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Recent measurements of vibrorotational excitation in low-keV-energy Li +D2 collisions have
shown a breakdown in a rather general scaling law for projectile energy loss in the quasielastic
channel. This scaling law maintains that in small-angle impulsive scattering determined by a con-
servative potential, classical trajectory calculations of atomic projectiles on diatomic targets predict
a universal scaled vibrorotational excitation energy spectrum when Q/EO' is plotted as a function
of ~=EO. The breakdown in scaling is here shown to be caused by quantization of vibrational ener-

gy in the target molecule. It is also shown that the critical angle at which departure from purely
elastic scattering occurs is given by EO, =const. The theory predicts that in the collision-energy re-
gime of 500 eV to a few keV and for scattering angles in excess of a few tenths of a degree, the vi-
brorotational excitation energy in D2 is almost entirely vibrational, with only a small fraction of the
excitation energy going into rotational degrees of freedom.

I. INTRODUCTION

Any attempt to make progress toward an ab initio un-
derstanding of chemical processes begins with a
knowledge of the energy surface. It was first pointed out
by Ioup and Russek' that an experimental investigation
of the energy surface of a triatomic molecular system
could be more effectively carried out with atom-on-
molecule collisions in a higher collision-energy range
than that in which chemical rearrangements take place.
In the collision energy range from a few hundred eV to a
few keV, the collisions are sufficiently slow so that they
are probing the same adiabatic energy surface that is also
responsible for chemical reactions. At the same time, the
collisions are sufficiently fast to enable the nuclear
motion (including rotational and vibrational excitation of
the molecular targets) to be treated both classically and
impulsively when attempting to unfold the energy sur-
face from the scattering data. For a study of the adiabat-
ic energy surface, only the electronic state need adjust
adiabatically to the changing internuclear separation.
The occurrence of vibrorotational excitation in these col-
lisions does not make the theoretical interpretation more
difficult. Quite to the contrary, several recent papers
have demonstrated that differential projectile energy-loss
measurements in quasielastic collisions of atoms or ions
with diatomic molecules in the low-keV-energy range
constitute a sensitive probe of the ground-state energy
surface of the triatomic molecular system. Quasielastic
collisions are those which are elastic insofar as the elec-
tronic motion is concerned, following the adiabatic or di-
abatic energy surface, but which may be inelastic with
respect to the rotational and vibrational degrees of free-
dom. Vibrorotational excitation induced in the molecu-
lar target by the projectile atom actually yields more de-
tailed information on the energy surface of the triatomic
molecule, provided that doubly differential energy-loss
measurements (differential in both energy loss and angle)

are taken at collision energies such that the nuclear
motion can be treated impulsively. This is the collision-
energy range of a few hundred eV to a few keV. Below
this energy range even the nuclear motion becomes adia-
batic (at about 50 eV), and very little can be learned
without solving thousands of close-coupled scattering
equations involving the energetically accessible rotational
and vibrational states. At the other end of the collision-
energy range, above a few keV, one can no longer be cer-
tain that the electronic motion is evolving along the adia-
batic energy surface.

For those collision systems in which there are no sur-
face intersections between the ground-state energy sur-
face and those of excited electronic states, Sigmund ' has
proven that for small-angle collisions, the scaled projec-
tile energy loss AE/EO is a function of ~=EO only,
where E and 0 are the projectile energy and scattering
angle. Such a scaling law is of considerable importance;
if it is obeyed, it conclusively demonstrates that the
scattering forces are derived from a velocity independent
potential, and that the electronic motion is adiabatically
(or diabatically) adjusting to the changing internuclear
separation. The converse, however, is not true. Sigmund
scaling can break down for a variety of reasons, so that a
breakdown of scaling does not necessarily imply a break-
down of adiabatic behavior. Indeed, one of the main re-
sults of this work is the explanation of just such a case.

The Sigmund scaling law was confirmed ' in the Ne+
on D2 and Ne on D2 systems, for which electronically in-
elastic channels were known to be weak. It was also
confirmed for quasielastic collisions in the He on Dz sys-
tem, which has strong electronic excitation channels,
despite the fact that these collisions violate one of the as-
sumptions under which the scaling law was derived.
Even where electronic excitation can occur, if one ob-
serves only the electronically elastic channels, the experi-
ments probe the adiabatic or diabatic surface. It was also
established, both experimentally ' ' and theoretically, ' '
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Because the physics of molecules is very rich, a paramet-
ric description of V,-„, is, of necessity, quite complicated.
However, in the regime of collision energy and scattering
angle of interest in this work, only two terms dominate: a
pair of screened Coulomb potentials describing the elec-
trostatic repulsion between the projectile (of nuclear
charge Z) and each of the protons, plus an interaction,
V,„(R),between the projectile and the covalent bond:

cR A kcR

V;„,(R, r, y ) -=Z + (2)
R~ B

+ V,b(R) .

