci-
ty v to state j is related to the collision kernel by

I; (v)= f 8; (v —v')d u' . (4)

The effect of collisions on off-diagonal matrix elements is
more complex. In the limit that the perturber mass is
much less than the active atom mass, or that the scatter-
ing functions in the two optically connected states are
very different from one another, the following approxi-
mation may be used ' ':

+ —(i~[E(t) er, p]~j )+[p;,(R,v, t)]„„, i(ki R co&t)
p2O(R, v, t) =pzo( v)e

i (k R —cu~t)
p32(R, v, t) =p32(v)e

(6a)

(6b)
E(t)=E, cos(k, R co, t)+Ez co.s(k—; R —co2t) . (2) i [(k)+kii R —(co)+co2)t)

p30 R, v, t)=p30 v e (6c)
Here 0;, =(E, —E.)/R, y, are the radiative decay rates,
[p;, ]„» represents the effect of collisions, and E(t).er
represents the potential due to the radiation fields, where
e is the electron's charge. R and v are the atomic coordi-

p, , (R.v, t)=p;;(v) . (6d)

Assuming p22 &&poo, we see that the equations for states
0, 1,2 become
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1
( yz+ I z)pzz( v) = ——Im[ Vz0p02( v) ]

+ 8'22 v'~v P22
v' d v'

+ f 8',2(v'~v)p»(v')d v',

(y, +r, )p„(v)= f W„(v'~v)p„(v')d'U

+ 8'2, v'~v P22
v' d v',

p00(v)=(7Tu ) e '" " u =(2kTlm)'

(7a)

(7b)

(7c}

pl 1(V ) = g U
1 1 U12p22( V )

n=o
(9)

Using this solution in Eq. (Sa) and using the subsequent
solution for pzz in Eq. (9), we obtain

m

P22(v} g U22+ U21 2 Ul1 U12 L22
n=pm=0

The reason for this will be evident below in Eqs. (9) and
(10). A solution of Eq. (Sb) may be written as an infinite
series' of products of the U,- operators

~20
(b 20+ 1rzo)pzo(v) = —

~,
poo(v),

2A
(7d)

—[1+Uzz+( Uzz+ Uzi U, z)+ ]Lzz(v)

=(1+Fzz )Lzz(v), (10a)

y,, =
—,'(y, +y )+y', (v),

r, =r„(0)+r„(U),
r, =r„(U)+r„(U),

620 620 kl '
V& 620 ail f120 620( U )

V„=(2IE,.rlo) .

(7e)

(7g)

(7h)

Note that even though the terms defined in Eqs. (7e)
through (7h) are functions of v they are written, e.g. , as I
rather than I (v). This is done in order to keep subse-
quent expressions from becoming too cumbersome.

It has been assumed that co, is weak enough such that

ppp is unchanged from its equilibrium distribution. In
this limit Eq. (7d} is solved for p0z and the following ex-
pressions for p» and pzz are then obtained from Eqs. (7a)
and (7b).

p»(v) = g U» Ulz X Uzz
n=o m =0

m

+ Uz, g U'„U, z Lzz(v)
1=0

=FlzLzz(v) . (lob)

The sum of operators in Eq. (10a), defined as Fzz,
represents all of the possible collision sequences which
begin and end in state 2, while Eq. (10b) contains all of
the possible collision sequences, defined as F,2, which be-

gin in state 2 and end in state 1.
In solving for p33 there are two cases to consider:

co2=632 and co2=0,». In the first case the equations for
the final density-matrix elements (using the same substi-
tutions and definitions as before) become

1
yp, = ——Im(V P )

—I p

pzz
—Lzz + zl p» + zzpzz

pll(v) = U, 2P22(v)+ U, iP11(v),

r20
Lzz(v) = P00( V )

2&'(rz+rz) ~'o+y'o

(8a)

(8b)

(8c)

+ 8'33 v'~v P33 v' d'v',

1
32 y 32 }P32 32P22+ P30 V02

2A 2A

1
(~30+ & r 30)P30= —

~ V32P20
2A

(1 la)

(1 lb)

(1 lc)

U;,P,, (v)= f W, , (v'~v)pi, (v')d'v' .+r,
Lzz(v) is in effect the state-2 velocity distribution initially
produced by the ~] radiation before velocity-changing
collisions occur. The operators U," represent velocity-
changing collisions which take a state-j velocity distribu-
tion p "(v) and transform it to a state-i distribution

p,', (v)= U,"p "(v). It is important to note that the order
of the i,j subscripts used for the U, operators is opposite
that which is used for the kernels W, [note Eq. (8d)].

~32 32 k2 V, 632 ~2 +32 ~32 (11d)

530 630 —
( kl + kz ) v, 530 (Ctl

1
+

COz ) 030 530

(1 le)

V32= &3IE,~ rl»,
I 3=I 33(v) . (1 lg)

We have made the weak-field approximations p33((p22
and p3z((pz0. Combining Eqs. (11b) and (1 lc) with Eqs.
(7d) and (10a), p3z is obtained,

V32 I V20 I' 2 r20

y2+I 2 g', +&,
1 1 poo

~20+ ~ 720 ~30 ~ +30

2 1 720+ F» 2 POO
~32+ & @32»+ 2 ~ 20+ Xzo

(12)
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Before using Eq. (12) in Eq. (1 la) recall that what is measured is fp33(v)d v. When performing this integration the
collisional terms of Eq. (1 la) add to zero, i.e., velocity-changing collisions (within state 3) cannot alter the total state-3
population. The line-shape expression is then (for o32= 032)

I v321'I &201'
p33(~1 ~2) 4 f8R y

y30 2y20 —I 2 y32

(g 20+ y20)(g 30+y30) y2+ r2 (g 2o+ y so)(~ 32+ y32)

+ (y32 y30 y20)(~32~30 Y32Y30)+(fi30 ~20 ~32)(3 32~30+1 30~32)

( ~ 20+ ) 20)( ~ 32+ y32)( ~ 30+ y 30)

2y32 1 y20+ — F22 P00 d V

~ 32+ y32 y2 2 ~ 20 y20
(13)

The first integrand of Eq. (13) is present even in the absence of collisions and shall be referred to as the "coherent" term.
The second integrand is due to phase-disrupting collisions without velocity changes, and is referred to as the in-
coherent" term, while the third integrand ("interference" term) is due to interference between the coherent and in-
coherent excitation processes. The final term, containing the F22 operator, contains the effect of velocity-changing and
(2~1) state-changing collisions. Since the excitation process leading to Eq. (13) does not require the presence of (2~1)
inelastic collisions we refer to it as the elastic line shape and hence designate it as p".

