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Combined perturbation and configuration-interaction calculation
for the fine-structure level splittings of the 1s4f states of helium
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{Received 28 November 1988)

We present a combined application of perturbation and configuration-interaction calculation for
the nonrelativistic electrostatic energy for the He 1s4f "F multiplets with particular emphasis
given to the contributions beyond the second order from perturbation calculation. The numerical
efficiency and the quantitative accuracy of our ab initio calculation are greatly improved with the
use of a Pnite basis set constructed from the B splines. The calculated fine-structure level splittings
for the 1s4f "F multiplets compare very well with the result from the most recent rf electric-
resonance experiment.

I. INTRODUCTION

The early high-precision microwave-optical-resonance
measurement by Wing and his co-workers' on the fine-
structure level splittings (FSLS) for the high-angular-
momentum Rydberg states of helium with one highly ex-
cited electron in a high-l orbit screened by a tightly
bound inner 1s electron has inaugurated a series of simi-
lar experiments with ever increasing precision which
is capable of testing smaller physical effects beyond the
usual spin-dependent interactions. For state with its to-
tal orbital angular momentum L +2, it is well known'
that the spin-dependent contribution to FSLS is small
compared to the contribution from the electrostatic ex-
change interaction. As L increases, the exchange interac-
tion decreases much more rapidly than the spin-
dependent interactions. In particular, for the L=3 F
state, these two contributions te FSLS are comparable.
For states with L ~ 4, the FSLS is dominated by the con-
tribution from the spin-dependent interactions.

The early theoretical interpretation for the FSLS for a
two-electron atomic system, which takes into account
both the electrostatic and spin-dependent interactions
(i.e., the spin-orbit, the spin-other-orbit, and the spin-spin
interactions in the Breit-Pauli approximation ), was first
developed by Araki and later extended by Parish and
Mires. Subsequently, an alternative description has been
suggested by Cok and Lundeen. More recently, high-
precision variational procedures have also been applied to
achieve quantitative accuracy comparable to the experi-
mental results.

For the high Rydberg states, the tightly bound inner 1s
electron and the highly excited high-l outer electron are
both well approximated by the one-electron hydrogenic
orbitals subject to Z and Z —1 nuclear charge, respec-
tively. Following Araki's original derivation and the
subsequent work of Parish and Mires, the relative ener-
gies of the four fine-structure levels (i.e., lsnl ' LJ multi-
plets) can be expressed by a set of simple analytical for-
mulas, i.e.,
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and neglecting the small contributions from g' and g'.

1,= —,'a Z(Z —1) /[n l(l + 1)(21+1)]
is in atomic units, e is the fine-structure constant, and K
is the electrostatic exchange energy. Equations (1)—(3)
represent the relative energies for the three triplet levels
and Eq. (4) represents the energy for the singlet level in
the usual LS coupling. Equations (1)—(4) are derived
from the theoretical results of Parish and Mires for the
L ~2 states [i.e., Eqs. (48)—(51) in Ref. 7] by employing
the approximation that
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TABLE I. The fine-structure level splittings (in MHz) for the
He 10G and 10H states. The experimental uncertainty is given
in parentheses.

Level Drachman Hessels et al. Farley et al.
splittings Present (Ref. 12) (Ref. 2) (Ref. 3)

The first-order electrostatic exchange energy E I is given
by

K, = ( Is~ YI(nl, Is; r)
~
nl ),1

where
'G4-'G4
'G3-'64
2G 3G

'H, -'H,
H4- Hq

'H, -'H,

26.130
19.807
10.367
17.452
12.884
6.746

26.168
19.760
10.333
17.478
12.897
6.763

26.178(14)
19.755(14)
10.345(20)
17.489(15)
12.905(14)
6.764(22)

26.27(14)
19.92(17)
10.54(26)
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and

For L ~ 4 states, the electrostatic exchange energy K is at
least 2 orders of magnitude smaller than the spin-
dependent interactions. Table I compares the most accu-
rate measured FSLS values for the 106 and 10H states to
the calculated values. The present result is obtained from
Eqs. (1)—(4) by setting K=O. In spite of its simplicity and
the approximation that K=0, estimation from Eqs.
(1)—(4) has led to FSLS values accurate to about 0.05
MHz or better for states with L ~ 4 although not as accu-
rate as the more elaborate calculation by Drachman. '