The covalent bond is a quantum mechanical eff'ect which
draws the two hydrogen electrons into the region be-
tween the two protons, centered on the midpoint between
the two (R =0) and roughly spherical about the H2
center. As a consequence, the potentia1 generated by the
covalent bond is a function of R only. Such a potential
can deAect the projectile, but it cannot induce vibrorota-
tiona1 excitation in the H2 target, since it does not involve

the internal coordinates of the latter. On the other hand,
the electrostatic repulsion term of (2) does involve the
internal coordinates r and y via R~ and Rz, and is able
to excite the vibrorotational degrees of freedom of the
molecular target. It was shown in Snyder and Russek
that insofar as projectile energy loss is concerned, this
screened Coulomb term leads to a collision process very
close to the binary limit, a limit wherein half of the pro-
jectile energy loss goes into vibrorotational excitation and
half goes into recoil energy of the target molecule center
of mass.

FIG. 1. Triatomic molecular geometry.

that for all the projectiles mentioned above, Ne, Ne+,
and He, the Hz covalent bond is the principal scattering
agent in the energy range up to at least a few keV. The
molecular energy for the triatomic molecular system can
be written as the sum of the energy describing an isolated
H2 plus an interaction term due to the proximity of the
third component. In terms of the variables R, r, and y
describing the molecular geometry (see Fig. l),

V(R, r, y)=V& (r)+E(Li+)+ V;„,(R, r, y) .

The observed behavior in the differential projectile
energy-loss measurements for the collision systems de-
pends on the interplay between these two terms in V;„,.
For noble gas projectiles, the screened Coulomb core-
core terms are short range by comparison with the co-
valent bond contribution. Thus, V,b prevails at large
values of R; it is repulsive, and is rather well approximat-—A, R
ed by a Born-Mayer term: A 3e ~ . The strength is
denoted by A3, because V,b is a three-body contribution
to the adiabatic molecular energy surface. %'hen, during
the collision process, the noble gas atom is near the co-
valent bond, the electron distribution of the atom over-
laps that of the covalent bond, forcing too many electrons
into the same spatial volume. Antisymmetrization of the
electron wave function raises this overlapping portion to
higher energy states, thereby raising the overall electron-
ic energy. The greater the overlap, the higher the overall
electronic energy. Thus, the interaction between a noble
gas atom and the covalent bond is a repulsive potential.
This description is a heuristic account of what is actually
seen in ab initio calculations of the molecular energy sur-
face. ' These ab initio calculations show V,„ to be very
close to a Born-Mayer potential. For noble gas atoms,
the covalent bond contribution dominates at large R, be-
cause the screened Coulomb core-core terms are short
range. Consequently, collisions with a large impact pa-
rameter (small values of r=EO) will be completely elas-
tic, because V,b(R ) is unable to vibrotationally excite the
target H2. As impact parameters decrease, ~ increases,
but the collisions remain completely elastic until
reaches the maximum value that can be produced by the
Born-Mayer term V,b.

" Values of ~ larger than this crit-
ical value can only be achieved by the core-core terms,
when the projectile penetrates the covalent bond and in-
teracts with the cores of the target molecule. These two-
body core-core interactions produce considerable vibra-
tional excitation along with projectile scattering. At the
critical value of ~, therefore, vibrational excitation ener-

gy, Q, changes abruptly from zero to a substantial frac-
tion of the target recoil energy. This critical value of ~ is
here referred to as the "breakaway point. " It must again
be stressed that the physical picture drawn above is not
an assumption, it is a simplified account of what is actual-
ly obtained in classical trajectory scattering calculations
using the ab initio molecular potential.

This paper concerns the (LiHz)+ energy surface and
Li+ on D2 scattering. Insofar as the energy surface is
concerned (LiD2)+ and (LiH~)+ are identical, so that the
experiments, ' ' on D2 probe the (LiH2)+ energy surface.
The use of Dz as a target molecule in the experiments is
for calibration purposes with Dz targets, the projectile
energy loss for zero vibrorotational excitation energy can
be calibrated against projectile energy loss with He tar-
gets.