For the second case (co2=0» ) the line-shape expression is

I
I 201 y31 1 'Y20

4 —2 2 12 2 Poo
4A y, A3, +y3, y2+r2 520+y20

(14)

As compared to p33(c01 cl)2) this line-shape expression
contains only terms due to velocity- and state-changing
collisions (through the operator F,2). This results from
the fact that all inelastic collisions disrupt the phase,
leaving only the incoherent term. Since it is due to the
excitation process 0~2~(collision) —+1~3, we refer to
it as the inelastic line shape.

III. COLLISION KERNELS

As noted earlier, the initial state-2 velocity distribution
L22(v) is thermal in directions transverse to k1 and
effectively Lorentzian in the direction parallel to k, (due
to velocity-selective excitation by cv, ). Defining a z axis
such that k1=k1z we adopt the approximation
p;;(v)=p, , (v, )p, , (v, ), where v, are velocity components
transverse to the z axis. It is assumed that to lowest-
order collisions affect p, , (v, ) but not the thermal p;;(v, ).
Accordingly a one-dimensional kernal is defined such
that

f W;;(v' —v)p;;(v')d v'

( ") 1
P33 VC 4~4y3 y2 2+r

y32, y20Xf, , F22, , poo( v. ) d v, ,
~32+ Y 32 ~20+y 20

22 U22+( U22+ U21 12 )+
(16a)

(16b)

P33 44& y3 y2+I 2

y31, y20
X f F', 2 poo(v, ) dv, , (16c)

~ 31+y 31 ~ 20+ y 20

F12 —U, 2+( U, 2U22+ U1, U12 )+ (16d)

we assume correctly that the initial v, distribution is
sharply peaked. This will be discussed further in Secs. IV
and V. With these approximations the line-shape expres-
sion p33 [Eq. (14)] and the velocity-changing part of p33
[Eq. (13)]become

This, in turn, requires

=p, , (v, ) f W;;(v,
'

v2)p;;(v,')dv, ' .
U~pj) (v, ) = f WJ;(v,'~v, )pj~(v,')dv, ' .

1

y;+I,
(16e)

W;;(v,'~v, )=p;, '(v, )f W, , (v'~v)p;;(vI)d v,
' . (15)

In the velocity-changing components of the line-shape
expressions [Eqs. (13) and (14)] we make the simplifying
approximation of replacing the various velocity depen-
dent y(v), I (v) by appropriately averaged values y, I.
These are taken to be constants in the v, integrations
below, but they depend on 620 as this determines the
center of the initially excited v, distribution. In essence,

The transverse velocity integrals have been performed in
order to arrive at expressions which are now in terms of
one-dimensional collision kernels. The primes on the
U', F' operators are used to distinguish these one-
dimensional operators ( v, ~v,') from U, F operators
which act in three dimensions (v~v').

In order to use these line-shape expressions the kernels
must be known. Calculating kernels for realistic intera-
tomic forces is a difficult task. Due to their relative com-
putational simplicity the Keilson-Storer kernel and one
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derived for hard-sphere scattering have commonly been
used. ' ' ' In experiments performed by Laio et al. ,

'

which were at perturber densities where several collisions
occur during a radiative lifetime, it was concluded that
either Keilson-Storer or hard-sphere models produced
reasonable agreement with experiment in the line-wing
region corresponding to large VC, with the hard-sphere
kernel producing the best results for the heavier per-
turbers. However, agreement near the resonance, corre-
sponding to small velocity changes, was poor. Haverkort
et al. ' have successfully used a composite Keilson-
Storer kernel to fit their results under similar conditions
while studying both elastic and inelastic collisions.

Ho and Chu' have calculated collision kernels for Ar-
Ar collisions and Na(3s)-Ar collisions assuming a C6 po-
tential. The kernels they arrived at were qualitatively
similar to the Keilson-Storer or hard-sphere kernel for
large Av, but substantially di8'erent for small Av, . For
computational simplicity we choose to represent this type
of behavior with a narrow Lorentzian, which describes
small-hv, collisions, plus a Keilson-Storer kernel which
describes large-hv, collisions,

I
N

4
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CL 3
hJ

CI
bJ

1

O

Mphil

A ~~~~~As=. .".; "
~

0 1

(k~ vz "~ vz ~~2~ (GHz)

FIG. 3. Comparison of the inelastic kernel, (Na
3P, /z ~3P, /, caused by Ar) determined in the experiment of
Ref. 1 to a phenomenological kernel, ———,of the type given
in Eq. (17). See text for details.
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LU

W„(v,
'

u, )=r„(u,')—
ir (u,
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i 1/2
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au =(1—a')'"u .

—(v —av j /(Au)2 Z (17a)

(17b)

-0.0 5
I 1 )

0
(vz vz) /0
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FICx. 2. Comparison of Ho and Chu's Na(3S)-Ar kernel for
U, =0, — to one composed of a Lorentzian plus a Keilson-
Storer, .

