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An alternative theory for charge exchange at arbitrary energies is introduced. The method is a
Schwinger-type variational unification of the leading second-order Born perturbation approxima-
tions and the efficient L'-expansion theories. This new variational principle is devised in accor-
dance with the correct boundary conditions for three charged particles. The present theory exhibits
a number of advantages over all the existing methods in regard to both the conceptual and compu-
tational points of view.

I. INTRODUCTION

The first convergent S-matrix time-dependent theory
for Coulomb scattering was devised by Dollard' (for a re-
view see Ref. 2). In this fundamental work of Dollard,
the convergence of the theory emerged as a result of im-
posing the correct boundary conditions to the scattering
wave functions in the initial and final states. His results
relate to both potential scattering as well as multichannel
collisions. At the same time, Cheshire investigated the
charge-exchange problem by paying particular attention
to the correct boundary conditions (see also Ref. 4). The
second-order continuum distorted-wave (CDW) approxi-
mation with correct boundary conditions was originally
formulated and implemented by Cheshire with respect to
electron capture from atomic hydrogen by protons. Sub-
sequently, Mapleton studied the second-order Coulomb
Born approximation in H+-H charge exchange. He re-
ported that this approximation is divergent if the correct
boundary conditions are overlooked. Here, it is tempting
to conclude that the H+-H collision cannot seriously test
the boundary-condition problem due to the absence of
logarithmic Coulomb phase factors associated with the
relative motion of heavy particles. However, such an ar-
gument, which has frequently been put forward in the
literature, is misleading due the reduction of the
boundary-condition problem to the sole distortion of the
scattering wave functions. The correct boundary condi-
tions imply that both the scattering wave functions and
the perturbation potentials are consistent with each other
in the entrance and exit channels. Thus, for H -H col-
lisions, the first-order Brinkman-Kramers (BK1) approxi-
mation possesses the correct scattering wave functions
but still violates the proper boundary conditions, because
the perturbation potentials and the channel states are not
the solutions of the same eigenvalue problem. This is
precisely the reason for the failure of the BK1 approxi-
mation, which does not represent a consistent first-order
perturbation theory and which significantly overestimates
the experimental data in a systematic manner.

There has been considerable confusion in the literature
about the role played by the first-order theories for
charge exchange. The first Born approximation of Jack-
son and Schiff (JS1), which has also been considered by
Bates and Dalgarno, is found to be in satisfactory agree-
ment with the measurement for H+-H charge exchange.
However, applications of the JS1 method to other col-
lisions, especially with highly asymmetrical nuclear
charges, met with notable inadequacy, yielding cross sec-
tions which are larger than the experimental data by or-
ders of magnitude. This led researchers to discard alto-
gether the first-order perturbation theories as inappropri-
ate. Thus, according to the commonly held conception,
charge exchange was thought for a long time to be a
phenomenon which can be successfully treated by the
perturbation interaction expansions only if the potentials
at least to the second order are taken into account.

In a review paper, Belkic et al. rigorously established
several important results relating to charge exchange. By
employing the well-known eikonal hypothesis which is
appropriate for ion-atom scattering, they obtained an ex-
act eikonal T matrix for electron capture in a general
case of collisions with one-electron systems. Such a full T
matrix was free from any divergencies. This is a direct
result of imposing the correct boundary conditions to the
scattering eigenvalue problems in the entrance and exit
channel. The work of Belkic et al. relies upon the for-
malism of Dollard. ' In order to properly regularize the T
matrix for Coulomb scattering, Dollard' modified the
standard M&lier scattering operators 0+ and A by in-
clusion of the appropriate logarithmic distortion factors.
Such a modification in the operational form was difficult
to implement in applications. However, Belkic et al.
retained the usual M51ler operators and introduced the
Coulomb logarithmic phases into the scattering wave
functions. In this way an exact, regular T matrix was ob-
tained which is manageable for calculations. In Ref. 9 it
was conclusively proven that the internuclear potential
does not contribute to an exact eikonal total cross sec-
tion. This conclusion is of great importance in view of
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the often repeated misconception concerning Wick's con-
tention about the long-range Coulomb interaction be-
tween the nuclei. A large number of erroneous papers
have been published due to lack of understanding of the
role played by the internuclear potential and the correct
boundary conditions. Such a situation was substantially
changed by the appearance of Ref. 9 in which the issue of
the nucleus-nucleus interaction was definitively settled in
a satisfactory manner. Rather than giving a catalogue of
existing theories together with a compilation and empiri-
cal evaluation of the available data base, as most of the
review papers had done thus far, Belkic et al. devised a
different approach. They took upon themselves to (i)
rigorously formulate the requirements from the first prin-
ciples which a consistent theory must fulfill, (ii) determine
the limitations and assess the domain of validity of virtu-
ally all the available high-energy theories for charge ex-
change, and (iii) perform the original exhaustive compu-
tations of the cross sections within a theory which best
satisfies condition (i).

When dealing with point (i) above, Belkic et al. found
that the long-range Coulombic behavior of the interac-
tion between the two charged atomic aggregates has been
ignored in most studies. The usual scattering theory
which employs plane waves for the relative motion of
heavy particles can confidently be used in nuclear physics
where the interactions are of short range. The situation
is, however, quite different for atomic collisions, due to
the peculiar long-range Coulomb potentials which are
effective even at infinite distances. Hence, in solving task
(i), Belkic et al. concluded that whenever two charged
atomic aggregates are present, the standard theory of
scattering must be appropriately reformulated. This is
most efficiently accomplished by replacing the plane
waves by the Coulombic state for the relative motion of
the heavy particles. This modification must be done in a
consistent manner by requiring that perturbation poten-
tials and the corresponding channel-scattering wave func-
tions are the solutions to the same eigenvalue problem.