The collision system Li+ on D2 is isoelectronic with
the neutral collision system He on Dz, but does not have
the strong electronic excitation channels of the latter in
the keV collision-energy range. Thus, Li+ on D2 col-
lisions satisfy the conditions for Sigmund scaling. How-
ever, the experimental results show a surprising break-
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down in Sigmund scaling for Li+ on D2, whereas He on
D2 obeys the scaling law despite the presence of strong
electronic excitation channels. This breakdown in Sig-
mund scaling for Li+ on Dz is shown in Sec. III to be a
quantum effect, which occurs because the breakaway
from the elastic scattering limit falls in a region of low ex-
citation energy. The Dz molecular target can only be vi-
brationally excited in discrete quanta %co„at the same
time, rotational excitation is very weak. The scaling
breakdown can be entirely accounted for by incorporat-
ing into the classical scattering calculations the ansatz
that all collisions for which the classically calculated ex-
citation energy Q & ,'fico, i—s registered as Q =0; all col-
lisions for which ,' fico, & Q—&—,'A'co, is registered as

Q = lyrico„and so forth.
The question arises: why was this effect not observed

previously? The answer is to be found in the difference
between Li+ and a noble gas. For all collision systems,
the covalent bond contribution to the scattering potential
keeps the projectile outside the range of the screened
Coulomb two-body potential for the gentler collisions
(small r), yielding perfectly elastic collisions Q =0. For
noble gas projectiles, the screened Coulomb core-core
terms are short range, but for Li+ projectiles, the ranges
of these core-core terms are considerably longer, almost
as 1ong as the range of the covalent bond term itself. Be-
cause of this, a Li+ projectile can penetrate into the
range of the screened Coulomb core for much gent1er col-
lisions than can noble gas projectiles, with corresponding-
ly smaller excitation energies. Indeed, for Li on Dz, a
substantial percentage of the classically computed excita-
tion energies are smaller than —,'Ace, =0.18 eV, thereby
making vibrational quantization a significant factor to be
taken into account. It was anticipated in Heckman
et al. ' that the breakaway from the elastic limit would
scale as EO, a prediction that has been borne out by the
classical trajectory calculations reported in this paper
which are based on an ab initio (LiHz)+ molecular energy
surface.

II. THEORY

A. Review of scaling theory

Sigmund ' first suggested that, under rather general
conditions which should be valid in the keV collision en-
ergy regime, both the projectile energy loss, AE, and the
vibrorotational excitation energy, Q, scaled in units of
(Mt /MT)EH, are functions of r only: they do not de-
pend separately on the collision energy. Here, M~ is the
projectile mass, and MT is the total mass of the molecular
target. The quantity (Mp/MT)EO is the recoil kinetic
energy of translational motion of the target molecule in
small-angle impulsive scattering: it is also the energy
that would be lost by the projectile in a completely elastic
collision:

In mathematical terms, the Sigmund scaling law states
that the dimensionless ratios, q and f, defined by

Q lbE, i =q (r),
b,E/b, E„=2f(r), (5)

are functions of ~=EH only. The factor of 2 on the
right-hand side of Eq. (5) has been incorporated to retain
the original Sigmund definition of f. Here, E and 9 are
the projectile energy and scattering angle, and P is the
recoil momentum of the center of mass of the target mol-
ecule, all in the laboratory frame of reference. Since con-
servation of energy requires that bE=Q+bE, i, q and f
are related by 2f =q + l.

Sigmund rigorously derived the scaling law Eqs. (3)—(5)
provided that (i) nuclear motion can be described in
terms of classical trajectory calculations, (ii) the impulse
approximation is valid, (iii) small-angle scattering ap-
proximations hold, and (iv) the forces are derivable from
a potential that is velocity independent. The derivation
permits the electronic motion to be treated quantum
mechanically, with the adiabatic or diabatic electronic
energy incorporated in the conserved potential V (R, r, y )

used in the classical trajectory calculations. The deriva-
tion does not require this potential to have any particular
form. However, if V can be expressed as a combination
of Bohr and Born-Mayer potentials, it was shown by
Snyder and Russek that in the impulse approximation
the quantities q(i. ) and f (r) can be obtained in closed
form for each collision geometry (i.e., a given impact pa-
rameter and a given orientation of the target molecule).
Since the classical trajectory calculations must be per-
formed for about 10 collision geometries to obtain a
reasonably accurate doubly differential cross section, the
closed form solution for the momentum transfer due to
each component V;„, is necessary to make the calculation
tractable. In this work, the set of potentials with closed
form solutions was extended to include potentials of the
form