Here a ( ( 1) is a parameter that depends on the
perturber-emitter mass ratio and A, B determine the rela-
tive contributions of the two normalized component ker-
nels A +B =1. The Na(3s)-Ar kernel of Ho and Chu
(for v,'=0) is compared to this composite kernel in Fig. 2
for 52o=0.0. Here we used 3 =0.924, B =0.076,
a=0.2, and the full width at half maximum (FWHM) of
the kernel is 0.0135u, which corresponds to 9 MHz at the
temperature (300 K) used for Ho and Chu's calculation.
These values were obtained by fitting the kernel of Eq.
(17) to the kernel of Ho and Chu. The value of a agrees
with that expected for Na-Ar collisions.

In Ref. 1 the inelastic kernel W2, (v, ~u,') has been
determined from experiment for Na perturbed by Ar.
Having replaced u„u,' by kiu„kiu, ' (where k, =co, /c),
this experimentally determined kernel is compared to the
composite kernel of Eq. (17) in Fig. 3. The parameters
used for the composite kernel are 2 =0.8, B =0.2,
a=0.2, and k&m/2m=125 MHz. The kernels have been
aligned so that their centers (defined at their half heights)
are coincident and their areas have been normalized to 1.
It can be seen from Fig. 3 that the small Av, part of the
experimentally determined kernel exhibits an asymmetry
not found in the Lorentzian part of Eq. (17). However,
the discrepancies between these two kernels are small
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enough that Eq. (17) represents a very good approxima-
tion to the actual kernel.

IV. LIMITING CASES

Before presenting the results from numerical evalua-
tion of Eqs. (13) and (14), it is useful to examine simple
limiting cases where some of the line-shape components
may be evaluated analytically. First of all we will make
estimates of y, etc. , using the initial excited-state velocity
distribution p22(v) calculated on the assumption (good to
lowest order) that subsequent velocity-changing collisions
are unimportant. We will then evaluate p33 for different

62o using simplified collision kernels.

A. Average collisional rates

The line-broadening coefficient y is proportional to
(v„) for C6 potentials, where v, is the relative veloci-
ty. For a Maxwellian velocity distribution the difference
bet een (v ~ ) and (v,„) ~, where v,„=((v„) )' is
less than 10%. This minor difference is due to the peaked
nature of the velocity distribution. We will assume that a
similarly small error is made by using v,„ for the col-
lisionally modified distribution which will also be strong-
ly peaked about some (different) value of v,„. Since the
C6 broadening coefficient also varies as T it will be
convenient to define an effective temperature T,ff ~v,„
such that y ~ T,tt. In order to arrive at an approximate
expression for T,& we must evaluate the following in-
tegral:

,'kT, ~= ,'p f f ~—v
—v

~
f—(v)f(v )d v d v . (18)

traditional measurements of pressure broadening of the
Lorentzian wing of Voigt line shapes. It will be shown
that numerical evaluation of Eq. (13) produces the ex-
pected T,~ dependence and so supports the validity of
these simple approximations.

B. 52p « QD

The first limiting case of Eq. (13) we shall consider is
for Azo &&QD, QD being the Doppler HWHM. When the
various y, I are replaced by their averaged (dependent on
b, 2o) values y, I, the coherent, incoherent, and interfer-
ence integrands depend only on v„so the dv dv in-
tegrals are easy to perform. Making use of the v, selec-
tivity of excitation due to co, (i.e., by using the 5 func-
tion), we replace poo(v, ) of Eq. (13) by

(

veau

)
' ~ exp[ —

( b,~o/k, u ) ]
and remove it from the integral. The coherent and in-
coherent terms are now convolutions of Lorentzians.
These are easily evaluated since the convolution of two
Lorentzians produces a Lorentzian. The interference
term is much more complex and will not be evaluated
here. As will be seen in Sec. V, when numerical calcula-
tions are performed (using Na-Ar broadening as an exam-
ple) the interference term is much smaller than the
coherent and incoherent terms but can nevertheless have
a significant effect on the width of the line. We will take
the limiting case of the kernel of Eq. (17) in which the
width of the Lorentzian part approaches zero and inelas-
tic collisions are neglected so I 2=1 22 (see Sec. V for fur-
ther discussion). In this limit the Lorentzian kernel is re-
placed by a 6 function

Wz2(v, —v,') = I 2&[ A 6(v, —v,')+BW~(v, ~v,')],
This is the average center-of-mass kinetic energy of the
collisions where p is the reduced mass, f (v) the active
atom velocity distribution, and fz(v ) the (Maxwellian)
perturber velocity distribution. We approximate the
state-2 velocity distribution f (v) to be proportional to
the following highly peaked distribution:

Uz2p(v, ) =

A +B =1 (21a)

I2
Ap+B Wz v,'~v, p v,

'
dv,

'

r, +~2-
(21b)

~l v2o I'
2

p (v)= 5(v —b /k )(m.u ) e22 ~2( + I )
z 20 1

(19)
This is the lowest-order term of Eq. (10a) in which the
narrow (relative to the Maxwellian distribution) Lorentzi-
an has been replaced by a 6 function, and the velocity
redistribution terms U, have been dropped. Using the
distribution of Eq. (19) (after being normalized) the in-
tegral of Eq. (18) is evaluated to obtain an expression for

eff&

T,ir=Tp[(1/m )+(1/m)( —', )[I+(Azo/QD) in2]] .

(20)
Here QD=(ln2)'~ k&u is the HWHM of the Doppler
line, and u is the most probable thermal speed as given by
Eq. (7c). As stressed earlier, for this to be valid, the ve-
locity distribution must be sharply peaked about a v,„.
At ~620/QD~ =0.424 we have T,~=T. At approximately
this detuning we expect y(620)=y, „, where y,„ is the
thermally averaged broadening coefficient obtained in

f Wx ( v, ~v,
'

)d v,
' = I . (21c)

Here Wx. (v, ~v,') is the Keilson-Storer part of Eq. (17).
In this approximation the collision operator Fzz [Eq.
(16b)] becomes (see the Appendix)

1F'
22 y2+BI 2

~l, +(),+I, )

BI2x g
@2+BI 2

WKsop= f Wx(v,' v, )p(v,')dv, ' .