Once the above consistency criterion has been estab-
lished, the limitations and validity of the existing theories
for charge exchange were examined in detail. No theory
was free from criticism but, nevertheless, the CDW ap-
proximation emerged as a model with the least number of
shortcomings. Choosing this approximation of Che-
shire in accordance with their task (iii), Belkic et al.
carried out comprehensive computations for more than
50 atomic coHisions of charge exchange. They revealed
that the CDW method is systematically in satisfactory
agreement with the measurements at energies which are
greater than 80 keV/amu. This conclusion has subse-
quently been found by others to hold for many more col-
liding systems. '

However, the CDW theory significantly overestimates
experimental data at intermediate and lower energies. In
this energy range, the usual close-coupling methods are
customarily applied. " In particular, the three-center ex-
pansion technique appears to be quite reliable for certain
cases. ' However, widespread usage of these close-
coupling theories is severely hampered by a large number
of intermediate states which are required for many-

electron atoms, multicharged ions, or even for hydrogen-
ic systems at higher energies.

Hence, a new theory is sought, which could be applied
to any colliding particles at arbitrary energies. We shall
presently resort to nonperturbative methods and develop
a Schwinger-type variational principle. (Atomic units
will be used throughout unless stated otherwise. )

II. SCHWINGER-TYPE VARIATIONAL PRINCIPLE
FOR THE TOTAL GREEN'S FUNCTION

Here, we shall consider a direct collision between two
particles, which might be either structureless or compos-
ite. If the full Hamiltonian of the system is denoted by
H, then the total Green's function reads as follows:

G(z) =(z H) ',—z =E+ie (e~O+ ), (2.1)

where E is the positive energy of the two particles under
study. Resolvent (2.1) is of primary importance, since it
provides the entire physical information about the prob-
lem under investigation. In particular, eigenenergies and
eigenfunctions can directly be extracted from the spectral
representation of the Green's operator G (z), without
solving the Schrodinger equation. ' ' Writing, as usual,

H=HO+ V, (2.2)

where Ho is the kinetic energy operator and Vis the total
interaction potential, we can introduce the transition T
operator by

T= V+ VGV . (2.3)

Then the T matrix is given as an integral over the whole
two-particle space by putting the T operator in between
the initial and final unperturbed states of the system, i.e.,

&;f = (f ~
&~ i ) = (f ~

&+ &G &
I

~ ) . (2.4)

Since pair interactions are known in atomic physics, it
follows from Eq. (2.4) that transition amplitude Tf and,
consequently the related scattering S matrix, could, in
principle, be obtained exactly if the total Green's opera-
tor G is available. Hence, obtaining the total Green's
function is central to scattering theory. This is an ex-
traordinarily difficult task and, therefore, resorting to ap-
proximate solutions is unavoidable. In fact, however, the
essence of physics in most realistic applications lies in ap-
proximations and the main concern here is their con-
sistent introduction. Unfortunately, quite frequently ap-
proximations have been proposed by selecting a few pa-
rameters, and subsequent good agreement with experi-
ments was chosen as the only criterion for the validity of
the theory. We shall presently devise a different ap-
proach to scattering problems and set up a framework for
the theory in which ab initio computations are possible
starting from erst principles This is very im. portant for
an intrinsic quality of the theory, which thus provides ab-
solute data without any arbitrary parameter. Whenever
possible these theoretical results should be compared
with absolute measurements. In this way, reliable tests
can be performed on both the magnitude and the behaU-
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ior of the obtained results as a function of scattering an-
gles or impact energies.

Traditionally, the total Green's function G has been
generated by the perturbation techniques, through an in-
troduction of intermediate propagator G, such as

G=G, +G VG,
=G, +(G V G+GV„G )

—GV G„,
(2.7)

and, subsequently, insert G =G —G V G into the last
term G V„G„ofEq. (2.7) to obtain

G=G +G VG,
G=G +GV G

where

(2.5a) G=G, +(G„V G+GV 6„)—GV (G —G V G),
(2.5b) =G +(G V G+GV G, )

—G(V —V G V, )G .
(2.8)

G„(z)=(z H+—V„) (2.6)

Then, the well-known Born series for G is obtained by
iterating Lippmann-Schwinger Eqs. (2.5a) and (2.5b). In
practice, however, the thira and higher orders in the
Born series are unmanageable and this severely limits the
perturbation theories. Hence, obtaining the full T matrix
should proceed through introduction of nonperturbative
methods. In order to achieve this goal, we shall presently
investigate a variational principle for total Green s opera-
tor G(z), which automatically will supply a variational
estimate of the full T matrix. We first add and then sub-
tract term GV„G„ in the right-hand side of Eq. (2.5a), i.e.,

G =G +(G„V,G+GV G ) —GDG,

where

D=V —VG V

(2.9)

(2. 10)

Further, replacing G by a trial estimate G, i.e.,

G =6„+(G,V„G+GV, G, )
—GDG, (2. 1 1)

and performing a small variation around G wi11 imply

Thus, by using Lippmann-Schwinger Eq. (2.5a) twice in
the above derivation, we obtain the following identity for
the exact total Green's operator G:

5G =G„V,(56 )
—(5G ) V, G, —(5G )[( V, —V, G V, )6 ]—[G( V —V„G„V,) ](5G )

=[G„—G(1 —V, G„)]V,(56)+(56)V„[6„—(1—G V„)G]

=[6(1—V„G, )
—G(1 —V, G )]V (5G)+(5G) V„[(1—G, V, )6 —(1—G V )6], (2.12)

so that

5G =(AG)D(5G )+(5G)D(b 6 ), (2.13)

where AG =G —G. If trial operator G were exact, i.e.,

G=G (56=0), (2.14a)

then the right-hand side of Eq. (2.13) would be identical
to zero. Further, Eq. (2.14a) implies that the left-hand
side of Eq. (2.13) also vanishes:

6G=O . (2.14b)

This is the condition for operator G to be a stationary
functional. Hence we obtain bilinear form (2.11) of the
variational principle for the total Green's function, since
small variations of trial operator G around exact value G
are found to vanish identically by virtue of (2.14b).