B. Quantization of vibrational excitation

V = —C
1 + 1

R +a R +aa

With the procedure formulated in Ref. 5, it is necessary
to know the momentum transfer between the projectile
and each of the nuclei. For a potential term of the form
V= —C /(r +a ), where r stands for R„or Rz, the
momentum transfer, P, is given by

C~irb(u +2b')(u bi)'i-
Ua'u'&2

where v is the collision velocity, b the impact parameter
to the center under consideration, and u =(a +b )'
The vectors P~ and PI, lie along R ~ and R~ and are at-
tractive impulses.

aE, =P'y2M, = EO'Mp

T
(3)

The vibrational states of D2 are separated by approxi-
mately 0.35 eV. Vibrational quantization is easily taken
into account in a classical trajectory treatment by replac-
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ing the calculated excitation energy of the D2 target by
multiples of this energy quantum. The classically calcu-
lated excitation energy represents the mean of a distribu-
tion of excitation energies that would follow from a prop-
er quantum mechanical treatment. Hence, if, for a given
collision geometry, the classically calculated excitation
energy is evaluated to be slightly less than Ace„a correct
quantum mechanical calculation would hold that the
molecule would acquire a full quantum of excitation ener-

gy for slightly less than half of the collisions with that
collision geometry. Thus, quantization of the classical
trajectory treatment is implemented by dividing the exci-
tation energy scale according to the ansatz: all collision
geometries for which the classically calculated excitation
energy lies in the range

( n —
—,
' )iiico, ~ Q ~ ( n + —,

'
)fico,

lO — ~

8—
0

6—
O

O. I

0.5

2" I

IO

are recorded as Q = n fico, All . collisions for which
0 ~ Q ~ ,'fico, are re—corded as elastic scattering, Q =0.

For this vibrational quantization of classical trajectory
calculations to be valid, rotational excitation must not be
a significant factor, and it is not. In the worst case of a
completely binary collision between the projectile and a
single D, with momentum transfer at right angles to the
D-D axis, then all the excitation energy would go into ro-
tational motion. However, Figs. 4(a) and 4(b) show the
excitation process to be only 30% binary. (A completely
binary collision would give q =1.) Moreover, even sta-
tistically, only half the binary collisions would be so
oriented as to make the excitation primarily rotational.
In fact, the orientations are not statistical. The impact
geometries, which dominate the region of breakaway
from the elastic limit, are such as to yield small angular
momentum transfer.

C. The interaction potential

The interaction energy, V;„,(R, r, y), between Li+('S)
and Hz(X 'X ) has been determined with single
configuration SCF calculations of the Li++H2 energy
surface. The energy surface is denoted by V(R, r, y ) in
Eq. (1). The basis set used for Li+ was a set of Gaussian
functions suggested by Lester' ' and similar to that used
by Kutzelnigg et al. ' It consists of nine s-type Gauss-
ians from the atomic basis set for Li+ by Huzinaga, '

with the first four Gaussians contracted to a single s-type
function and the remaining five uncontracted, together
with three p-type functions to describe polarization. The
H2 basis set is the same as that used by Russek and Czar-

cia, ' derived from Brown and Hayes. ' Centered on each
H are five s-type Gaussians, with the first two contracted,
and two p-type Gaussians. A sample of the results of the
ab initio calculation are shown as circles and crosses in
Fig. 2; the curves illustrate the quality of a parametric fit
of a form suggested in Russek and Garcia, slightly
modified to account for the ionic nature of Li+.