'n
n

1

~Kso (22a)

(22b)

Here 8'Kso is an integral operator which represents the
effect of single collisions using a Keilson-Storer kernel.
When Eq. (22a) is inserted into the line-shape expression
Eq. (13), and using Eq. (16a) for the velocity-changing
component, the first term (A I 2z) of F22 simply intro-
duces a constant times the Lorentzians in 62O and 432.
This term and the incoherent term are proportional to
one another and can be combined. Making use of the ap-
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proximation that the large-hU, part of the velocity-
changing kernel varies slowly compared to the widths

y QQ /k J y 32 /k 2 we see that the Lorentzians being acted
upon by 8'KsQ may be approximated as 5 functions. We
make the substitution (y/ ir)/(b, +y )=5(b, —ku),

where the definition b, =b, —ku has been used [Eqs. (7h)
and (1 ld)]. We also specialize to k, =k, z and k2=ek2z,
where @=+1 corresponds to copropagating lasers and
e = —1 to counterpropagating. With these approxima-
tions the line-shape expression Eq. (13) becomes

v'ir —(a20/k) u) I 32 I I
I 20 I

P33
— e

4klu
'

8A r3y20

I
1+~k 2/k 1 ly 20+ y 30

[ (630 [1+ek2/k)]b2p) +(
I 1+ek2/ki ly2p+y3p)

2y 20
—Br2 y32+(k2/k i )y20

y +B1 (b3 —e(k /k, )b. ) +(y +(k /k, )y )2

2y20 ~ BP~ 5~0+ W x ~e +(p",, );„, ,
y2+BI 2 2. .=& y2+BI 2

~ ~ ~ ~ ~ ~ ~ ~ ~. J Wx v,'~e Wx(u,"~u,') Wx ~u, " dv, " du,"dv,'K z z K

(23a)

(23b)

In this expression the superscript (n —1) represents n —1

primes. The first Lorentzian of Eq. (23a) is the com-
ponent which appears in discussions of two-photon
Doppler-free line shapes and its width depends on wheth-
er the lasers are copropagating ( e = + 1 ) or counterpro-
pagating (e = —1). For counterpropagating lasers an
atom whose velocity causes one laser to appear red shift-
ed will cause the other to appear blue shifted. Conse-
quently when k, =k2 the sum of the photon energies is
unchanged (to first order in the Doppler effect) and is
equal to E3-EQ for any velocity. The result is that the
Lorentzian width is just y3Q. In the case of Na with no
perturbers this amounts to a FWHM of 3 MHz (com-
pared to a typical full Doppler width of around 1800
MHz). When the lasers are copropagating both are ei-
ther red or blue shifted as viewed by an atom and so the
Doppler effect is no longer suppressed for the coherent
two-photon transition. In this case the FWHM is
2y2p+ y3p when k, = k2 ( —23 MHz for Na). The in-
coherent term is due to excitation which has been dis-

rupted by phase-changing collisions with no velocity
change. The line shape in this case is due to a convolu-
tion of Lorentzians for the 0~2 and 2~3 transitions
giving rise to a linewidth of y32+y20 (for k, =k2). The
positions of the Lorentzians are separated by 630 532—

6zQ and so at zero pressure are coincident.
If k2&k& the counterpropagating linewidths are al-

tered due to incomplete suppression of the Doppler
effect. Copropagating linewidths are also affected. For
Na, k&/k2=1. 035 and both the co- and counterpro-
pagating linewidths are affected by less than 10%.

The velocity-changing part of the p33 line-shape func-
tion [Eq. (23)] in this limit has become a sum over prod-
ucts of the large-hu, part of the collision kernel. At very
low perturber pressures (I, & y2) where only the lowest-
order (single collision) term need be kept, this contribu-
tion i»imply proportional to WKso(620/k, ~b, 32/k2).
This is the intuitively expected result, that the experi-
ment detects the VC kernel from an initial U in resonance
with ~, , to a final U in resonance with co&.

C. 620»k)u

In the limit that 620))kiu (co& tuned outside the Doppler core) two resonances occur in Eq. (13). For & =0 ollly
the two-photon, coherent term of the line-shape expression [Eq. (13)] is of importance, leading to

I v„I'I I'20l' 1 y30
P33 =—

4 Ppp( v )d v
8R y3 (Cvi 020) [Cd + ipi2II30 630 (ki+k2)'V] +y 3p

This is the line-shape component which arises in discussions of "two-photon" line shapes. If k
&
Ak2, then the result is a

Voigt profile with Gaussian width Ik +eik I 2(inuthe limit that y30« lki+ek2lu). If ki =k2 and e= —1 (counterpro-
pagating) the line shape is a totally Doppler-free Lorentzian of width y30. The usual method for two-photon Doppler-
free spectroscopy is to use counterpropagating beams from a single laser. Biraben et al. ' have made measurements of
the broadening rate dy30/dP by this method for Na perturbed by various noble gases. Note that this broadening rate is
a thermally averaged one since all velocity groups contribute equally to the line shape.

The second resonance for 620 &&k] u occurs at 632=0, and is due to dephasing collisions. In this limit the line-shape
expression becomes
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I
I'32 I'I I'2o I'

P33=
8f,4

1 y32

(&zo —~i)' ~32+x 3

2y 20
—~2

y„+r,
2y 20

Fz2(poo) d u .
y2+I 2

(25)

Since the collisional velocity redistribution cannot alter a
thermal equilibrium distribution (Maxwellian) we must
have

I,"
UIg poo

= —pooy2+I 2

(26)

I &321 I I'2Q
I I 2y2op" = —1

8iri y3 (ru, —Q3o)

Using this expression, we can easily sum the collision
series in Fz2 to produce the following "stepwise" line
shape:

A. Elastic line shape

The line-shape expression p33(co, , oi2) [Eq. (13)] con-
tains broadening, shift, and collision rates which are
functions of v. In a vapor where only active atom-
perturber collisions are important and the perturber dis-
tribution is thermal, these rates should depend only on
the speed IvI of the active atom. Using the results of
Ward, Cooper, and Smith' we adopt a speed dependence
based on a C6 potential

y(u)=y, „(1+k) ' (1+—,'Axo —
+»A, xo+ ),

xo ~ 1 (28a)

y2 ff y2

y32x f i 2 poo(u, )du,
~32+y 32

y2+I +I )2

y2+I 2i

(27)

( 1+g)—3/10(g 2 )3/lo
r(u)=r h&~ "5

X 1+ 2+ 24+ ' 0)16 21

25kx 0 1250K x ()

This expression has also been obtained by Liao et al.
from simple rate equation arguments. With co, fixed this
is a Voigt profile in co2. This line shape is due to atoms
which have been excited to state 2 by the process
iriQ2o=A'co, +DE„;„(b,Ek,„ is the kinetic energy change in
collision) and so cannot occur without collisions. (This is
called collisional redistribution in the line-broadening
literature. ) Depending on whether co, has been tuned
above or below resonance, the atomic gas will either be
heated or cooled in the excitation process, an e6'ect that
has been observed experimentally by Giacombino et al'. '

If co2 is tuned to the 1-3 transition (b,» =-0) instead of the
2-3 transition, the associated line shape is of the same
form as Eq. (27). Note that y3z and y» may be obtained
from the widths of such "two-step" line shapes [i.e. , Eq.
(27) and the corresponding expression for b, 3i=-O] while

y 20 may be obtained from comparison of the relative am-
plitudes of the two-step and two-photon contributions '

(assuming the inelastic collision rates are known).

V. NUMERICAL EVALUATION OF LINK-SHAPE
EXPRESSIONS

While the approximations of Sec. IV provide insight
into the components of the line-shape expressions, nu-
merical evaluation of the full expressions is necessary to
establish the validity of the approximations and to allow
quantitative comparison to experiment. In Sec. V A we
study the 62o (=speed) dependence of the elastic line
shape [Eq. (13)] together with the behavior of its com-
ponent parts. In Sec. VB we study the inelastic line
shape [Eq. (14)] giving special attention to the problem of
determining the kernel from an experimentally observed
line shape.

(28b)

Here A, =m /m, xo = U /u, u equals the most probable ra-
diator speed, and I ( —', ) is the gamma function. The shifts

5; ( I uI ) are treated as having the same speed dependence.
The term y, h [as well as a term 5,h in a corresponding ex-
pression for 5(IuI)] is the thermally averaged broadening
(shift) which is measured in pressure broadening of
Doppler line shapes. This model for the speed depen-
dence will be used in all except the VC line-shape com-
ponents where averaged rates (as discussed in Sec. IV) are
used instead. By inserting Eq. (28) into the line-shape ex-
pression of Eq. (13) and using spherical coordinates, the
angular part of the integrals (omitting the VC part) may
be evaluated analytically. The remaining radial integrals
are evaluated numerically.

In Fig. 4 are shown a series of calculated line shapes
with I 2=0 (no state-changing or velocity-changing col-
lisions) and b, io=O for Na with 0.0, 0.5, and 1.0 Torr Ar
for both co- and counterpropagating lasers. The
coherent, incoherent, and interference components are
shown for each line shape. Broadening rates and shifts
were taken from the review by Allard and Kielkopf and
were adjusted slightly using a T dependence to corre-
spond to the experimental temperature of Ref. 1 (495 K).
The values used were 2d(yzo/2')dP =18 MHz/Torr,
2d (y32/2rr)jdP =50 MHz/Torr, 2d (y3o/2')ldP =57
MHz/Torr, d(52o/2') jdP = —4.4 MHz/Torr, d(532 j
2')jdP = —15 MHz/Torr, and d(53o /2') j dP = —17
MHz/Torr at 495 K. (Recall that the y," correspond to
half widths, thus the factors of 2.) From the approximate
line-shape expression of Eq. (23) we expect the ratio of
the areas of the incoherent to coherent components to
vary as 2yzo/y2 (for I z=O). For the broadening rates
used here this ratio is equal to -0.9 at 0.5 Torr. It can
be seen in Fig. 4 for the copropagating 0.5-Torr case that
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effect together with the fact that k~Wkz for Na, the two
limiting cases occur at different detunings. Since the pop-
ulation of atoms responsible for the A&0&&k, u line shape
have ( u, ) =0, the average Doppler shift of atoms in this
distribution is also zero. Consequently resonance occurs
for b 3z

= —hzo (neglecting collision-induced frequency
shifts). The population of atoms responsible for the
b,zo«k, u line shape, however, has (u, ) =bzo/k, . For
this velocity group resonance will occur at
k3p/kp = Applk I, or equivalently 53' Ago( A, , /A ~).
For Na at a detuning of A&0= —2. 8 GHz resonance for
the small detuning line shape occurs at 63&=2.8 GHz
(589nm/569 nm) =2.9 GHz while resonance for the large
detuning line shape occurs at 2.8 GHz. This accounts for
the approximately 100-MHz spacing of the line shapes
seen in Fig. 5. Additional shifts of both line shapes are
due to collisional effects.

In Ref. 1 experimental line shapes are fit with Lorentzi-
ans in order to obtain parameters such as the linewidth.
This procedure is meaningful only if the actual line
shapes are very nearly Lorentzian. To test the validity of
the procedure a Lorentzian has been least-squares fitted
to a calculated line shape (with peak height normalized to
1) in order to see how they differ (Fig. 6). This line shape
is calculated for Na perturbed by 1 Torr Ar with Ago=0
and I z=O (no VC collisions). Since the calculated line
shape and the fitted Lorentzian agree so well, the func-
tion E =(1—S)/(Sb ) has been plotted in the same
figure in order to emphasize the differences. If the calcu-
lated line shape (with height normalized to 1) were exact-
ly Lorentzian [S=( I+6 ) '], then the function E
would be exactly 1 for all A. Deviations from E =1
represent 6-dependent deviations from Lorentzian form.
The asymmetry in E (b, ) is due to the various line-shape
components having different center positions. It is ap-

parent that the procedure of fitting a simple Lorentzian
to experimental line shapes, rather than using the full
line-shape expression of Eq. (13), should produce a good
measurement of the line position and width.