For practical purposes, however, it would be advanta-
geous to derive an alternative form for Eq. (2.11), which
will be independent of the norm of trial operators. This
is accomplished by casting operator G into an arbitrary
representation [la), (bl I:

&blG~a &=&blG. la &+&bIG. V„la'&

+(b'l V„G„la ) —(b'lDla'), (2.15)

where la') =6 la ) and (b'l =(b lG . Further, consider-
ing la' ) and ( b'l as trial functions, we shall expand them

as follows:

la'&= ga;li &, b'&= gb, lj&,
1 J

where [ li ), (j l I are linearly independent complete basis
sets, and a, and b- are unknown expansion coefficients.
Two sets I li ) I and I (j l I do not need to be identical to
each other. Inserting (2.16) into Eq. (2.15) and carrying
out independent variations of a; and b *, we obtain

(bl5Gla &
= g (5a;)[(bIG V Ii) —g b,*&jID Ii &]

l J

+ & (5b,* )[ & j I V.G. I
a &

—g a; & & I
D

I
~ & ] .

(2.16)

y b*(j
l ltD)= (b lG 'v„ll')

J

g a; (j l
D

I
i &

= (j l V„G

(2.18)

(2.19)

or, in the matrix form

a D=A, b D=B, (2.20)

where A =(j
l
V G la ) and B, =(blG V„li ). We as-

sume that inverse D ' exists, i.e.,

(2.17)

For independent variations of coefficients a, and b *, sta-
tionary condition (2.14b) is satisfied provided that
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D 'D=1,
so that

(2.21) and mz is the mass of the Kth nucleus (K =P, T). The
total Hamiltonian of the three-particle system under
study is given by

a=AD ' b =BD (2.22) H=HO+ V, (3.3)

Substituting (2.22) into Eq. (2.15), we derive the following
result:

where Ho is the kinetic-energy operator and V is the full
interaction potential,

(blGla)=(blG Ia)+b A+aB —ab D

=(b IG la )+BD

+AD 'B —AD 'BD 'D (2.23)

Ho= — V — V —=K — V
1 2 1 2 1

2p "t 2a& '& '
2a&

V2 — V2 =—Kf — V2
2pf "f 2aP "p 2aP

(3.4)

(3.5)

and after canceling term A D 'B by —A D 'B D 'D
through the use of Eq. (2.21), we deduce

+ y &bIG V li)D,, &jIV„G„Ia), (2.24)

V = Vp( rp ) + Vz ( rr ) + Vpy'(R )

Vx (r) = Zx /r Vpr =ZpZr/R

p, ; =mp(mr +m)/( mp+mz+m ),
pf mr(mp+m )/(my'+mp+m )

(3.6)

(3.7)

where

(2.25)

The entrance- and exit-channel scattering wave functions
and Nf with the correct boundary conditions are re-

spectively given by

Finally, since basis sets [ I a ), ( b
I I are arbitrary, we can

write Eq. (2.24) in a more general form, which is indepen-
dent of representations [Ia ) I and [(bl], i.e.,

4, =y, (rr) exp[ik, r, +iv, ln(k, r, —k, r, )],
=4&, exp[iv, ln(k, r, —k, r, )]—:4;F;+,

If lpf(rp ) exp[ —ikf rf —i vf ln(kfrf kf If )]

(3.8a)

(3.8b)

G =G„+g G„V„ i )D, (j I V„G„. (2.26) (3.9a)

It is immediately apparent that fractional form (2.26) of
the variational principle for the total Green's function
does not depend upon the norm of the basis set functions
Ii ) and (j I. Bilinear form (2.11) has previously been re-
ported by Newton, ' whereas fractional version (2.26) was
derived by Belkic and Taylor. ' ' ' Practical implementa-
tions of variational principle (2.26) were deferred until
now since the so-called "boundary-condition problem"
took a great deal of our attention. '

=Of exp[ —ivf ln(kfrf kf rf )]=@fFf (3.9b)

where y (rz) describes the bound state of hydrogenic
system ( Zz, e )~ (K =P, T; j=f,i ), k; and kf are the ini-
tial and final wave vectors, respectively,

v; =Zp(Zr —1)/u;, v; =k;/p;,

Vf ZT(Zp —1 ) /uf, vf kf /pf—
(3.10a)

(3.10b)

Total Hamiltonian H can be split into the following two
symmetric forms:

III. APPLICATION TO CHARGE EXCHANGE
AT ARBITRARY ENERGIES

H=HO+ V, ,

=Ho+ Vf,

(3.1 la)

(3.11b)

In this section we shall apply variational principle
(2.26) to electron capture from hydrogenlike atomic sys-
tems (Zr, e ), by completely stripped projectiles Zp:

where V, and Vf are the perturbation potentials in the
entrance and exit channels,

Zp+(Zr, e ); ~(Zp, e )f +Zr, (3.1)
V = Vp(rp )+ Vpy(R)

Vf T(rT) VpT(R) .

(3.12a)

(3.12b)

r; =a&rr —rP, rf =aPrP rT, R=rT rP (3.2)

where az =mzm /(mz+m ), m =1 is the electron mass

where Zz is the nuclear charge of the Kth nucleus
(K =P, T) and j is the usual set of quantum numbers, i.e.,
j=

[ n Jl~m ~
I (j=f,i ). Let rz be the position vector of

the electron e with respect to the Kth nucleus (K =P, T)
and, further, let R be the relative vector of Zz- toward
ZP. We also introduce relative vectors r,- and rf by

We now resort to the well-known eikonal hypothesis,
which assumes that k; acquires large values. For heavy-
particle collisions, we have that p, &)m and, hence, k, is
large even at very small incident velocities u, (of the order
of 0.01 a.u. ). Due to their large mass, heavy projectiles
are only slightly deflected from the initial direction and
the scattering is predominantly taking place in a narrow
forward cone. This implies that k, =kf, but not k; =kf,
however. Such an eikonal hypothesis permits the follow-
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ing linearization of the kinetic energy operators for rela-
tive motion of heavy particles

k,
K, = — V„-=

2pi ' 2pi
—v; (k;+iV„)=K.. . (3.13a)

kf
V2 =

2pf f 2pf
vf (kf i V„)=Ef-,f (3.13b)

Unperturbed asymptotic channel states 4; and Nf are
the solutions of the following equations:

T,, =
& ~; I v,'I q; &,

where

4;+ =(1+G+ V')4+

4f = ( 1+ Vf G )4f
and V,'f are new perturbations

V,'= V; —V,, = Vp(rp) —Vp(R),

Vf = Vf
—Vf, = VT( r T ) —VT(R ) .