Calculations were carried out for H-H separations
r =1.0, 1.4, and 1.8 a.u. , the full angular range, @=0',
30, 60', and 90', and R ranging from 0 to 10 a.u. The
parametric form to which the ab initio calculations were

R (a. u. )

FIG. 2. Representative sample of the ab initio calculations
for V;„, and the fit of the parametric form given by Eqs. (6) and
(8)—(10). The circles give the ab initio calculated values at
y=0', the crosses give the calculated values at y=90, the
curves give the best fit to the ab initio calculated values, ob-
tained with the values for the parameters given in the text.

fit is of the form

~i t col+ ~Co l+ ~BM (8)

It consists of a saturated dipole polarization term, a
Coulomb term and a Born-Mayer term. The polarization
term is given by Eq. (6), with C =1.7 and a =4.0. It
does not make any significant contribution in the range of
collision energies and scattering angles under considera-
tion; it is included for completeness only. The remaining
two terms of (8) are given by

—k.,Rz
e

Vcoui (Z i Zb )

0.5 0.5
b Rq R~

—R/r b)(1—e

R
(9)

and

R 1 —PA, R
V =3 e ' ——eBM 3 (10)

Of the constants which appear in Eqs. (9) and (10), Z
represents the product of the Li and H nuclear charges,
and was fixed at 3. The remaining constants were fit to
the ab initio calculations, yielding Zb =0.81, A,, =1.8,

=1.67, p=2. 6, and rb =0.75. The parameter Zb de-
scribes the amount of charge drawn into the H2 covalent
bond and centered at the H-H midpoint, R =0; the pa-
rameters p and rb relate to the diffuseness of the covalent
bond charge distribution. Even though the H2 is at its
equilibrium separation of 1.4, the parametric form was At

to the calculated values at r =1.0, 1.4, and 1.8, because
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vibrational excitation depends on BV;„,/Br. With three
H-H separations and four angles for each separation, 12
curves were checked against the ab initio calculations.
The curves shown in Fig. 2 are representative of the accu-
racy of the fit. Most of the discrepancies arise from the
insistence on expressing V in terms of Bohr, Born-Mayer,
and cutoff polarization potentials, for which the momen-
tum transfer in the impulse approximation is known in
closed form. In particular, the largest discrepancy, at
R =0.2, is a consequence of using the form given by (10)
for V~M and adjusting the constants to give a good fit for
values of R ~0.5. The region inside R =0.5 could be
corrected by an additional short-range Born-Mayer term.
It was not done, however, because the small region near
the origin does not make a substantial contribution to the
energy-loss distributions.

+50 —
Li +

l.O keV

(%)

0.2 0.4 0.6

FICx. 3. Typical spectrum of scaled molecular excitation en-
ergies q. This spectrum is for E =1 keV, ~=2 keVdeg, and
shows a most probable q value of 0.32, corresponding to the
third vibrational level.

III. RESUI.TS AND COMPARISON
WITH EXPERIMENT

The details of the classical trajectory computation
methods have been described in Ref. 5 and will only
brieAy be summarized here. A straight line trajectory is
used with given impact parameter and initial H-H orien-
tation. Each set of three initial conditions is here re-
ferred to as a "collision geometry, " and for each, the
scattering angle 0, recoil energy of the Hz center of mass
b,E,~, and vibrorotational excitation energy Q, are all cal-
culated in the impulse approximation. In this method,
the ab initio calculated V;„,(R, r, y) must be approximat-
ed as a sum of two center potentials between the projec-
tile and three specified points in the Hz target: the two
protons (or deuterons) and the center of the covalent
bond, R =0. Momentum transfers, P, , are determined
for each center, and these are then analyzed to obtain 0,
b, E,&, and Q. The quantities 0 and b,E,

&
follow from the

total momentum transfer, Pr = g,. P, , while Q is deter-
mined by the momentum transfer relative to the Hz
center of mass. To make the problem tractable, it is
essential that for each individual two-body potential in
the approximation to V;„„the momentum transfer in the
impulse approximation be known in closed form. Be-
cause approximately 10 collision geometries are required
for the necessary resolution in the distribution in Q asso-
ciated with each scattering angle 0, computing time
would be prohibitive if the Newtonian equations of
motion had to be integrated for each collision geometry.

Figure 3 shows one typical outcome of these calcula-
tions. It is the spectrum of target excitation energies ob-
tained when E =1 keV and v. =2.0 keVdeg. It shows
that the most probable event is excitation to the third vi-
brational level, with a corresponding q =0.32, where q is
scaled vibrational excitation energy defined by Eq. (4).
Similar calculations at other scattering angles lead to the
results shown in Fig. 4, which shows the dependence of
the most probable q, denoted by q, as a function of ~.
The qualitative features of the dependence are intuitively
plausible: small scattering angles are, of course, dominat-
ed by purely elastic scattering, q =0. At some larger
scattering angle, excitation to the second vibrational state
becomes most probable, with a corresponding jump in

q . This second vibrational state remains dominant for
some range of ~, during which q falls off parabolically
according to Eq. (4), since Q stays constant, while hE„
increases with increasing ~. When w increases to the
point where the third state becomes most probable, a
second jump occurs in q, and so forth, as successively
higher vibrational states become dominant.