The study of the FSLS of He Isnf ' F multiplets is
particularly interesting due to the strong singlet-triplet
mixing as a result of comparable contributions from the
exchange interaction and the spin-dependent interactions.
All earlier works have shown that the first-order ex-
change energy is about a factor of 2 larger than its ob-
served value. The large cancellation to the first-order ex-
change energy due to the second-order contribution
found in our earlier perturbation calculation' suggests
that a more definitive calculation should at least include
an estimation of the higher-order contribution. Experi-
mentally, in a recent rf electric-resonance experiment,
Schilling et al. ' have derived the exchange energy E for
the He Is4f multiplets from the measured fine-structure
intervals between the 'F3 and the FJ levels. Their exper-
imental K value is in agreement with the most recent
variational configuration-interaction —Hylleraas (CI-H) re-
sult by Sims and Martin' but about 13% larger than the
value from our earlier perturbation calculation. ' In this
paper we will report the result of our renewed theoretical
eA'ort which has led to a substantial improvement in the
quantitative accuracy of the electrostatic exchange ener-

gy K over our previous perturbation calculation.

II. PERTURBATION CALCULATION
AND THE FINITE BASIS SET FROM B SPLINES

Similar to our early study, ' we have selected the one-
electron hydrogenic wave functions subject to a nuclear
charge Z for the inner electron and a charge of (Z —1)
for the outer electron. The hydrogenic wave function
U„& is expressed in terms of the product of the radial

S

part y„,(r), the angular part YI, i.e., the spherical har-
monics, and the spin function o (m, )

Vd(n ) li, n2l2) V,„(n, l), n212)
(12)

where the complete set of intermediate-state n, I, ,
representing both the bound and the continuum com-
ponents, are included in the summation. The double
summation is taken over all allowed two-electron
configurations except 1snl. The direct and exchange in-
tegrals Vd and V,„are given by
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where the angular factor g& is given elsewhere. ' The en-

ergy denominator AD is given by

bD (n, l, , n21, ) =E„(Z)+e„&(Z —1)

—e„ i (Z) —E„ I (Z —1) (15)

with the choice that I2) I, and n, l, and nzl2 represent
the orbitals for the inner and outer electron, respectively.

Like all many-body perturbation calculations, the most
time-consuming part of the numerical works is the sum-
ming over the complete intermediate basis included in the
double summation in Eq. (12). In our previous calcula-
tion, ' we first carried out one of the summations, e.g. ,
the sum over basis set n2Iz, by solving the effective inho-
mogeneous dift'erential equation with the Dalgarno-Lewis
technique' for each n&I& orbit. This is followed by a
direct sum over the bound contribution and the integra-
tion over the continuum contribution for the second in-
termediate basis set n, l, . Such a procedure is particular-

Yk(nl, n'I';r)=r '"+''f s "ds g„&(s)g„ I (s)
0
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The second-order electrostatic exchange energy K, is
given by
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ly difficult for higher nl Rydberg states as orbitals extend-
ing to very large distances are required in the calculation.
In the present calculation, we have, instead, replaced the
complete intermediate basis with a finite basis set con-
structed from 8 splines. ' The finite basis set constructed
from 8 splines has been applied successfully in the recent
relativistic many-body perturbation calculation by
Johnson et al. ' Its extension to the nonrelativistic cal-
culation is trivial. We will only briefly outline in this sec-
tion the construction of the finite basis set from 8 splines
for the nonrelativistic calculation. Basic properties asso-
ciated with the 8 splines are discussed in detail else-
where. '7'8

The radial function g in this calculation satisfies the
eigenequation

equal to zero except for 8„,i.e.,

B,(0)=1, 8„(R)=1 . (19)

c) =c„=O . (20)

An exponential knot sequence is employed in the present
calculation similar to the one used in the relativistic cal-
culation by Johnson et al. ' With the expansion in the
form of Eq. (18) and the boundary conditions Eq. (20),
the eigenequation Eq. (16) can be expressed as a
(n —2) X(n —2) symmetric generalized eigenvalue equa-
tion

The boundary conditions that y equals to zero at r=O
and R require that

where

+ V(r)y=Ey,1dy
dp'

(16)
HC =BRAC, (21)

where H and A are (n —2) X (n —2) symmetric matrices
given by

V(r) = —g/r + —,
' l ll + 1)/r (17) d

Hij ——
—, 8,-
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is the hydrogenic potential with g=Z for the inner elec-
tron and g=Z —1 for the outer electron. The solution y
is expanded in terms of a set of 8 splines of order k, total
number n, and a knot sequence between r=O and r =R,

+(B,~V~BJ ), i,j =2, . . . , (n —1)

A; =(8;~8 ), i j =2, . . . , (n —1) .