As already noted, as Azo increases so does the v, com-
ponent of the Doppler-selected excited-state atoms. The
broadening and shift must also increase with hzo since
the average active atom-perturber collision rate increases
as well. This effect has been studied by calculating line
shapes for a range of hzo and pressures, then measuring
their FWHM. The same approximations and rates as
used in calculating the line shapes of Fig. 4 were used
here as well with the exception that we no longer require
I z=O, i.e., VC collisions are now included. Since to a
very good approximation the linewidths vary linearly
with pressure in the range of interest we choose to plot
the broadening rates ka„= [y(P, b.zo)/2' y(P =—0,
b zo)/2']/P rather than the actual widths.

In Sec. IV we defined an effective collision temperature
T,ft which varies as ah, zo+b [see Eq. (20)] with the expec-
tation that the broadening rates would vary approximate-
ly as T,ff In or. der to test this approximation three
curves of k 8, versus A&0 have been calculated for
perturber-emitter mass ratios of 0.0, 1.74, and 10000.0
(at T =495 II ) with I z=O. As the ratio approaches 0.0
the perturber velocity distribution becomes much
broader than that of the emitter', consequently, the col-
lision rate for all emitters is effectively the same regard-
less of the emitter's velocity. For this reason the curve of
kB, versus hzo in Fig. 7 for this case is simply a horizon-
tal line (no b, zo dependence). In the case of m~/m
=10000 the perturbers are effectively stationary result-
ing in the strongest possible dependence of the broaden-
ing rate on the emitters v, . The case of m /m =1.74
corresponds to Na perturbed by Ar. Note that all three
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pletely eliminated. In this limit the line core is deter-
mined entirely by the coherent and interference com-
ponents. In the specific case of Na-Ar broadening rates
used here, the combination of the coherent and interfer-
ence terms produces broadening comparable to that of
the incoherent term. Consequently, varying I 2 has very
little effect on the broadening of the complete line shape,
as demonstrated by the overlapping curves of Fig. 8(a).
Also shown in Fig. 8(a) are data points from the experi-
ment of Ref. 1. While the data seem to follow the same
T,ff dependence of the calculations, the values differ by
about 10%.

The calculations of Fig. 8(a) have been repeated in Fig.
8(b) for the case of counterpropagating lasers (e= —1).
Here it is seen that the broadening of the complete line
shape can actually be less than that of either the coherent
or incoherent term. This is due to effect of the interfer-
ence term which adds to the line shape at the center and
subtracts in the wings, thus narrowing the complete line
shape. It is also apparent here that varying I 2 from 0 to
2g 2p causes the broadening rate of the complete line
shape to drop by about 20%. Unlike the copropagating
linewidth, the counterpropagating linewidth is quite sen-
sitive to the VC collision rate I 2. The agreement be-
tween calculation and data is best for I 2=0 and worst
for I 2=2yzp.

Figure 9 is the same as Fig. 8 but for Xe perturbers
rather than Ar. The behavior of both theory and data is
qualitatively similar to that for Ar perturbers. Broaden-
ing rates and shifts for Na perturbed by Xe were also tak-
en from the review by Allard and Kielkopf and were ad-
justed in the same way as described for the Ar perturber
rates. The values used were 2d (y zo/2n)/dP = 18.
MHz/Torr, 2d (y3z/2m)/dP =69 M. Hz/Torr, 2d (y3o/
2~)/dP =57 MHz/Torr, d(5zo/2vr)/dP = —3.4 MHz/
Torr, d (53&/2m ) /dP = —21 MHz/Torr, and d (53o/
2n)/dP = —1.8 MHz/Torr. (Recall that the y; corre-
spond to half widths. )

The discrepancy (around 10%) between the theoretical
curves and data in Figs. 8 and 9 is comparable to the un-
certainty in the measured thermally averaged broadening
rates used for the calculations. Another possible source
for this discrepancy is in the approximation that all VC

I

collisions produce a large hv, . If there were a significant
number of small-b, v, collisions they could play an impor-
tant role in determining the linewidth. To explore this
possibility the line-broadening calculations were repeated
using the kernel of Eq. (17) which consists of a narrow
Lorentzian component plus a broad Keilson-Storer com-
ponent. To simplify computations the Keilson-Storer
part of the kernel was omitted. This omitted component
is about two orders of magnitude broader than the line
core under consideration, so it contributes only a negligi-
bly small baseline to the central line shape. We must also
choose a value for the velocity-changing (elastic plus in-
elastic) rate I ~. An estimate of this rate may be obtained
by assuming a C6 interaction potential whose scattering
cross section is given by the Landau-Lifshitz-Schiff ap-
proximation' o L„s=8.083 (C/U) ~ (a.u. ). For the
Na(3P) Ar inte-raction the constant C is' 461 (a.u. ). Us-
ing the average interatomic collision velocity for U (at 495
K) the estimated collision rate is (in frequency units) 16
MHz/Torr. While this number cannot be correct in de-
tail due to the obvious neglect of inelastic collisions (the
potential must be more complex than C6) it nevertheless
indicates that I 2 is probably comparable to 2& 2p which
is 18 MHz for Na perturbed by 1 Torr Ar. We therefore
make the approximation that all collisions are velocity
changing, i.e., I 2=2&2p. In this limit the incoherent
term, which represents dephasing without VC, vanishes
and is replaced by the VC component. This seems intui-
tively plausible and maximizes the importance of the col-
lision kernel. Finally, in order to simplify the integrals in
the VC part of Eq. (13) the speed-dependent broadenings
and shifts are replaced by averaged values using the