ITl - (o) E = I kev

0.4—

0.2
gghh

d
b

I

2

~(keV deg)

qrn — (b) E = 5 keV

0.4—

0.2—
jj

4

4 I

2

r ( keV deg )

FIG. 4. Most-probable reduced excitation q vs ~ at projec-
tile energies (a) 1 keV and (b) 3 keV. The solid line gives the
theoretical prediction from the quantized model described in
Sec. II of this work. The triangles give the experimental data
from Heckman and Pollack (Ref. 13). Because the 1 keV data
was limited to w 1.5 keVdeg, the dashed line shows the com-
mon trend followed by all the experimental data for w~ 1.5
keV deg. In this region, Sigmund scaling is obeyed, so q can
be obtained from the results at higher energies.
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lO—

O.5—

CV

CD

QJ

THEQRY

E, XPT

2

E (kev)
FIG. 5. Breakaway ~ values vs projectile energy, E. The

solid line gives the theoretical predictions, the circles give the
experimental values from Heckman and Pollack (Ref. 13). The
dashed line is a smooth fit through the experimental points.

E(kev)
FIG. 6. Values of EH~ =2jE at which the breakaway occurs,

plotted as a function of E. The solid line gives the theoretical
predictions, the circles give the experimental values.

Figure 4 also shows experimental results of q values
from Heckman and Pollack, ' which were taken with a
finite angular resolution ( =0.1' FWHM) and also aver-
aged over small angular ranges. As a consequence, the
experimental data points are unable to resolve the pre-
dicted sawtooth structure, but they are seen to lie mid-
way between the peaks and valleys predicted by the quan-
tized classical trajectory calculations. In addition, some
smoothing results from rotational excitation, which al-
though small, is not entirely absent. At small values of ~,
the theory and experiment agree in showing a very
abrupt rise in q at a breakaway value of ~ which de-
pends on the projectile energy. In Fig. 5, this breakaway
value of ~ is plotted as a function of E, for both theory
and experiment. The figure shows that the theoretical
and the experimental curves have the same functional
dependence, with the theory offset some 0.5 keVdeg
higher, confirming that the breakdown of Sigmund scal-
ing in this collision system is due to quantization of the
vibrational excitation of the molecular target. Finally,
Fig. 6 shows the same results as Fig. 5, but with EO,
rather than v., plotted as a function of E. It is clear from
this figure that the breakaway from elastic scattering
scales as EO, as was predicted by Heckman et ar. '

Denoting by 0, the critical angle at which the breakaway
from elastic scattering occurs, Fig. 6 shows that the
theory predicts EO, =1.2 keV deg, while the experimen-
tal value is 0.5 keVdeg . The cause of this systematic
discrepancy most likely lies in the experimental deter-
mination of the "most probable q value" from the bimo-

dal distribution that the theory predicts in the vicinity of
the breakaway point. In the theory, this is the highest
point in the distribution in q. With insuScient experi-
mental resolution (0.5 eV per 1000 eV) to resolve indivi-
dual vibrational peaks and with statistical fluctuations in
the spectra, the experimental q was determined from
the mean value of the upper half of the spectral distribu-
tion. Such a method of locating the peak is valid over
most of the ~ range and would be fine for a simple Gauss-
ian distribution, but would cause a systematic reduction
in the w value for the breakaway. This critical value of 7.

is the one for which the fraction of targets left in the first
excited state equals the fraction left in the ground vibra-
tional state. Below that value of r where, say 60% of the
targets are in the ground state, 36% in the first excited vi-
brational state, and 4% in the second excited vibrational
state, the computer locates q at q =0. For this same
value of ~, the experimental determination would locate
q midway between q =0 and that value of q correspond-
ing to the first excited state (i.e., beyond the elastic limit).
Clearly, this measurement tends to locate the breakaway
at lower values of ~ than that given by the theoretical
prediction. In this connection, it is noted that some data
set distribution in Fig. 4 of the preceding paper showed
elastic peaks at values of ~ consistent with the theoretical
prediction.
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