(22)

(23)

i.e., The eigenvector y corresponding to the energy eigenval-
ue c, i.e.,

n —1

y = g c;8;(r) (24)

For simplicity, n and k are omitted from the functions 8;.
At the endpoint r=O, all 8 splines equal to zero except
for 8& and at the other endpoint r =R, all 8 splines also

I =2

is constructed from the n —2 coefficients c; from the
eigen vector

TABLE II. Calculated first- and second-order perturbation contribution to the electrostatic ex-
change energy 2K (in 10 ' Ry) for the He ls4f tnultiplets.

Energy

Orbital angular
momenta

I;(Z =2) I,(Z =1) B-spline basis

Electrostatic exchange energy 2E
(in 10 ' Ry)

H-like bound states
(up to n=18)

First order (2I( &)

Second order

Total (2I( 2)
2%1+2E2

0
1

1

2
2
3
3
4
5

6
7
8
9

10
11
12

3
2
4
3
5
4
6

Sand7
6and 8

7and 9
8 and 10
9 and 11
10 and 12
11 and 13
12 and 14
13 and 15

10.2555
0.2934

—4.8483
—1.1877
—0.6570
—0.3299
—0.1963
—0.1307
—0.1412
—0.0705
—0.0388
—0.0226
—0.0139
—0.0092
—0.0061
—0.0041
—0.0027
—7.3641

2.8914
(95. 11 MHz)

10.2555
0.0001

—3.6293
—0.0075
—0.0072
—0.0001

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

—3.6440
6.6115

(217.48 MHz)
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C~=(c2, c3, . . . , cn —1) (25)

In the present calculation, the numerical eigenvalues of
the first few lowest negative-energy solutions agree to the
hydrogenic values to 10 ' Ry. The quasicomplete set of
eigenfunctions constructed from B splines are then used
in the calculation of the second-order exchange energy
2E2.

The calculated exchange interactions up to second or-
der are listed in Table II. The basis functions y are con-
structed from sets of B splines of n ranging from 27 to 62
and k ranging from 7 to 11. The numerical results listed
in Table II are the converged results of various combina-
tions of n and k as we vary the radius 8 from 90ao to
200ao. The individual contribution from each (li, lz)
combination, i.e., l& =l, for the inner electron and l2 =I,
for the outer electron, are tabulated in detail to illustrate
the slow convergence in the second-order calculation. In
particular, we note that the present calculation up to
(l, l, )=(2,3) combination agree well with our early per-
turbation calculation' which did not include the contri-
butions from other higher (l;I, ) combinations. Similar to
our earlier calculation, ' the present calculation also
shows that the contribution from the continuum part of
the intermediate basis set is substantial as indicated by
the large difference between the more complete second-
order calculation and the one which includes only the
bound component shown in Table II. With an uncertain-
ty of about 0.18 MHz or less, the sum of the first- and
second-order exchange energies is about 95.11 MHz
which is substantially sma11er than the measured value of
158+3 MHz by Schilling et al. '

III. COMBINED PERTURBATION
AND CONFIGURATION-INTERACTION CALCULATION

The larger discrepancy in the exchange energy between
the experimental value and the more complete first- and
second-order perturbation results clearly indicates the
need to carry out theoretical calculation beyond second
order. The obvious choice would be an extension of the
perturbation calculation to include higher-order contri-
butions. Such an approach would require an enormous
numerical effort with little advanced assurance that the
perturbation series would converge any faster than its
convergence up to second order. Alternatively, we could
include contributions up to infinite orders in a
configuration-interaction (CI) calculation if only limited
configurations contribute significantly and a high numeri-
cal accuracy can be achieved to about 10 ' Ry or better
in calculating the energy difference between separate cal-
culations for the 'F and F states. A straightforward non-
variational CI calculation would also require enormous
numerical effort with no assurance that the contributions
from two-electron configurations corresponding to higher
(l, l, ) combination could be calculated at the same level
of numerical accuracy.