(3.20b)

(3.21a)

(3.21b)

(3.22a)

(3.22b)
k,-

(E H, )@,—=0, E= +E;, H; =HO+ VT(rT),

(3.14a)

An explicit eikonal hypothesis should further consistently
be invoked into the total Green's function via Eqs. (3.17a)
and (3.17b) so that

k
(E Hf )4—f =0, E= +Ef, Hf =Ho+ VP(rt ),

Pf
(3.14b)

where E is the electronic binding energy of hydrogen-
like atom (Zx, e )~.

E = —
—,'(b ), b =Ztt/nj (K=PT; j=f i) .

T,;=-T,,"—= &~ 'IV, e, &,

T,;-=T,; —= &~;Iv, lq;
where

+,+I'=(1+G,+ V,')4;

qlf "=(1+Vf G, )@f

(3.23a)

(3.23b)

(3.24a)

(3.24b)

Total exact Green's function G+ is defined by

G+ =(E H+ie—)

(3.15)

(3.16)

(3.17a)

=(Ef vf [kf iV„]—+——,'V„—V+ie)

(3.17b)

where the limits p;))m and pf ))m are understood.
Furthermore, within the same eikonal hypothesis, it is
immediately seen that distorted waves F; and Ff satisfy
the linear differential equations such as

with the appropriate incoming boundary condition
(@~0+). This operator can be simplified by virtue of
Eqs. (3.13a) and (3.13b) as follows:

G =—G,+=(E; v; [k;+iV—„]+—,'V„—V+iE)

with G,+ given by Eqs. (3.17a) and (3.17b).
The "prior" and "post" T matrices T,f and T,f+ as well

as their respective exact eikonal simplifications T,f"and
Tf+I' are defined in Eqs. (3.20a), (3.20b), (3.23a) and
(3.23b) on the energy shell at which the total energy E is
conserved, i.e. , E, +k, /(2p, ) =Ef +kf/(2pf ) (see Eqs.
(3.14a) and (3.14b). This fact together with the
knowledge of the exact wave functions y; (rT ) and gf(rp )

for hydrogenlike atomic systems, imply that T,f:T'f
and T,f "—=T;f+", i.e., there is no so-called "post-prior"
discrepancy. Hence, for convenience, we shall hereafter
employ only the post form T,f"of the T matrix.

Modified perturbations V and Vf are of short range as
R ~ ~, which can be easily seen by developing Vz(rx. )

into the Taylor expansions. By so doing, the lowest order
in these expansions for Vz(rz ) is found to coincide with

Vx ( R ), which then cancels term —Vx. ( R ) in Eqs. (3.22a)
and (3.22b), i.e.,

(iv, .V, —V,, )F,+ =0,
I

(l vf V„—Vf, )Ff =0

(3.18a)

(3.18b)

R rz
Vx-(rx) —Vx(R)—= Vx(R)+ + —Vx. (R)

R

V„=ZP(ZT —1)/R, V;:V;, ,R~co

Vfa ZT(ZP —1 ) /R, Vf VfgR~oo

(3.19a)

(3.19b)

Exact, full transition amplitudes T;f and T,f+ with the
correct boundary conditions for reaction (3.1) are intro-
duced by

T,f-= & ef-I v,'Ie,+ &, (3.20a)

where V;, and Vf, are the asymptotic values of perturba-
tions k; and Vf with the scattering particles being
infinitely separated from each other in the entrance and
exit channels,

R r~ + 0 ~ e

R

(K =P, T; j=f,i R~~; P;f »1) . (3.25)

Equally important is the fact that new perturbations V,
'

and Vf do not contain internuclear potential VPT(R), in
contrast to the initial expressions (3.12a) and (3.12b) for
V; and Vf. However, there are three remaining terms in

T,P' which include the contributions from VFT(R), and
these are N,+, Nf, and G,+. This is an apparent draw-
back of our formalism, since in the eikonal limit, an exact
T matrix should supply the total cross section which is
independent of VFT(R) according to Wick's contention.
That this is indeed true will be immediately clear by using
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the following identity:

G,+ V 4,+=F;+G,+ V,'N, ,

where

G, = [E; —v; (k;+i V„)+—,
' V„—V'+i e]

and

V'= V —V;, = V + VT(rT) .

(3.26)

(3.27)

(3.28)

dence of Tf" upon internuclear potential VpT(R } is con-—2i v,. —2i vftained in phase factor p
' or p . In particular, em-

ploying feature (iii), it can be easily shown that the total
cross section is independent of VPT(R ), i.e. ,

R +(e) 2

~+"=fdgif 2&U

+(e) 2

= f '""dq~ j' dy (in units of ao),
0 0 2&U

Since V,.
' is a multiplicative operator and F;+ satisfies Eq.

(3.18a), identity (3.26) can readily be proven if we multi-
ply both sides of (3.26) by 1/G,+ and utilize the linearity
of G, with respect to V„. Inserting identity (3.26) into

I

Eq. (3.23b) we obtain

T;f+"=&efFlv+v'6+'v I@, &,

where

(3.29)

F=(F; )"Ff (3.30)

+2& vF=(pp )uI exp[if jn(k, r, —k; r;)], (3.31a)

(3.31b)
+2l V-

=(ppv) ' exp[ —i/in(kfrf kf rf)], —

with

and

vf -=v,. —:v, p=mpmT/(mp+mT)

g=(ZT —Z~)/v .

Thus we can rewrite Eq. (3.29}as follows:

(3.32)

=«fp ' 'e '
~v,'+vf'6, +'v;~e, ),

(3.33a)

(3.33b)

where 5;f =gin(uR + v R). Here, we ignore all the con-
stant phase factors which do not contribute to either the
difFerential do.;f"/d 0 or total o.;f"cross sections,

da+(e)
TP' (in ao/sr atom), (3.34a)

Finally, setting R=p+ Z = (p cosy, p sing, Z ), where
p.Z =0, we deduce in the eikonal limit

(3.36)

where g is the transverse momentum transfer
=(gcosp„, gsinp„, 0) and

R;f =(4fe '~ V + vf'6+'v, "~4;), (3.37a)

=(efe '
f~v, '+vf'6, +'v, '~e, ) . (3.37b)

V =V', (3.38)

Hence our basic matrix element R;f+" is entirely indepen-
dent of the internuclear potential and, moreover, contains
only one logarithmic Coulomb phase factor exp(i 5; ) or
exp( i5f—). Even this remaining phase disappears for a
general homonuclear (symmetric) collision (3.1) with
specification Z+=ZT. We see that in this latter case
(Z~=ZT), preserving the correct boundary conditions
requires only trivial modification of the standard scatter-
ing theory, such as appropriate substitution of VPT(R ) by—VT(R) in Vf as well as by —V~(R) in V; and 6,+.