5 cc Vff approximation. Based on known inelastic
cross sections ' for Na perturbed by Ar the inelastic col-
lision rates are I z, = 1.5 MHz, I,z

= 3 MHz (1 Torr
Ar). Since I,z, I z, « I z we will for simplicity set
I,z, I z, =0 (no inelastic collisions) when calculating the
elastic line shapes. Note that with a Lorentzian kernel all
of the collision integrals of Eq. (16b) are successive con-
volutions of Lorentzians which in turn produce Lorentzi-
ans. The VC part of the line shape in this case becomes,
in terms of the width w of the Lorentzian component of
the kernel [Eq. (17)],

I
I zo I V'rr ln2 —in'(a~a/nD )~ 1

y3 D y2 2

A I 22

r„+~,
n

2k
y3$+ (yzo+nk, w)

1

k2
~32 —

&k ~2P
1

2
2k+ y3$+ k

(ypo+nk [to)
1

(29)

In computing the line shape using the kernel of Eq. (17)
the parameters w and A must be specified. Various
values for these parameters were tried and it was found
that the data for Ar perturbers are best fit using a

Lorentzian width (FWHM) of about 6 MHz
(k&to/2m. =

—,
' =3 MHz) with the Lorentzian accounting

for 95% of the kernel ( A =0.95). For Xe the width was
found to be 35 MHz with the Lorentzian accounting for
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75%%uo of the kernel. Broadening rates versus 6 for both20
Ar and Xe perturbers have been plotted together with ex-
perimental data' in Fig. 10. The ta and 2 parameters had
to be chosen such that good agreement between theory
and data was obtained for both co- and counterpropagat-
ing broadening rates. Table I contains broadening rates
calculated at (b, 20/2m. ) =2 GHz for a few values of
Lorentzian kernel widths m and fractional contributions
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FI~G. 11. Calculated Na elastic line shape p" for
/2m= —1 ™MGHz, 1 Torr Ar, and counterpropagating lasers.

Thhe area of the line shape has been normalized to 1. (a) com-
plete line shape, ; VC contribution, ———.(b) complete
line shape, ; VC contribution, ———;single VC col-
lision contribution, - - -; elastic kernel, —-—.
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The central core of Ho and Chu's kernel' for Na(3S)-
Ar collisions (calculated at 300 K) varies in width from 9
MHz for v, =0 to about 3 MHz for v, =2u. As shown in
Sec. III the Lorentzian accounts for about 92% of the en-
tire kernel for v, =0. The width of the kernel decreases
with increasing relative speed because at higher speeds
the collisional interaction time is shorter, thus less
momentum is exchanged for the same interatomic force
and impact parameter. Extrapolating from the calcula-
tions of Ho and Chu we estimate the kernel width would
vary from approximately 6 to 1.6 MHz as v, varies from
0 to 2u at the temperature of 495 K used in the calcula-
tions presented here. The narrower kernel is due to the
larger interatomic speeds at the higher temperature.
Thus, kernel parameters that were found to best match

I

the experimental Ar broadening rates are consistent with
those inferred from Ho and Chu's calculations. It must
be kept in mind, however, that the experimental kernel
was for Na(3P)-Ar collisions whereas Ho and Chu's cal-
culation was for Na(3S)-Ar collisions. Furthermore, we
have not allowed for a speed-dependent kernel width in
the computations.

To study the complete line shape including the effect of
large-Av collisions the entire kernel of Eq. (17) is used.
Again the speed-dependent rates are replaced with their
averaged values. Using the expression of Eq. (16) for the
velocity-changing part of the line shape together with the
expression for F22 obtained in the Appendix, the
velocity-changing contribution to the line shape in this
approximation is obtained

I
I 3~ I'I I zo I'

lp33(~t rv2) fvc
4A y3 y2+I 2 „—)

Al
q

y2+ I'2

2k
y32+ k

( ypo+ hark / w)
1

k2 k2
e

k 62o + y3p+ k
(y2o+nk, w)

1 1

2

BI2
y2+BI 2 „=) y2+B I 2

'n exp
v, —cz "v,'

& ( 1 rz2n)1/2

&2n)1/2

2

y20

~ 20+ y 20
2 —2

Xpoo(v,')dv, '
dv, . (30)

In Fig. 11(a) are shown a complete line shape and the
velocity-changing component for 620/2~ = —1 GHz,
counterpropagating beams (e= —1), and 1 Torr Ar. The
collision kernel parameters used are A -= D. 95,
2k, w/2m=6 MHz, a=0.2, and I 2=2yzo. In Fig. 11(b)
these same curves together with the single-collision con-
tribution and the single-collision (elastic) kernel are
shown using an expanded vertical scale. The elastic ker-
nel was obtained from the single-collision line-shape con-
tribution by allowing the radiative linewidths to go to
zero. It is apparent that starting about 100 MHz from
the line core the line shape is heavily dominated by the
velocity-changing contribution. Comparing the V( com-
ponent to its single-collision contribution it is clear that
multiple collisions account for a large part of the line
shape at this pressure, thus making it difficult to infer the
underlying collision kernel from an experimental line
shape. The same calculation has been repeated for a
pressure of 0.2 Torr Ar in Fig. 12. Though the single-
collision contribution now represents a much larger frac-
tion of the VC term, the line shape does not become dom-
inated by the VC term until 300—400 MHz from t)he line
core. Again it would be difficult to infer the kernel from
experimental data except perhaps at very large collisional
velocity changes. Figure 13 is for the same conditions as
Fig. 11 except that copropagating (@=+1)beams are
used. It is qualitatively similar to the counterpropagating
line shape in the way it is affected by VC collisions.