To minimize the numerical effort in the estimation of
higher-order contributions, we started exploring the pos-
sibility of a combined perturbation and CI calculation
after recognizing that the larger individual second-order

—p(N —s)
) (26)

where p and 5 are fitting parameters which are adjusted
to get the best fit as X approaches the limiting value.
Figure 1 shows the numerical fit of 5 from the calculated
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FICs. 1. The extrapolated Is4f singlet-triplet separation
6=6.38406X 10 Ry from the calculated Az as function of in-

creasing number of configuration series N following Eq. (26).

contribution comes predominantly from configurations
with I, =1. Typically, the direct integrals Vd involving
such configurations are few orders of magnitude larger
than those with l; other than 1. In particular, we have
examined the second-order contribution from each
configuration series n, l, l, [i.e., a set of configurations
with a fixed inner electron orbit n, l, combined with outer
electron in orbits consisting of the complete set of solu-
tions g of Eq. (16) corresponding to the fixed t, ] and con-
cluded that the contributions from the first few
configuration series with a (I;l, )=(1,2) or pd combina-
tion and the first few configuration series with a
(l, l, ) =(1,4) or pg combination are about 2 orders of mag-
nitude larger than the individual contribution from other
configuration series. In our combined perturbation and
CI calculation, we first carried out separate CI calcula-
tion for both ls4f 'F and Is4f F states by including a
selected number of dominating npd and npg configuration
series in addition to the 2sf series which also contributes
significantly. The singlet-triplet energy separation from
the CI calculation is then subtracted from the calculated
first-order value 2K, to determine the second- and
higher-order contribution to 2K due to the configuration
series included in the CI calculation. The second-order
perturbation contribution from all other configurations
not included in the CI calculation are then added to the
contribution from CI calculation to get our final calculat-
ed 2K value.

As the number of configuration series included in the
CI calculation increases, the calculated 2E value slowly
con verges to the experimental value. The calculated
singlet-triplet separation b, from the CI calculation in-
cluding contribution from 2sf series and all npd and npg
series is determined by extrapolating the calculated 6&
with increasing number of configuration series N accord-
ing to the limiting expression
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TABLE III. The combined CI (configuration interaction) and perturbation contribution to the ex-
change energy 2K for He 1s4f multiplets.

Contributing term
Electrostatic exchange energy 2K

(10 Ry) (MHz)

First order (2K, )

CI contribution
Second order excluding configurations

in CI calculation
Total
Sims and Martin'
Experiment

'Reference 10.
Reference 14.

10.2555
—3.8714
—1.5868

4.7973

337.34
—127.35
—52.19

157.80
158.02
158+3

h~ ranging from N=27 to 38 to the Eq. (26). The limit-
ing value 6=6.38406X10 Ry is used to derive the CI
contribution of —3.8714X10 Ry listed in Table III.
We have estimated an uncertainty of approximately 0.10
MHz due to the extrapolation from Fig. 1. Table III lists
the first-order value 2K&, the CI contribution, and the
second-order contribution from all other configurations
not included in the CI calculation. The sum of these
three contributions leads to a value of 2K =157.80+0.28
MHz which compares very well with the theoretical
value from Sims and Martin' and the experimental value
from Schilling et al. ' Finally, from Eqs. (1)—(4), we find

v&&
=231.88+0.34 MHz, v&4

=490.37+0.34 MHz, and
v» =703.46+0.58 MHz which are also in excellent agree-
ment with the observed values' of 232.8+2.0 MHz,
490.8+2.0 MHz, and 704.3+1.0 MHz, respectively.

The present calculation has shown that the combined

application of the perturbation and CI calculation can
indeed offer an effective alterative to a separate perturba-
tion or CI calculation if the dominating contributions can
be identified in detail. Our calculation has also shown
that the ftnite basis set constructed from B splines can be
applied very effectively to the nonrelativistic perturbation
and CI calculations.
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