Exact expression (3.37) for R,P' is free from the
Coulombic divergencies which would arise if the correct
boundary conditions were overlooked [see Refs. 19(a)-
19(1)]. Hence, our matrix element R,P' represents a nat-
ural starting point for developing approximate schemes,
resorting to either perturbative or nonperturbative treat-
ments. Perturbation methods based upon Eq. (3.37) have
been previously studied by Belkic, who expanded G,+

in terms of the free three-particle Green's function 60+,
and performed exact numerical computation within the
second-order Born approximation (see Sec. V). We shall
presently develop nonperturbative methods starting from
variational principle (2.26) for the total Careen's operator.
In particular, we choose

o.+"= dQo &f

do-+"o if
dQ

(in units of a o ) .

Here 0 is the solid angle around k;,

Q=(O, y), O=cos '(k; kf),
dQ=sinOdOdp, yE[0, 2m], OK[0, m],

(3.34b)

(3.35a)

(3.35b)

which implies

G„+—:(E Ho —V'+ V„+i—e) '=Go,

where G0, is the free-particle Green's function

Go+, =(E, —v. [k;+iV„]+—,'V„+is)
=(Ef v. [kf i V„]+—

—,
' 7—„+i e )

(3.39)

(3.40a)

(3.40b)

with 0 being the scattering angle.
There are several important properties of the present

Eq. (3.33), such as (i) Expression (3.33) for TP'
represents an exact eikonaI T matrix for a general three-
body charge-exchange problem (3.1), (ii) Modified pertur-
bations V and Vf are short range at infinite separations
between the two aggregates, and (iii) The entire depen-

G +'=6 +g060+, V'I+~)Dg (@„Iv'Go, (3.41)

where

Hence the present variational estimate G,+' of exact
eikonal Green's operator G,+' is introduced by
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and

4~=S~(rT)exp(ik, r, ),
N, =S,(rp)exp( —ikf lf)

(3.43a)

(3.43b)

(D ')„„=&4,~D~4~) =&@.
~

V' —V'Go+, V'~4~),

(3.42)

reaction (3.1). In Ref. 20, exact numerical computations
within the CB2 approximation has been carried out for
H+-H charge exchange and we shall discuss these results
in Sec. V. General homonuclear (symmetric) collisions
with Zp =ZT are the subject of thorough investigation in
Sec. IV.

Here S (rz) is a Coulombic-Sturmian wave function of
Rotenberg: '

IV. EXACT CALCULATIONS OF THE
VARIATIONAL T MATRIX FOR

SYMMETRIC-CHARGE-CHANGING COLLISIONS

(
—

—,'V„' Ex—)Sy (rx-) =
KZKa ) I

S~ (rx. ), (3.44)
Here we consider the symmetric version of reaction

(3.1) in which case
where EK is an arbitrary, but fixed negative energy pa-
rameter and coupling strength ZKa „,, represents an ei-

genvalue, such as

a = ( n ~ IZx- )( —2E& )' (K =P, T; y = v, A )

Zp ZT )

=0.
(4.1)

(4.2)

(3.45)

and y is the usual triplet of hydrogenic quantum num-
bers, i.e. , y= [nrl~m~j (y=v, A, ). In fact, there is a
great similarity between the hydrogenlike and Sturmian
wave functions, which can best be seen from the follow-
ing simple scaling in the coordinate representation:

K K 3/2 K KS,), , (rx )=(a )()) 0 ),&,(a J),rz) . (3.46)

'
~
V + V~G,

+'
V,'~ 4, ),

+(CB2)+~ g D B R +(CB2)+g+(e)if Xf kv iv= if if
A, , v

(3.47a)

(3.47b)

where

W+'""=&e~e
~

V'+ V~Go+ V'~e &,
—ib,~,~=&e~e

~
V~GO+, V'~a, ),

&„=&@,IV'G,', V,'~e, & .

(3.48a)

(3.48b)

(3.48c)

Clearly, both wave functions in Eq. (3.46) relate to the
same potential Vx ( rz ), but they nevertheless differ
significantly in their respective spectrums. Specifically,
although entirely discrete, spectrum I S ~,» (rz ) ) of
Sturmian wave functions is known to be complete. In
contrast, the set of the hydrogenlike bound-state wave
functions Iy»»(rz)I can only be complete by in-

clusion of the corresponding continuum Coulomb waves.
For this reason, the Sturmian expansion functions are
much more convenient in practical computations than
the hydrogenic basis set.

Inserting G,+' from (3.41) into Eq. (3.37a) in place of
G,+', we obtain the present variational estimate R,f" of
our exact eikonal matrix element R,f "..

In the present derivation, we shall keep notation Zp and
Zz for the charge of the impact and target nucleus, re-
spectively, as if they were different. For our variational
principle with the correct boundary conditions, however,
identity (4.1) will be understood throughout. The only
place at which identity (4.1) will explicitly be used is the
definition of parameter g [see Eqs. (3.32) and (4.2)]. In
this way, it will be possible to use the same algorithm for
computations of variationa1 T matrices with and without
the correct boundary conditions. A variational principle
of the Schwinger-type can also be obtained starting from
the standard, full T matrix without preserving the proper
boundary conditions. This can be accomplished for gen-
eral reaction (3.1) by considering g as a parameter which
is independent of Zz (K =P, T), then setting (=0 in ei-
ther the homonuclear (Zp =ZT ) or heteronuclear
(Zp&Z&) case, and using variational principle (3.47a),
(3.47b) with the formal substitutions of V,'& and V' by
V;f and V, respectively. In this case, the factored high-
energy leading term in Eq. (3.47b) would be the second-
order Jackson-Schiff (JS2) approximation. The
difference between the results obtained by means of the
first-order Born approximations CB1 and JS1 with and
withou t the correct boundary conditions, respectively,
has previously been found to be extremely significant ~

' '

It would be interesting to see whether this conclusion can
be extended to the computations performed within the
variational principles for the full T matrices.