B. Inelastic line shapes

In evaluating the inelastic line shape [Eq. (16c)] we
again use the kernel of Eq. (17). In contrast to the calcu-
lation of p" where only one type of collision (elastic VC)
had to be considered, both elastic and inelastic VC effects
must be included. The full inelastic collision operator

m

F,~= g U„U, ~ g U2~+U~, g U, ', U, 2
n=0 m=0 1=0

must be considered. First note that U2, , U', 2
~ I 2&/(y2+ I 2) =0.07. Here we have used (y2/2rr) = 10
MHz, I /2n =(I,+ I )/2n =18 MHz, I, /2m=2
MHz, and I 22/2+=16 MHz at 1 Torr Ar. For elastic
collisions U22 ~ I 22/(y2+I 2)=0.6. These rates are the
same as used for the p" line-shape calculation with the
exception that now I 2%1"z2 due to the inclusion of in-
elastic collisions. For simplicity we assume I &2

= I 2&,
I »=I 22. Within the bracket of the expression for F,2

we see that the ratio of the I =0 term to U22 is
U2] U ~2 /U22 =0.01. while a careful comparison of these
terms requires looking in detail at the kernels, this simple
comparison suggests that only a small error will be intro-
duced by neglecting the inelastic collision operators
within the bracket. With this simplification the full col-
lision operator becomes
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(fine-structure-changing) collisions. These expressions
consist of terms clearly identifiable as coherent, in-
coherent, interference, and VC contributions. At low
pressures (where the collision rate is less than the radia-
tive decay rates) the line shape is dominated by the
coherent term. As the perturber pressure increases the
incoherent, interference, and velocity-changing terms be-
come dominant. Line shapes for excitation via 0~2~3
[p'(co&, cu2)] and 0~2~(collision)~1~3 [p'"(cubi, co2)]
were derived.

As co& is varied within the Doppler width of the (0-2)
transition state-2 populations with dN'erent U, are gen-
erated. Higher values of U, have larger collision rates,
broadenings, and shifts. Modeling the atomic interaction
as a C6 potential, calculations were performed showing
that the broadening rate of the p"(co, , cu2) line shape
varies as T,s. T,s. is an "effective" collisional tempera-
ture based on the rms collision velocity of the population
of atoms having a z component of velocity which brings
them into resonance with co&.

Using a kernel similar to that calculated by Ho and
Chu' and assuming that all collisions are velocity chang-
ing in nature (I 2=2@&0), good agreement between calcu-
lated co2-dependent broadening rates of the p" line shape
and those measured by experiment' was found. Using a
Keilson-Storer kernel alone was insufficient, a narrow
component (Lorentzian) which accounts for the effect of
small-AU collisions had to be added to the Keilson-
Storer kernel in order to explain the data. Due to the
number of parameters involved and the uncertainties in
the width and shift parameters y, 6 used in the computa-
tions we do not claim to have determined the kernel pa-
rameters by this method. However, we have demonstrat-
ed the role and relative importance of the various physi-
cal processes which cause line broadening. In particular,
these calculations show that the simple Keilson-Storer
and hard-sphere kernels alone are inadequate for explain-
ing complete line shapes due to their neglect of small-hU,
collisions.

As the perturber pressure increases the p" line shape
eventually becomes dominated by the state-2 velocity dis-
tribution. By this point, however, multiple collisions
must be included to account for the line shape. In con-
trast to this the p'" line shape is dominated by the state-1
velocity distribution at all pressures. It was shown that
at extremely low pressures (where the collision rate is
much less than the radiative decay rate) the core of the
line shape is just the convolution of Lorentzian line-shape
functions with the collision kernel, and outside this (in
the wings) the line shape is directly proportional to the
kernel. Thus the inelastic line shape provides a unique
opportunity to directly determine a collision kernel by ex-
periment. This has been done in Ref. 1.

APPENDIX

By using the collision kernel of Eq. (17), the collision
operator Fzz [Eq. (16a)] becomes

m
oo

F22 g ( A Wi Q +8W~so )
ye+I z

(A 1)

1 N
Wl (u,

' —u, )=-
ir (u, —u,') +iu

Using the binomial expansion we rewrite Eq. (Al)

(A2)

Fz2= g
m=o n=o y2+ I 2

T

BI zwKso

y2+I 2

n

We now make use of the fact that the Lorentzian kernel
is generally orders of magnitude narrower than the
Keilson-Storer kernel. When products such as
WLQ WKso occur the Lorentzian may be approximated as
a 5 function so that Wi o WKso = WKso. Equation (A3)
may now be rewritten as

F22= X
m=0

A I 2WLQ

y2+I z

m

0

m —n

AI q

=O y2+ I 2

m

0

+ X X
m=o n=O ye+I 2 y2+I z

(A4)

A I 2WLQ m
F22 =

0=o y2+I 2

Bl 2WKsQ+gS„
n =0 y2+I 2

AI2

y2+B I 2

(A5)

AI 2S„=
m =n ye+I 2

m —n
m

(A6)

A more useful expression for S„ is obtained by first not-
ing that S„obeys a recursion relation

1 dSn, 1 dnSOSn=-
n dC n! (A7)

Here we have assumed that no inelastic collisions occur
( U', 2, U2, =0). The Keilson-Storer collision operator
W~so has been defined in Eq. (22). The Lorentzian col-
lision operator is

WLQP WI. Uz Uz P Uz dvz
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Starting from So= g" o C =(1—C) ', where we have
used (0 ) = 1 the general expression for S„ is obtained
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q, +r,
S =(1—C) ("+'I

y2+BI 2

' n+1

(A9)

The relation 3 +B =1 has been used in arriving at Eq.
(Ag). Using Eq. (A9) in Eq. (A5) the final result is ob-
tained

This is the form of Fzz used for Eqs. (30) and (31). To ar-
rive at Eq. (22) the width of the Lorentzian kernel is set
to zero so that W„o =1 and the first sum of Eq. (A10) is
performed

FZ2 =
n

A I 28'L~

y2+ I 2
r

+ y, +I, - Br,m„„
y +Br „=, y +Br (A10)

A I 2+(y2+ I 2)y2+BI 2

oo

y +BI
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