The calculation of all the matrix elements will be car-
ried out in a rigorous manner, thus yielding exact results.
This is to be contrasted to the standard peaking approxi-
mation of unknown validity, which has customarily been
employed in various second Born-type approximations
such as the impulse or strong-potential Born (SPB)
theories. ' '

We shall be working in the momentum space for which
we need to introduce the Fourier transform of the type

The second Born approximation with the correct bound-
ary conditions (CB2) has previously been introduced by
Belkic precisely in the form of Eq. (3.48a) for general

f (q) =(2') f dre'q'f (r),

and the complete set of plane waves,

(4.3)
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~k K) =(2m) ~exp(ik rz+iK rp)),
(k' K'lk K) =5(k —k')5(K —K') .

Then, we obtain

T+(CB2) T+(CB1)+~ +

(4.4a)

(4.4b)

(4.5)

(4.6a)

(4.6b)

T,+'""=(C iV,'ia, &,if f i

= (2~)' I ,'—p&—;[q f (
—a ) ]*q;(P)

+ f dp[q f{p—a)]'W~( —p)@,'(p+P) I,

where g,f'= & ef i vf G,+, v,'ie,-), (4.7)

Qf+ =(2n ) f f dp dq[yf(p+q —a)]'Wz( —q)E 'V~(p)y; (q+P)

+ f fdpdq[mf'(p+q —a)l'WT( —q)E„, 'Wp( p)@ {p+q+»
+ f fdpdq[Vf(p —a)1'VT{—q)E 'Vp(p@,'(q+»
+ f f dpdq[g f(p —a)]'VT( q)E~~—'W~( —p)@;(p+q+P) (4.8)

with

Wx (R ) = —V~(R ), K =P, T

E~q =E; +p v/2 ~p+q+P~ l2+ie,
a=g+cz, v, a, = —U/2+hE/U,

(4.9)

(4.10)

(4.11)

P= g+13,v—, P, = —v l2 bE lv, —

pp;=P +(b; ), bE=E; Ef, P=—iPi .

(4.12)

(4. 13)

Similarly, matrix elements A&f, B;„and D& of station-
ary part Sif" are found to be

T

2 pf (2~)' f f dp dq[q f(p+q —a)]' Wz ( —q)E ' V~(p)S z(q+P)

+f fdpdq[l f(p+q —a)]*WT{—q)E,, 'W~( —p)S Op+ q+»
+ f fdpdq[yf(p —a)]*V&(—q)E 'Vp(p)S z(q+P)

+ f f d p d q[y f (p —a) ]*Vz ( —q)E ' W~( —p)S &(p+ q+P)

+ ~ dqyf q —a *O'T —q+ yf —a *VT —q
' Sgq+

n Pq+ p, i

D„.=(2m )' —f f d p dq[S .(p+q —a)]*Wp( —q)E,, ' V~{p }S~(q+P)

—f fdpdq[S {p+q—a)]*&~(—q)E 'W~( —p)S z(p+q+P)

—f f1p 1q[S (p —a)]*VT( —q)E ' Vp(p)S ~(q+P)
/

—f fdpdq[S (p —a)]*VT(—q)E 'Wz( —p)S z(p+q+P)

(4.14)

+ dq S q —a *&~ —q+ S —a *VT —q
' S~q+

n Pq+ p, i

I +1+ dp S p —a * ' S p+ ~' —p+S ~ p
7l Pp —af

+ fdp[S (p —a)]'Wp( —p)S z(p+P)

I +1 1 +1 Pa, &p, x
[

—p ]„—T p)
v k (i +1)(i +1)

n Pf Pp i
(4.15)
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8,~=(2~) f fdpdq[S (p+q —a)]'W~( —q)E 'V~(p)p;(q+P)

+ f fdpdq[S (p+q —a)]*W~( q—)E q'Wp( —p)y, (p+q+P)

+ f fdpdq[S (p —a)]'VY( q)—E~ 'Vp(p)y;(q+P)

+ f fdpdq[S (p —a)]*Vz( —q)E 'W~( —p)tp, (p+q+P)

I +1+ f dp[S (p —a)]* ' [y, (p+P) Wp( —p)+y, (P) Vp(p)]
n Pp —a,f

(4.16)

where

ZK
p, ~=r +(b ), b =; y=v, A, (K=P, T)

(4.17}

p =r +(b )' b =Z /n' j=f i (K =P T)

(4.18)

In these formulas, the following value of the Sturmian en-
ergy Ez was selected:

E~= —(b ) /2; y=v, A, (K=P, T) . (4.19)

This choice has the particular merit of making node-
less Sturmian wave functions (n ~ = I r + 1 ) identical
to the corresponding hydro genlike wave functions
(15,2p, 3d, 4f, 5g, 6h, . . . ). The remaining Sturmian wave
functions with n ~%1~+ 1 represent certain pseudostates,
which hopefully will mimic the hydrogenic continuum to
a good approximation. Using the same Sturmian energy
in computations of, for example, polarizability of atomic
hydrogen, it can be verified that a Sturmian basis of
moderate size provides excellent results in comparison
with the exact values. ""This should be contrasted to
the inability of even the entire set of hydrogenic bound
states to provide satisfactory results without inclusion of
the continuum.

For further analysis of matrix elements 3&f, 8, , and

D& it wi11 be useful to establish a relation between the
momentum representations of Sturmian and bound-state
hydrogenlike wave functions. Such a connection follows
directly from Eqs. (3.46) and (4.3) in the form:

„~~r r(q) =(a„.» ) '"y '„». .(q«„v~r ) . (4.20)

where p is given by Eq. (4.17) and

y (rx )= Vx(rx. )Sr(rx); y=v, A, (E =P, T) . (4.22)

Also convenient is the relation between the momentum-
space Sturmian wave functions and the Fourier transform
of a Sturmian wave function weighted with the corre-
sponding Coulomb potential, i.e.,

t~+ &(q)= — p S (q}; y=v, A, (IC=P T),
2n

(4.21)

It is straightforward to verify Eq. (4.21} by taking the
Fourier transform of both sides of Sturmian eigenvalue
problem (3.44) and employing Eqs. (3.45), (4.17), and
(4.19). In deriving results (4.14), {4.15), and {4.16), we
have already utilized Eq. (4.21).

Since the momentum-space Sturmian wave functions
are reduced to the scaled Fourier transforms of hydro-
genlike wave functions by virtue of (4.20), inspection of
Eqs. (4.5)—(4.16) will reveal that stationary part S,-f" re-

quires the same type of three- and six-dimensional in-

tegrals in momentum space, as does R;f+' '. The three-
dimensional integrals are the two-center Dalitz integrals
which can be calculated either analytically or numerically
in the form of parametric one-dimensional Feynmann
quadratures. This has recently been shown by Belkic and
Taylor' ' ' in both cases with and without the Coulom-
bic phase distortions. The most dimcult are the pure
second Born-type six-dimensional integrals encountered
in matrix elements Q,f, Azf, 8;, and Dz, [see Eqs. (4.7),
(4.14)—(4.16)]. These integrals have recently been re-
duced by Belkic to only two-dimensional quadrature
with smooth integrands for arbitrary pure three-body
homonuclear charge exchange. Hence, in conclusion, we
have shown that our variational principle (3.47) is very
attractive from the computational point of view, since the
T matrix for symmetric collisions requires, at most, two-
dimensional integrals accompanied by a matrix inversion
(D ') at each incident energy and scattering angle.

V. NUMERICAL RESULTS OF THE CB2
APPROXIMATION FOR H+-H CHARGE EXCHANGE

AT INTERMEDIATE AND HIGH ENERGIES

A detailed account of the results obtained by the
present variational principle is planned to be published
separately in a forthcoming paper. The most critical is
the intermediate and low-energy region at which station-
ary part S;f" should compensate for deficiences of the
first (CB1) and second (CB2) Born approximations.
In fact, our experience shows that at low-incident
energies as well as at the lower edge of intermediate ener-
gies, pure second Born-type matrix element Q,f
=(@f

~ Vf Go+, V,'~@, ) yields a negligible contribution to
the transition amplitude T,f ' ' = T,f ' + Q,f from
Eq. (4.5). This becomes immediately clear by inspection
of Figs. 1 —3, which show the differential cross sections
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for H+-H charge exchange at 60, 125, and 5000 keV.
Comparisons with the experimental data reveal that the
first Born approximation (CBl) provides quite a satisfac-
tory diff'erential cross section do. ;f' "/dQ in the for-
ward direction. Away from a narrow forward cone,
theoretical data do;f' "/d0 decrease rapidly by orders
of magnitude, which then yield adequate total cross sec-
tions despite the unphysical dip at intermediate scatter-
ing angles. Thus, at lower energies, a significant interplay
will take place merely between the perturbation part
T;f ' " and stationary contribution S,f" in the varia-
tional T matrix T,f"= T,f ' "+Q;f++S;f+". Since the
CB1 approximation gives an acceptable order of magni-
tude for the cross sections even at low energies, it is ex-
pected that the convergence over the basis states in S,.f"
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FIG. 1. DifT'erential cross sections (da /dQ)z for charge ex-
change H++H(ls)~H(X)+H+ as a function of scattering an-

gle at 60-keV laboratory energy of the projectile. The theoreti-
cal curves are not folded over experimental resolution. Only the
1s ~1s transition in atomic hydrogen is explicitly considered in
the computations. The cross sections (do. /dQ)z for capture
into any state of H is estimated by using the simplest scaling for-
mula, i.e., (der/dQ)q=1. 202(do &, &, /dQ). Theory (all the ex-
act numerical computations obtained by Belkic, Ref. 20):
BK1, the first-order Brinkman-Kramers approximation,"=( @fl Vp(&p)l@;); — BK2, the second-order
Brinkman-Kramers approximation proposed in Ref. 28,
Tf+' " '=(itiflv (r )GTrvi(rod, )lci;); -"-"-, cBI approxima-
tion, see the text, Eq.(4.6); and CB2 approximation, see
text Eqs. (4.5)—(4.8). Experiment: Closed circles, Martin et al.
(Ref. 29).
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imental data of Vogt et al. (Ref. 30) denoted by open circles.
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can be achieved with low-rank matrices 2, B and D.
On the other hand, as the incident energy is progres-

sively augmented, the contribution from Q;I becomes in-
creasingly more important as evidenced in Fig. 3. Com-
putations show that both the real and imaginary parts of
Q,I are of nearly equal importance at intermediate and
higher energies (see Figs. 4—7). Finally, in the limit of
very high impact energies, double scattering term Q,I
dominates over the first-order contribution Tf '

Moreover, at these energies, the second Born (CB2) ap-
proximation yields the leading fraction of the total T ma-
trix and, hence, here stationary part S;f+" is expected to
be negligible.

VI. DISCUSSION AND CONCLUSION

In general, the methods currently used to deal with the
problem of charge exchange may be classified into two
distinct groups, i.e., perturbation theories and L-
expansion techniques. In the former methods, each order
of the perturbation potential series accounts for an
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FIG. 4. Charge exchange in proton —atomic-hydrogen col-
lisions, i.e., H++H(1s)~H(1s)+H+ at 60-keV laboratory en-

ergy of the projectile. All the curves represent the real part of
matrix element (C&flXGo+, Yl&P; & =I+ r multiplied by a con-
stant, const = (

—1)"/(128~). Curve 1, n = 1, X = VT(rT ),
Y= Vr(rp); curve 2, n =0, X= —Vr(R), Y= Vr(rp) [the same
curve is obtained for n =0, X= Vr(rr) and Y= —Vr(R)];
curve 3, n =1, X= —VT(R), Y= —Vp(R). These four matrix
elements are computed exactly and they are all contained in the
CB2 approximation [see Eqs. (4.5) and (4.7)] (a.u. =atomic
units).
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infinite number of intermediate transitions through the
Green's functions. Exact computations, however, have
thus far been carried out only up to the second order in
the perturbation interactions, since the higher orders are
practically unmanageable without resorting to peaking
approximations of unknown validity. In contrast to this,
the L -discretization methods (e.g., close-coupling tech-
niques) take the perturbation potentials exactly into ac-
count and truncate the series of the total scattering wave
functions developed in terms of certain expansion func-
tions. Here only a limited number of intermediate chan-
nels can be accounted for, due to the complexity of the
resulting system of coupled differential equations. This
type of method is applicable, in practical terms, merely to
lower energies, since at high energies all the channels are
open and, hence, a large number of expansion functions is
required. In fact, the high-energy behavior of the cross
sections obtained by means of the close-coupling methods
reduces to prediction of the first-order perturbation
theories, irrespective of the basis-set size employed in the
computations. The leading contribution at high energy
is, however, determined by the second-order terms
describing the Thomas double scattering.

Clearly, the most critical intermediate energy region of
scattering is not well understood, within either of the
aforementioned two groups of methods. They provide
only partial answers, which could be considered satisfac-

tory exclusively in their respective energy range of validi-
ty. Therefore, a new theory is sought which will poten-
tially be applicable to all energies and, furthermore, will
successfully encompass the best features of the leading
second-order methods together with the efficient L-
expansion techniques. Such a theory with the correct
boundary conditions is proposed in the present paper
through introduction of a Schwinger-type variational
principle for the total Green's function and T matrix.

We first show that an exact eikonal total cross section
with the correct boundary conditions for electron capture
from hydrogenlike atoms (ZT, e) by bare nuclei of charge
Zz can be obtained by retaining only one Coulomb-
logarithmic phase factor exp[+i (ZT /u —Z~ /u )ln( uR—v.R ) ] in the most general case of the heteronuclear
collision (Z~XZT). Even this remaining term disappears
for homonuclear scatterings (ZP=ZT), in which case an
easier formalism of the standard collision theory can be
employed with merely a slight modification of the total
and perturbation potentials.

Next, we replace an exact eikonal reduced transition
amplitude R,f"by a Schwinger-type variational estimate
R,f"=R;f' '+S,f", where label CB2 denotes the
corrected second Born approximation and S,-f" is the
stationary part. Each contribution R,f ' ' and S,f"is
given in terms of free-particle Green's function Go+, in
which the kinetic energy operator for the heavy-particle
motions is linearized (eikonal hypothesis). In an analogy
with R;f ", the proper boundary conditions are also
preserved in our variational approximation R,f"whose
terms R,-f ' ' and S;f" contain only one Coulomb-
phase factor exp[+i(ZT/u —

Zplu )ln(uR —v R)] in the
most general case of heteronuclear collisions. This is par-
ticularly advantageous for homonuclear scattering in
which case the full, variational T matrix reduces to, at
most, two-dimensional numerical quad ratures with
smooth integrands. The present general expression for
R,f" is free from the characteristic Coulomb divergen-
cies, which are customarily encountered in the theories
with incorrect boundary conditions, such as the strong-
potential Born approximation. Two factored constitu-
ents R;f ' ' and S;f"of R;f" are respectively due to
the second order of a perturbation series and to a contri-
bution from an L -expansion method. Hence, total esti-
mate R;f" represents a variational unification of pertur-
bation theories and L -close-coupling methods. As such,
our variational principle exhibits many advantages over
all the existing theories for charge exchange. The present
method is valid at all incident energies for which the
eikonal hypothesis is applicable (from very high, through
intermediate, and down to low energies of the order of
100 eV/amu). In practice, at most the second order can
be computed exactly from a perturbation series. The re-
sulting data are inferior to the proposed variational prin-
ciple containing T;f ' ' and stationary part S;f". The
latter term could be, therefore, interpreted as a variation-
al approximation to all the otherwise uncalculable
higher-order terms beyond the fraction given by T;f '

At the same time, the present theory is superior to the
usual close-coupling methods, since the high-energy lead-
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ing term T,f ' ' is accounted for along with the L—
discretization portion S;f",which projects a part of the
full transition T operator onto a complete basis set. Sta-
tionary function S;f" approximately incorporates the
same physical eff'ects as do the close-coupling methods
through inclusion of virtual transitions in intermediate
channels. Rather than solving a system of coupled
diff'erential equations, which becomes unwieldy for mul-
tielectron targets, multiply charged ions, or even for sim-
ple H+-H charge exchange at suKciently high energies,
we need only to perform numerical quadratures and in-
vert a matrix. At high energies, where the close-coupling
techniques necessitate a large number of basis functions,
our variational principle requires low-rank matrices since
the major contribution is determined by the second Born
approximation Tf '

In addition to being very attractive from the computa-
tional point of view, the present method is also quite flex-
ible concerning the choice of the intermediate state prop-
agator G + and expansion functions. The L basis set and
Green's function G„+ are not necessarily interrelated, so
that, in general, we can choose them independently. We
presently select the Sturmians as the expansion functions
and free-particle Green's operator Go, for G+. These
two choices are completely independent of each other.
Setting G+ =Go+, leads to the simplest second Born ap-
proximation R;f+' ' with the correct high-energy behav-
ior for which powerful algorithms exist. Our choice of
intermediate propagator G+ is very simple and this pro-
vides an important flexibility in freely augmenting the
size of the Sturmian basis sets whenever necessary. Stur-

mian negative-energy parameters EJ and ET can, in prin-
ciple, be varied in a search for the optimal convergence of
stationary part S;f". Alternatively, these parameters
can be fixed in order to account for a significant fraction
of the true physical hydrogenic states, e.g. , nodeless wave
functions ls, 2p, 3d, 4f, Sg, . . . , as illustrated in the
present work. Convenient scaling properties of Sturmian
wave functions advantageously simplify the full, varia-
tional T matrix to evaluation of the first and second
Born-type matrix elements. The present computations
show that the second Born-type integrals become pro-
gressively less important with decreasing impact energy.
They are completely negligible at low as well as at the
lower edge of intermediate energies. Hence, in this im-
portant energy range, L -discretization part S,f" needs
only to compensate for the deficiencies of the first Born
approximation T,f ' ", which already yields an accept-
able order of magnitude for the cross sections in the for-
ward direction.
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